1
|
Wu H, Ren Y, Zhang J, Xue J, Chen L, Chen H, Yang X, Wang H. Research progress of LpxC inhibitor on Gram-negative bacteria. Eur J Med Chem 2025; 289:117440. [PMID: 40020426 DOI: 10.1016/j.ejmech.2025.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is a metalloprotein that utilizes zinc as a cofactor. LpxC plays a crucial role in catalyzing the synthesis of Lipid A, a major component of the outer membrane lipopolysaccharide in Gram-negative (G-) bacteria, and LpxC shares no common amino acid sequence with various mammalian enzyme proteins. LpxC is essential for the survival of Gram-negative bacteria, making it a promising target for the antibacterial drug development. In recent years, numerous LpxC inhibitors have been reported, which can be broadly categorized into hydroxamic acid and non-hydroxamic acid based on their structural characteristics. Although no LpxC inhibitors are currently available on the market, several candidate small molecules are anticipated to enter clinical trials. The current manuscript offers a comprehensive review of the structures, enzyme catalytic mechanisms, and research progress of novel LpxC inhibitors, with the objective of providing insights and directions for future research in the development of LpxC inhibitors as new antibacterial agents.
Collapse
Affiliation(s)
- Han Wu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Jungan Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China
| | - Jingsu Xue
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Lulu Chen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China; Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing, 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Mishra A, Thakur A, Sharma R, Onuku R, Kaur C, Liou JP, Hsu SP, Nepali K. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges. Expert Opin Drug Discov 2024; 19:1355-1381. [PMID: 39420580 DOI: 10.1080/17460441.2024.2409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Scaffold hopping has emerged as a practical tactic to enrich the synthetic bank of small molecule antitumor agents. Specifically, it enables the chemist to refine the lead compound's pharmacodynamic, pharmacokinetic, and physiochemical properties. Scaffold hopping opens up fresh molecular territory beyond established patented chemical domains. AREA COVERED The authors present the scaffold hopping-based drug design strategies for dual inhibitory antitumor structural templates in this review. Minor modifications, structure rigidification and simplification (ring-closing and opening), and complete structural overhauls were the strategies employed by the medicinal chemist to generate a library of bifunctional inhibitors. In addition, the review presents an overview of the computational methods of scaffold hopping (software and programs) and organopalladium catalysis leveraged for the synthesis of templates designed via scaffold hopping. EXPERT OPINION The medicinal chemist has demonstrated remarkable prowess in furnishing dual inhibitory antitumor chemical architectures. Scaffold hopping-based drug design strategies have yielded a plethora of pharmacodynamically superior dual modulatory antitumor agents. An integrated approach involving computational advancements, synthetic methodology advancements, and conventional drug design strategies is required to increase the number of scaffold-hopping-assisted drug discovery campaigns.
Collapse
Affiliation(s)
- Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Raphael Onuku
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
3
|
Kamal El-Sagheir AM, Abdelmesseh Nekhala I, Abd El-Gaber MK, Aboraia AS, Persson J, Schäfer AB, Wenzel M, Omar FA. Rational design, synthesis, molecular modeling, biological activity, and mechanism of action of polypharmacological norfloxacin hydroxamic acid derivatives. RSC Med Chem 2023; 14:2593-2610. [PMID: 38099058 PMCID: PMC10718593 DOI: 10.1039/d3md00309d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/11/2023] [Indexed: 12/17/2023] Open
Abstract
Fluoroquinolones are broad-spectrum antibiotics that target gyrase and topoisomerase IV, involved in DNA compaction and segregation. We synthesized 28 novel norfloxacin hydroxamic acid derivatives with additional metal-chelating and hydrophobic pharmacophores, designed to enable interactions with additional drug targets. Several compounds showed equal or better activity than norfloxacin against Gram-positive, Gram-negative, and mycobacteria, with MICs as low as 0.18 μM. The most interesting derivatives were selected for in silico, in vitro, and in vivo mode of action studies. Molecular docking, enzyme inhibition, and bacterial cytological profiling confirmed inhibition of gyrase and topoisomerase IV for all except two tested derivatives (10f and 11f). Further phenotypic analysis revealed polypharmacological effects on peptidoglycan synthesis for four derivatives (16a, 17a, 17b, 20b). Interestingly, compounds 17a, 17b, and 20b, showed never seen before effects on cell wall synthetic enzymes, including MreB, MurG, and PonA, suggesting a novel mechanism of action, possibly impairing the lipid II cycle.
