1
|
Plotkin MA, Labroli M, Schubert J, Shaw A, Schlegel KAS, Berger R, Cooke AJ, Hayes RP, Armacost KA, Kinek K, Krosky P, Burlein C, Meng S, DiNunzio E, Murray EM, Agrawal S, Madeira M, Flattery A, Yao H, Leithead A, Rose WA, Cox C, Tellers DM, McKenna PM, Raheem I. Discovery of Broad-Spectrum Herpes Antiviral Oxazolidinone Amide Derivatives and Their Structure-Activity Relationships. ACS Med Chem Lett 2024; 15:1232-1241. [PMID: 39140041 PMCID: PMC11318010 DOI: 10.1021/acsmedchemlett.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Herpesvirus infections are ubiquitous, with over 95% of the adult population infected by at least one strain. While most of these infections resolve without treatment in healthy individuals, they can cause significant morbidity and mortality in immunocompromised, stem cell, or organ transplant patients. Current nucleoside standards of care provide meaningful benefit but are limited due to poor tolerability, resistance, and generally narrow spectrum of activity. Herpesviruses share a conserved DNA polymerase, the inhibition of which is validated as an effective strategy to disrupt viral replication. By utilizing a non-nucleoside inhibitor of the viral DNA polymerase, we sought to develop agents covering multiple herpesviruses (e.g., CMV, VZV, HSV1/2, EBV, and HHV6). Herein is described the invention of an oxazolidinone class of broad-spectrum non-nucleoside herpes antiviral inhibitors. A lead compound (42) with potent biochemical and broad-spectrum cellular activity was found to be efficacious in murine models against both HSV-1 and CMV infection.
Collapse
Affiliation(s)
- Michael A. Plotkin
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Marc Labroli
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeffrey Schubert
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Anthony Shaw
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Kelly-Ann S. Schlegel
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard Berger
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Andrew J. Cooke
- Medicinal
Chemistry, Exscientia, 53 State Street, Boston, Massachusetts 02109, United States
| | - Robert P. Hayes
- Protein
and Structural Chemistry, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Kira A. Armacost
- Computational
Sciences, GlaxoSmithKline, Collegeville Pennsylvania 19426, United States
| | - Keith Kinek
- Discovery
Biology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Paula Krosky
- In Vitro
Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christine Burlein
- In Vitro
Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Shi Meng
- In Vitro
Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Edward DiNunzio
- Quantitative
Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Edward M. Murray
- Discovery
Biology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sony Agrawal
- Quantitative
Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Maria Madeira
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Amy Flattery
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Huifang Yao
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Andrew Leithead
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - William A Rose
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher Cox
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David M. Tellers
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Philip M. McKenna
- Discovery
Biology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Izzat Raheem
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
2
|
Behera BK, Arandhara PJ, Porashar B, Bora SK, Saikia AK. Base-Promoted [4 + 2] Annulation Reaction of In Situ-Generated Azadienes from N-Propargylamines with Active Methylene Compounds: Access to Highly Functionalized 2-Pyridones. J Org Chem 2023; 88:15041-15059. [PMID: 37856150 DOI: 10.1021/acs.joc.3c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A facile and efficient synthesis of structurally diversified 2-pyridones is demonstrated using the [4 + 2] annulation of in situ generated azadienes from N-propargylamines and active methylene compounds. The reaction is promoted by an inorganic base giving moderate to good yields. The developed methodology is applicable for the direct and formal synthesis of various bioactive molecules. The synthetic utility of the protocol was also illustrated by late-stage functionalization of the products.