Collapse
Affiliation(s)
| | - Ireny Abdelmesseh Nekhala
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
| | | | - Ahmed S Aboraia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Jonatan Persson
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology 412 96 Gothenburg Sweden
- Center for Antibiotic Resistance Research in Gothenburg (CARe) Gothenburg Sweden
| | - Farghaly A Omar
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| |
Collapse
|
4
|
Di Leo R, Cuffaro D, Rossello A, Nuti E. Bacterial Zinc Metalloenzyme Inhibitors: Recent Advances and Future Perspectives. Molecules 2023; 28:molecules28114378. [PMID: 37298854 DOI: 10.3390/molecules28114378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Human deaths caused by Gram-negative bacteria keep rising due to the multidrug resistance (MDR) phenomenon. Therefore, it is a priority to develop novel antibiotics with different mechanisms of action. Several bacterial zinc metalloenzymes are becoming attractive targets since they do not show any similarities with the human endogenous zinc-metalloproteinases. In the last decades, there has been an increasing interest from both industry and academia in developing new inhibitors against those enzymes involved in lipid A biosynthesis, and bacteria nutrition and sporulation, e.g., UDP-[3-O-(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC), thermolysin (TLN), and pseudolysin (PLN). Nevertheless, targeting these bacterial enzymes is harder than expected and the lack of good clinical candidates suggests that more effort is needed. This review gives an overview of bacterial zinc metalloenzyme inhibitors that have been synthesized so far, highlighting the structural features essential for inhibitory activity and the structure-activity relationships. Our discussion may stimulate and help further studies on bacterial zinc metalloenzyme inhibitors as possible novel antibacterial drugs.
Collapse
Affiliation(s)
- Riccardo Di Leo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
5
|
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 2023; 14:823-847. [PMID: 37252095 PMCID: PMC10211318 DOI: 10.1039/d2md00415a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 11/19/2023] Open
Abstract
Oxazolidinone is a five-member heterocyclic ring with several biological applications in medicinal chemistry. Among the three possible isomers, 2-oxazolidinone is the most investigated in drug discovery. Linezolid was pioneered as the first approved drug containing an oxazolidinone ring as the pharmacophore group. Numerous analogues have been developed since its arrival on the market in 2000. Some have succeeded in reaching the advanced stages of clinical studies. However, most oxazolidinone derivatives reported in recent decades have not reached the initial stages of drug development, despite their promising pharmacological applications in a variety of therapeutic areas, including antibacterial, antituberculosis, anticancer, anti-inflammatory, neurologic, and metabolic diseases, among other areas. Therefore, this review article aims to compile the efforts of medicinal chemists who have explored this scaffold over the past decades and highlight the potential of the class for medicinal chemistry.
Collapse
Affiliation(s)
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University Araraquara 14800903 Brazil
| | - Seong-Heun Kim
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
- School of Cancer and Pharmaceutical Sciences, King's College London 150 Stamford Street SE1 9NH London UK
| | - Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
6
|
Niu Z, Lei P, Wang Y, Wang J, Yang J, Zhang J. Small molecule LpxC inhibitors against gram-negative bacteria: Advances and future perspectives. Eur J Med Chem 2023; 253:115326. [PMID: 37023679 DOI: 10.1016/j.ejmech.2023.115326] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a metalloenzyme with zinc ions as cofactors and is a key enzyme in the essential structural outer membrane lipid A synthesis commitment step of gram-negative bacteria. As LpxC is extremely homologous among different Gram-negative bacteria, it is conserved in almost all gram-negative bacteria, which makes LpxC a promising target. LpxC inhibitors have been reported extensively in recent years, such as PF-5081090 and CHIR-090 were found to have broad-spectrum antibiotic activity against P. aeruginosa and E. coli. They are mainly classified into hydroxamate inhibitors and non-hydroxamate inhibitors based on their structure, but no LpxC inhibitors have been marketed due to safety and activity issues. This review, therefore, focuses on small molecule inhibitors of LpxC against gram-negative pathogenic bacteria and covers recent advances in LpxC inhibitors, focusing on their structural optimization process, structure-activity relationships, and future directions, with the aim of providing ideas for the development of LpxC inhibitors and clinical research.
Collapse
|
7
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
8
|
Singh M, Verma H, Bhandu P, Kumar M, Narendra G, Choudhary S, Singh PK, Silakari O. Network Analysis Guided Designing of Multi-Targeted Anti-Fungal Agents: Synthesis and Biological Evaluation. J Mol Struct 2022; 1272:134128. [PMID: 36101882 PMCID: PMC9458262 DOI: 10.1016/j.molstruc.2022.134128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/20/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
During the ongoing pandemic, there have been increasing reports of invasive fungal disease (IFD), particularly among immunocompromised populations. Candida albicans is one of the most common clinical pathogenic microorganisms which have become a serious health threat to population either infected with Covid-19 or on treatment with immunosuppressant's/broad-range antibiotics. Currently, benzothiazole is a well explored scaffold for anti-fungal activity, especially mercapto substituted benzothiazoles. It is reported that exploring the 2nd position of benzothiazoles yield improved anti-fungal molecules. Therefore, in the current study, lead optimization approach using bioisosteric replacement protocol was followed to improve the anti-fungal activity of an already reported benzothiazole derivative, N-(1,3-benzothiazole-2-yl)-2-(pyridine-3-ylformohydrazido) acetamide. To rationally identify the putative anti-candida targets of this derivative, network analysis was carried out. Complexes of designed compounds and identified putative targets were further analyzed for the docking interactions and their consequent retention after the completion of exhaustive MD simulations. Top seven designed compounds were synthesized and evaluated for in-vitro anti-fungal property against Candida, which indicated that compounds 1.2c and 1.2f possess improved and comparable anti-fungal activity to N-(1,3-benzothiazole-2-yl)-2-(pyridine-3-ylformohydrazido) acetamide and Nystatin, respectively.
Collapse
Affiliation(s)
- Manmeet Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Priyanka Bhandu
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Manoj Kumar
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Pankaj Kumar Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, FI-20014, Finland
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
9
|
Basak S, Li Y, Tao S, Daryaee F, Merino J, Gu C, Delker SL, Phan JN, Edwards TE, Walker SG, Tonge PJ. Structure-Kinetic Relationship Studies for the Development of Long Residence Time LpxC Inhibitors. J Med Chem 2022; 65:11854-11875. [PMID: 36037447 PMCID: PMC10182817 DOI: 10.1021/acs.jmedchem.2c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a promising drug target in Gram-negative bacteria. Previously, we described a correlation between the residence time of inhibitors on Pseudomonas aeruginosa LpxC (paLpxC) and the post-antibiotic effect (PAE) caused by the inhibitors on the growth of P. aeruginosa. Given that drugs with prolonged activity following compound removal may have advantages in dosing regimens, we have explored the structure-kinetic relationship for paLpxC inhibition by analogues of the pyridone methylsulfone PF5081090 (1) originally developed by Pfizer. Several analogues have longer residence times on paLpxC than 1 (41 min) including PT913, which has a residence time of 124 min. PT913 also has a PAE of 4 h, extending the original correlation observed between residence time and PAE. Collectively, the studies provide a platform for the rational modulation of paLpxC inhibitor residence time and the potential development of antibacterial agents that cause prolonged suppression of bacterial growth.