Collapse
Affiliation(s)
- Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bikoshita Porashar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Hegazy A, Mahmoud SH, Elshaier YAMM, Shama NMA, Nasr NF, Ali MA, El-Shazly AM, Mostafa I, Mostafa A. Antiviral activities of plant-derived indole and β-carboline alkaloids against human and avian influenza viruses. Sci Rep 2023; 13:1612. [PMID: 36709362 PMCID: PMC9883826 DOI: 10.1038/s41598-023-27954-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The persistent evolution of drug-resistant influenza strains represents a global concern. The innovation of new treatment approaches through drug screening strategies and investigating the antiviral potential of bioactive natural-based chemicals may address the issue. Herein, we screened the anti-influenza efficacy of some biologically active indole and β-carboline (βC) indole alkaloids against two different influenza A viruses (IAV) with varied host range ranges; seasonal influenza A/Egypt/NRC098/2019(H1N1) and avian influenza A/chicken/Egypt/N12640A/2016(H5N1). All compounds were first assessed for their half-maximal cytotoxic concentration (CC50) in MDCK cells and half-maximal inhibitory concentrations (IC50) against influenza A/H5N1. Intriguingly, Strychnine sulfate, Harmalol, Harmane, and Harmaline showed robust anti-H5N1 activities with IC50 values of 11.85, 0.02, 0.023, and 3.42 µg/ml, respectively, as compared to zanamivir and amantadine as control drugs (IC50 = 0.079 µg/ml and 17.59 µg/ml, respectively). The efficacy of the predefined phytochemicals was further confirmed against influenza A/H1N1 and they displayed potent anti-H1N1 activities compared to reference drugs. Based on SI values, the highly promising compounds were then evaluated for antiviral efficacy through plaque reduction assay and consistently they revealed high viral inhibition percentages at non-toxic concentrations. By studying the modes of antiviral action, Harmane and Harmalol could suppress viral infection via interfering mainly with the viral replication of the influenza A/H5N1 virus, whilst Harmaline exhibited a viricidal effect against the influenza A/H5N1 virus. Whereas, Strychnine sulfate elucidated its anti-influenza potency by interfering with viral adsorption into MDCK cells. Consistently, chemoinformatic studies showed that all studied phytochemicals illustrated HB formations with essential peptide cleft through the NH of indole moiety. Among active alkaloids, harmalol displayed the best lipophilicity metrics including ligand efficiency (LE) and ligand lipophilic efficiency (LLE) for both viruses. Compounds geometry and their ability to participate in HB formation are very crucial.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Nasr Fawzy Nasr
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - M A Ali
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.,Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Sharkia, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
4
|
Kadi I, Şekerci G, Boulebd H, Zebbiche Z, Tekin S, Küçükbay H, Küçükbay F, Boumoud T. Synthesis, in vitro, and in silico studies of novel poly‐heterocyclic compounds bearing pyridine and furan moieties as potential anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Amblard F, Patel D, Michailidis E, Coats SJ, Kasthuri M, Biteau N, Tber Z, Ehteshami M, Schinazi RF. HIV nucleoside reverse transcriptase inhibitors. Eur J Med Chem 2022; 240:114554. [PMID: 35792384 DOI: 10.1016/j.ejmech.2022.114554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
More than 40 years into the pandemic, HIV remains a global burden and as of now, there is no cure in sight. Fortunately, highly active antiretroviral therapy (HAART) has been developed to manage and suppress HIV infection. Combinations of two to three drugs targeting key viral proteins, including compounds inhibiting HIV reverse transcriptase (RT), have become the cornerstone of HIV treatment. This review discusses nucleoside reverse transcriptase inhibitors (NRTIs), including chain terminators, delayed chain terminators, nucleoside reverse transcriptase translocation inhibitors (NRTTIs), and nucleotide competing RT inhibitors (NcRTIs); focusing on their history, mechanism of action, resistance, and current clinical application, including long-acting regimens.
Collapse
Affiliation(s)
- Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Eleftherios Michailidis
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Steven J Coats
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Mahesh Kasthuri
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Nicolas Biteau
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Maryam Ehteshami
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Baldwin ET, Götte M, Tchesnokov EP, Arnold E, Hagel M, Nichols C, Dossang P, Lamers M, Wan P, Steinbacher S, Romero DL. Human endogenous retrovirus-K (HERV-K) reverse transcriptase (RT) structure and biochemistry reveals remarkable similarities to HIV-1 RT and opportunities for HERV-K-specific inhibition. Proc Natl Acad Sci U S A 2022; 119:e2200260119. [PMID: 35771941 PMCID: PMC9271190 DOI: 10.1073/pnas.2200260119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.