Collapse
Affiliation(s)
- Sneha Basak
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yong Li
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Suyuan Tao
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Fereidoon Daryaee
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Jonathan Merino
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Chendi Gu
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Jenny N. Phan
- McGill University Montreal, Quebec H3A 0G4, Canada Canada
| | | | - Stephen G. Walker
- Department of Oral Biology and Pathology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Peter J. Tonge
- Center for Advanced Study of Drug Action, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Chemistry, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Department of Radiology, John S. Toll Drive, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
10
|
Woods A, Parker D, Glick MM, Peng Y, Lenoir F, Mulligan E, Yu V, Piizzi G, Lister T, Lilly MD, Dzink-Fox J, Jansen JM, Ryder NS, Dean CR, Smith TM. High-Throughput Screen for Inhibitors of Klebsiella pneumoniae Virulence Using a Tetrahymena pyriformis Co-Culture Surrogate Host Model. ACS OMEGA 2022; 7:5401-5414. [PMID: 35187355 PMCID: PMC8851646 DOI: 10.1021/acsomega.1c06633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 05/31/2023]
Abstract
The continuing emergence of antibacterial resistance reduces the effectiveness of antibiotics and drives an ongoing search for effective replacements. Screening compound libraries for antibacterial activity in standard growth media has been extensively explored and may be showing diminishing returns. Inhibition of bacterial targets that are selectively important under in vivo (infection) conditions and, therefore, would be missed by conventional in vitro screens might be an alternative. Surrogate host models of infection, however, are often not suitable for high-throughput screens. Here, we adapted a medium-throughput Tetrahymena pyriformis surrogate host model that was successfully used to identify inhibitors of a hyperviscous Klebsiella pneumoniae strain to a high-throughput format and screened circa 1.2 million compounds. The screen was robust and identified confirmed hits from different chemical classes with potent inhibition of K. pneumoniae growth in the presence of T. pyriformis that lacked any appreciable direct antibacterial activity. Several of these appeared to inhibit capsule/mucoidy, which are key virulence factors in hypervirulent K. pneumoniae. A weakly antibacterial inhibitor of LpxC (essential for the synthesis of the lipid A moiety of lipopolysaccharides) also appeared to be more active in the presence of T. pyriformis, which is consistent with the role of LPS in virulence as well as viability in K. pneumoniae.
Collapse
Affiliation(s)
- Angela
L. Woods
- Infectious
Diseases, Novartis Institutes for Biomedical
Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David Parker
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Meir M. Glick
- Chemical
Biology and Therapeutics, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yunshan Peng
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Francois Lenoir
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Evan Mulligan
- Chemical
Biology and Therapeutics, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vincent Yu
- Chemical
Biology and Therapeutics, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Grazia Piizzi
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Lister
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Maria-Dawn Lilly
- Infectious
Diseases, Novartis Institutes for Biomedical
Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - JoAnn Dzink-Fox
- Infectious
Diseases, Novartis Institutes for Biomedical
Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Johanna M. Jansen
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research Inc, Emeryville California 94608-2916, United States
| | - Neil S. Ryder
- Infectious
Diseases, Novartis Institutes for Biomedical
Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charles R. Dean
- Infectious
Diseases, Novartis Institutes for Biomedical
Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Thomas M. Smith
- Chemical
Biology and Therapeutics, Novartis Institutes
for Biomedical Research Inc, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Bhunia S, De S, Ma D. Room Temperature Cu-Catalyzed N-Arylation of Oxazolidinones and Amides with (Hetero)Aryl Iodides. Org Lett 2022; 24:1253-1257. [DOI: 10.1021/acs.orglett.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subhajit Bhunia
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Subhadip De
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
12
|
Gally JM, Bourg S, Fogha J, Do QT, Aci-Sèche S, Bonnet P. VSPrep: A KNIME Workflow for the Preparation of Molecular Databases for Virtual Screening. Curr Med Chem 2021; 27:6480-6494. [PMID: 31242833 DOI: 10.2174/0929867326666190614160451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/11/2019] [Accepted: 05/24/2019] [Indexed: 01/21/2023]
Abstract
Drug discovery is a challenging and expensive field. Hence, novel in silico tools have been developed in early discovery stage to identify and prioritize novel molecules with suitable physicochemical properties. In many in silico drug design projects, molecular databases are screened by virtual screening tools to search for potential bioactive molecules. The preparation of the molecules is therefore a key step in the success of well-established techniques such as docking, similarity or pharmacophore searching. We review here the lists of several toolkits used in different steps during the cleaning of molecular databases, integrated within a KNIME workflow. During the first step of the automatic workflow, salts are removed, and mixtures are split to get one compound per entry. Then compounds with unwanted features are filtered. Duplicated entries are then deleted while considering stereochemistry. As a compromise between exhaustiveness and computational time, most distributed tautomers at physiological pH are computed. Additionally, various flags are applied to molecules by using either classical molecular descriptors, similarity search to known libraries or substructure search rules. Moreover, stereoisomers are enumerated depending on the unassigned chiral centers. Then, three-dimensional coordinates, and optionally conformers, are generated. This workflow has been already applied to several drug design projects and can be used for molecular database preparation upon request.
Collapse
Affiliation(s)
- José-Manuel Gally
- Institut de Chimie Organique et Analytique (ICOA), Universite d'Orleans, UMR CNRS 7311, BP 6759, 45067 Orleans, France
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique (ICOA), Universite d'Orleans, UMR CNRS 7311, BP 6759, 45067 Orleans, France
| | - Jade Fogha
- Institut de Chimie Organique et Analytique (ICOA), Universite d'Orleans, UMR CNRS 7311, BP 6759, 45067 Orleans, France
| | - Quoc-Tuan Do
- Greenpharma S.A.S. 3, allee du Titane, 45100 Orleans, France
| | - Samia Aci-Sèche
- Institut de Chimie Organique et Analytique (ICOA), Universite d'Orleans, UMR CNRS 7311, BP 6759, 45067 Orleans, France
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Universite d'Orleans, UMR CNRS 7311, BP 6759, 45067 Orleans, France
| |
Collapse
|
13
|
Efremova MM, Molchanov AP, Novikov AS, Starova GL, Muryleva AA, Slita AV, Zarubaev VV. 1,3-Dipolar cycloaddition of N-allyl substituted polycyclic derivatives of isoindole-1,3-dione with nitrones and nitrile oxides: An experimental and theoretical investigation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
15
|
Han W, Ma X, Balibar CJ, Baxter Rath CM, Benton B, Bermingham A, Casey F, Chie-Leon B, Cho MK, Frank AO, Frommlet A, Ho CM, Lee PS, Li M, Lingel A, Ma S, Merritt H, Ornelas E, De Pascale G, Prathapam R, Prosen KR, Rasper D, Ruzin A, Sawyer WS, Shaul J, Shen X, Shia S, Steffek M, Subramanian S, Vo J, Wang F, Wartchow C, Uehara T. Two Distinct Mechanisms of Inhibition of LpxA Acyltransferase Essential for Lipopolysaccharide Biosynthesis. J Am Chem Soc 2020; 142:4445-4455. [DOI: 10.1021/jacs.9b13530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wooseok Han
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Xiaolei Ma
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Carl J. Balibar
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | | | - Bret Benton
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alun Bermingham
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Fergal Casey
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Barbara Chie-Leon
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Min-Kyu Cho
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Andreas O. Frank
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alexandra Frommlet
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Chi-Min Ho
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Patrick S. Lee