Collapse
Affiliation(s)
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854
| | | | - Charles Nichols
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Pam Dossang
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Marieke Lamers
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
- DomainEx, Chesterford Research Park, Saffron Walden CB10 1XL United Kingdom
| | - Paul Wan
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | | | | |
Collapse
|
7
|
Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Viruses 2022; 14:v14051027. [PMID: 35632767 PMCID: PMC9148108 DOI: 10.3390/v14051027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The enzyme reverse transcriptase (RT) plays a central role in the life cycle of human immunodeficiency virus (HIV), and RT has been an important drug target. Elucidations of the RT structures trapping and detailing the enzyme at various functional and conformational states by X-ray crystallography have been instrumental for understanding RT activities, inhibition, and drug resistance. The structures have contributed to anti-HIV drug development. Currently, two classes of RT inhibitors are in clinical use. These are nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, the error-prone viral replication generates variants that frequently develop resistance to the available drugs, thus warranting a continued effort to seek more effective treatment options. RT also provides multiple additional potential druggable sites. Recently, the use of single-particle cryogenic electron microscopy (cryo-EM) enabled obtaining structures of NNRTI-inhibited HIV-1 RT/dsRNA initiation and RT/dsDNA elongation complexes that were unsuccessful by X-ray crystallography. The cryo-EM platform for the structural study of RT has been established to aid drug design. In this article, we review the roles of structural biology in understanding and targeting HIV RT in the past three decades and the recent structural insights of RT, using cryo-EM.
Collapse
|
8
|
Selection of Primer–Template Sequences That Bind with Enhanced Affinity to Vaccinia Virus E9 DNA Polymerase. Viruses 2022; 14:v14020369. [PMID: 35215961 PMCID: PMC8880465 DOI: 10.3390/v14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
A modified SELEX (Systematic Evolution of Ligands by Exponential Enrichment) pr,otocol (referred to as PT SELEX) was used to select primer–template (P/T) sequences that bound to the vaccinia virus polymerase catalytic subunit (E9) with enhanced affinity. A single selected P/T sequence (referred to as E9-R5-12) bound in physiological salt conditions with an apparent equilibrium dissociation constant (KD,app) of 93 ± 7 nM. The dissociation rate constant (koff) and binding half-life (t1/2) for E9-R5-12 were 0.083 ± 0.019 min−1 and 8.6 ± 2.0 min, respectively. The values indicated a several-fold greater binding ability compared to controls, which bound too weakly to be accurately measured under the conditions employed. Loop-back DNA constructs with 3′-recessed termini derived from E9-R5-12 also showed enhanced binding when the hybrid region was 21 nucleotides or more. Although the sequence of E9-R5-12 matched perfectly over a 12-base-pair segment in the coding region of the virus B20 protein, there was no clear indication that this sequence plays any role in vaccinia virus biology, or a clear reason why it promotes stronger binding to E9. In addition to E9, five other polymerases (HIV-1, Moloney murine leukemia virus, and avian myeloblastosis virus reverse transcriptases (RTs), and Taq and Klenow DNA polymerases) have demonstrated strong sequence binding preferences for P/Ts and, in those cases, there was biological or potential evolutionary relevance. For the HIV-1 RT, sequence preferences were used to aid crystallization and study viral inhibitors. The results suggest that several other DNA polymerases may have P/T sequence preferences that could potentially be exploited in various protocols.
Collapse
|
9
|
Singh AK, Martinez SE, Gu W, Nguyen H, Schols D, Herdewijn P, De Jonghe S, Das K. Sliding of HIV-1 reverse transcriptase over DNA creates a transient P pocket - targeting P-pocket by fragment screening. Nat Commun 2021; 12:7127. [PMID: 34880240 PMCID: PMC8654897 DOI: 10.1038/s41467-021-27409-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) slides over an RNA/DNA or dsDNA substrate while copying the viral RNA to a proviral DNA. We report a crystal structure of RT/dsDNA complex in which RT overstepped the primer 3'-end of a dsDNA substrate and created a transient P-pocket at the priming site. We performed a high-throughput screening of 300 drug-like fragments by X-ray crystallography that identifies two leads that bind the P-pocket, which is composed of structural elements from polymerase active site, primer grip, and template-primer that are resilient to drug-resistance mutations. Analogs of a fragment were synthesized, two of which show noticeable RT inhibition. An engineered RT/DNA aptamer complex could trap the transient P-pocket in solution, and structures of the RT/DNA complex were determined in the presence of an inhibitory fragment. A synthesized analog bound at P-pocket is further analyzed by single-particle cryo-EM. Identification of the P-pocket within HIV RT and the developed structure-based platform provide an opportunity for the design new types of polymerase inhibitors.