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Min Li
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sylvia Ma
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Hanne Merritt
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Elizabeth Ornelas
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Gianfranco De Pascale
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Ramadevi Prathapam
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Katherine R. Prosen
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Dita Rasper
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Alexey Ruzin
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - William S. Sawyer
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Steven Shia
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Micah Steffek
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Sharadha Subramanian
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Jason Vo
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Feng Wang
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Charles Wartchow
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Tsuyoshi Uehara
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| |
Collapse
|
16
|
Deng X, Song M. Synthesis, antibacterial and anticancer activity, and docking study of aminoguanidines containing an alkynyl moiety. J Enzyme Inhib Med Chem 2020; 35:354-364. [PMID: 31851531 PMCID: PMC6968633 DOI: 10.1080/14756366.2019.1702654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Two series of aminoguanidines containing an alkynyl moiety were designed, synthesised, and screened for antibacterial and anticancer activities. Generally, the series 3a-3j with a 1,2-diphenylethyne exhibited better antibacterial activity than the other series (6a-6k) holding 1,4-diphenylbuta-1,3-diyne moiety antibacterial activity. Most compounds in series 3a-3j showed potent growth inhibition against the tested bacterial strains, with minimum inhibitory concentration (MIC) values in the range 0.25-8 µg/mL. Compound 3g demonstrated rapid and persistent bactericidal activity at 2 × MIC. The resistance study revealed that resistance of the tested bacteria towards 3g is not easily developed. Molecular docking studies revealed that compounds 3g and 6e bind strongly to the LpxC and FabH enzymes. Moreover, excellent activity of selected compounds against the growth of cancer cell lines A549 and SGC7901 was also observed, with IC50 values in the range 0.30-4.57 µg/mL. These findings indicate that compounds containing the aminoguanidine moiety are promising candidates for the development of new antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Xianqing Deng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an, China
| | - Mingxia Song
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an, China
| |
Collapse
|
17
|
Surivet JP, Panchaud P, Specklin JL, Diethelm S, Blumstein AC, Gauvin JC, Jacob L, Masse F, Mathieu G, Mirre A, Schmitt C, Lange R, Tidten-Luksch N, Gnerre C, Seeland S, Herrmann C, Seiler P, Enderlin-Paput M, Mac Sweeney A, Wicki M, Hubschwerlen C, Ritz D, Rueedi G. Discovery of Novel Inhibitors of LpxC Displaying Potent in Vitro Activity against Gram-Negative Bacteria. J Med Chem 2019; 63:66-87. [PMID: 31804826 DOI: 10.1021/acs.jmedchem.9b01604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UDP-3-O-((R)-3-hydroxymyristoyl)-N-glucosamine deacetylase (LpxC) is as an attractive target for the discovery and development of novel antibacterial drugs to address the critical medical need created by multidrug resistant Gram-negative bacteria. By using a scaffold hopping approach on a known family of methylsulfone hydroxamate LpxC inhibitors, several hit series eliciting potent antibacterial activities against Enterobacteriaceae and Pseudomonas aeruginosa were identified. Subsequent hit-to-lead optimization, using cocrystal structures of inhibitors bound to Pseudomonas aeruginosa LpxC as guides, resulted in the discovery of multiple chemical series based on (i) isoindolin-1-ones, (ii) 4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-ones, and (iii) 1,2-dihydro-3H-pyrrolo[1,2-c]imidazole-3-ones. Synthetic methods, antibacterial activities and relative binding affinities, as well as physicochemical properties that allowed compound prioritization are presented. Finally, in vivo properties of lead molecules which belong to the most promising pyrrolo-imidazolone series, such as 18d, are discussed.