Collapse
Affiliation(s)
- Abhimanyu K Singh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sergio E Martinez
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Weijie Gu
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hoai Nguyen
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Gu W, Martinez S, Singh AK, Nguyen H, Rozenski J, Schols D, Herdewijn P, Das K, De Jonghe S. Exploring the dNTP -binding site of HIV-1 reverse transcriptase for inhibitor design. Eur J Med Chem 2021; 225:113785. [PMID: 34425311 DOI: 10.1016/j.ejmech.2021.113785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022]
Abstract
HIV-1 reverse transcriptase (RT) plays a central role in the viral life cycle, and roughly half of the FDA-approved anti-HIV drugs are targeting RT. Nucleoside analogs (NRTIs) require cellular phosphorylation for binding to RT, and to bypass this rate-limiting path, we designed a new series of acyclic nucleoside phosphonate analogs as nucleoside triphosphate mimics, aiming at the chelation of the catalytic Mg2+ ions via a phosphonate and/or a carboxylic acid group. Novel synthetic procedures were developed to access these nucleoside phosphonate analogs. X-ray structures in complex with HIV-1 RT/dsDNA demonstrated that their binding modes are distinct from that of our previously reported compound series. The impact of chain length, chirality and linker atom have been discussed. The detailed structural understanding of these new compounds provides opportunities for designing new class of HIV-1 RT inhibitors.
Collapse
Affiliation(s)
- Weijie Gu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium; KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Sergio Martinez
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Abhimanyu K Singh
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Hoai Nguyen
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Kalyan Das
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
Monsalve-Escudero LM, Loaiza-Cano V, Pájaro-González Y, Oliveros-Díaz AF, Diaz-Castillo F, Quiñones W, Robledo S, Martinez-Gutierrez M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement Med Ther 2021; 21:216. [PMID: 34454481 PMCID: PMC8397866 DOI: 10.1186/s12906-021-03386-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. METHODS The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student's t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. RESULTS In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). CONCLUSIONS The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.
Collapse
Affiliation(s)
- Laura Milena Monsalve-Escudero
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Vanessa Loaiza-Cano
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Yina Pájaro-González
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia.,Grupo de Investigación en Farmacia Asistencial y Farmacología, Universidad del Atlántico, Barranquilla, Colombia
| | - Andrés Felipe Oliveros-Díaz
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Fredyc Diaz-Castillo
- Laboratorio de Investigaciones Fitoquímicas y Farmacológicas de la Universidad de Cartagena - LIFFUC, Universidad de Cartagena, Cartagena, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales. Universidad de Antioquia, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA. Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia.
| |
Collapse
|
12
|
Hayes RP, Heo MR, Mason M, Reid J, Burlein C, Armacost KA, Tellers DM, Raheem I, Shaw AW, Murray E, McKenna PM, Abeywickrema P, Sharma S, Soisson SM, Klein D. Structural understanding of non-nucleoside inhibition in an elongating herpesvirus polymerase. Nat Commun 2021; 12:3040. [PMID: 34031403 PMCID: PMC8144222 DOI: 10.1038/s41467-021-23312-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/21/2021] [Indexed: 12/03/2022] Open
Abstract
All herpesviruses encode a conserved DNA polymerase that is required for viral genome replication and serves as an important therapeutic target. Currently available herpesvirus therapies include nucleoside and non-nucleoside inhibitors (NNI) that target the DNA-bound state of herpesvirus polymerase and block replication. Here we report the ternary complex crystal structure of Herpes Simplex Virus 1 DNA polymerase bound to DNA and a 4-oxo-dihydroquinoline NNI, PNU-183792 (PNU), at 3.5 Å resolution. PNU bound at the polymerase active site, displacing the template strand and inducing a conformational shift of the fingers domain into an open state. These results demonstrate that PNU inhibits replication by blocking association of dNTP and stalling the enzyme in a catalytically incompetent conformation, ultimately acting as a nucleotide competing inhibitor (NCI). Sequence conservation of the NCI binding pocket further explains broad-spectrum activity while a direct interaction between PNU and residue V823 rationalizes why mutations at this position result in loss of inhibition.
Collapse
Affiliation(s)
- Robert P Hayes
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA.