Collapse
Affiliation(s)
- Jean-Philippe Surivet
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Philippe Panchaud
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Jean-Luc Specklin
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Stefan Diethelm
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | | | | | - Loïc Jacob
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Florence Masse
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Gaëlle Mathieu
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Azely Mirre
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Christine Schmitt
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Roland Lange
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Naomi Tidten-Luksch
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Carmela Gnerre
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Swen Seeland
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Charlyse Herrmann
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Peter Seiler
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Michel Enderlin-Paput
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Aengus Mac Sweeney
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Micha Wicki
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | | | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| | - Georg Rueedi
- Idorsia Pharmaceuticals Ltd. , Hegenheimermattweg 91 , CH-4123 Allschwil , Switzerland
| |
Collapse
|
18
|
Mutations Reducing In Vitro Susceptibility to Novel LpxC Inhibitors in Pseudomonas aeruginosa and Interplay of Efflux and Nonefflux Mechanisms. Antimicrob Agents Chemother 2019; 64:AAC.01490-19. [PMID: 31658970 DOI: 10.1128/aac.01490-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022] Open
Abstract
Upregulated expression of efflux pumps, lpxC target mutations, LpxC protein overexpression, and mutations in fabG were previously shown to mediate single-step resistance to the LpxC inhibitor CHIR-090 in P. aeruginosa Single-step selection experiments using three recently described LpxC inhibitors (compounds 2, 3, and 4) and mutant characterization showed that these mechanisms affect susceptibility to additional novel LpxC inhibitors. Serial passaging of P. aeruginosa wild-type and efflux pump-defective strains using the LpxC inhibitor CHIR-090 or compound 1 generated substantial shifts in susceptibility and underscored the interplay of efflux and nonefflux mechanisms. Whole-genome sequencing of CHIR-090 passage mutants identified efflux pump overexpression, fabG mutations, and novel mutations in fabF1 and in PA4465 as determinants of reduced susceptibility. Two new lpxC mutations, encoding A214V and G208S, that reduce susceptibility to certain LpxC inhibitors were identified in these studies, and we show that these and other target mutations differentially affect different LpxC inhibitor scaffolds. Lastly, the combination of target alteration (LpxCA214V) and upregulated expression of LpxC was shown to be tolerated in P. aeruginosa and could mediate significant decreases in susceptibility.
Collapse
|
19
|
Wang DW, Zhang RB, Yu SY, Liang L, Ismail I, Li YH, Xu H, Wen X, Xi Z. Discovery of Novel N-Isoxazolinylphenyltriazinones as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12382-12392. [PMID: 31635461 DOI: 10.1021/acs.jafc.9b04844] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is a promising target for herbicide discovery. Search for new compounds with novel chemotypes is a key objective for agrochemists. Here, we describe the discovery and systematic SAR-based structure optimization of novel N-isoxazolinylphenyltriazinones 5-9 as PPO inhibitors. The in vivo herbicidal activity and in vitro Nicotiana tabacum PPO (NtPPO) inhibitory activity were explored in detail. A number of the new synthetic compounds displayed strong PPO inhibitory activity with Ki values in the nanomolar range. Some compounds exhibited excellent and broad-spectrum weed control at the rate of 9.375-37.5 g ai/ha by postemergence application and showed improved monocotyledonous weed control compared to saflufenacil. Most promisingly, ethyl 3-(2-chloro-5-(3,5-dimethyl-2,6-dioxo-4-thioxo-1,3,5-triazinan-1-yl)-4-fluorophenyl)-5-methyl-4,5-dihydroisoxazole-5-carboxylate, 5a, with a Ki value of 4.9 nM, displayed over 2- and 6-fold higher potency than saflufenacil (Ki = 10 nM) and trifludimoxazin (Ki = 31 nM), respectively. Moreover, 5a showed excellent and broad-spectrum weed control against 32 kinds of weeds at 37.5-75 g ai/ha. Rice exhibited relative tolerance to 5a at 150 g ai/ha by postemergence application, indicating that 5a could be a potential herbicide candidate for weed control in paddy fields.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
20
|
González-Bello C. Recently developed synthetic compounds with anti-infective activity. Curr Opin Pharmacol 2019; 48:17-23. [DOI: 10.1016/j.coph.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|