| | - Mee Ra Heo
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Mark Mason
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - John Reid
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | | | - Kira A Armacost
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | | | - Izzat Raheem
- Discovery Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Anthony W Shaw
- Discovery Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Edward Murray
- Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA, USA
| | - Philip M McKenna
- Infectious Diseases and Vaccines, Merck & Co., Inc., West Point, PA, USA
| | | | - Sujata Sharma
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Stephen M Soisson
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| | - Daniel Klein
- Computational and Structural Chemistry, Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|
13
|
Spratt AN, Gallazzi F, Quinn TP, Lorson CL, Sönnerborg A, Singh K. Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents. Expert Opin Ther Pat 2021; 31:339-350. [PMID: 33593200 PMCID: PMC8074651 DOI: 10.1080/13543776.2021.1884224] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Coronaviruses encode a helicase that is essential for viral replication and represents an excellent antiviral target. However, only a few coronavirus helicase inhibitors have been patented. These patents include drug-like compound SSYA10-001, aryl diketo acids (ADK), and dihydroxychromones. Additionally, adamantane-derived bananins, natural flavonoids, one acrylamide derivative [(E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide], a purine derivative (7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1 H-purine-2,6-dione), and a few bismuth complexes. The IC50 of patented inhibitors ranges between 0.82 μM and 8.95 μM, depending upon the assays used. Considering the urgency of clinical interventions against Coronavirus Disease-19 (COVID-19), it is important to consider developing antiviral portfolios consisting of small molecules. Areas covered: This review examines coronavirus helicases as antiviral targets, and the potential of previously patented and experimental compounds to inhibit the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) helicase. Expert opinion: Small molecule coronavirus helicase inhibitors represent attractive pharmacological modalities for the treatment of coronaviruses such as SARS-CoV and SARS-CoV-2. Rightfully so, the current emphasis is focused upon the development of vaccines. However, vaccines may not work for everyone and broad-based adoption of vaccinations is an increasingly challenging societal endeavor. Therefore, it is important to develop additional pharmacological antivirals against the highly conserved coronavirus helicases to broadly protect against this and subsequent coronavirus epidemics.
Collapse
Affiliation(s)
- Austin N Spratt
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Fabio Gallazzi
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Thomas P Quinn
- cDepartment of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,dDepartment of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Anders Sönnerborg
- eDivision of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.,fDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.,gSanctum Therapeutics Corporation, Sunnyvale, CA, USA
| |
Collapse
|
14
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
15
|
Gu W, Martinez S, Nguyen H, Xu H, Herdewijn P, De Jonghe S, Das K. Tenofovir-Amino Acid Conjugates Act as Polymerase Substrates-Implications for Avoiding Cellular Phosphorylation in the Discovery of Nucleotide Analogues. J Med Chem 2020; 64:782-796. [PMID: 33356231 DOI: 10.1021/acs.jmedchem.0c01747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleotide analogues are used for treating viral infections such as HIV, hepatitis B, hepatitis C, influenza, and SARS-CoV-2. To become polymerase substrates, a nucleotide analogue must be phosphorylated by cellular kinases which is rate-limiting. The goal of this study is to develop dNTP/NTP analogues directly from nucleotides. Tenofovir (TFV) analogues were synthesized by conjugating with amino acids. We demonstrate that some conjugates act as dNTP analogues and HIV-1 reverse transcriptase (RT) catalytically incorporates the TFV part as the chain terminator. X-ray structures in complex with HIV-1 RT/dsDNA showed binding of the conjugates at the polymerase active site, however, in different modes in the presence of Mg2+ versus Mn2+ ions. The adaptability of the compounds is seemingly essential for catalytic incorporation of TFV by RT. 4d with a carboxyl sidechain demonstrated the highest incorporation. 4e showed weak incorporation and rather behaved as a dNTP-competitive inhibitor. This result advocates the feasibility of designing NTP/dNTP analogues by chemical substitutions to nucleotide analogues.
Collapse
Affiliation(s)
- Weijie Gu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium.,KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Sergio Martinez
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Hoai Nguyen
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Hongtao Xu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Kalyan Das
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Xavier Ruiz F, Arnold E. Evolving understanding of HIV-1 reverse transcriptase structure, function, inhibition, and resistance. Curr Opin Struct Biol 2020; 61:113-123. [PMID: 31935541 DOI: 10.1016/j.sbi.2019.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
The essential role of reverse transcription in the HIV life cycle is illustrated by the fact that half of the ∼30 FDA-approved drugs for HIV treatment target HIV-1 reverse transcriptase (RT). Even though more than 160 structures of RT deposited in the Protein Data Bank (PDB) have revealed the molecular architecture of RT in great detail, some key states of RT function and inhibition remain still unknown. Recent structures of RT initiation complexes, RT poised for RNA hydrolysis, and RT with approved drugs and investigational compounds have provided a deeper understanding of RT function and inhibition, suggesting novel avenues for targeting this central enzyme of HIV.
Collapse
Affiliation(s)
- Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, 08854, NJ, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, 08854, NJ, USA.
| |
Collapse
|