1
|
Xiao T, Zhang P, Guo S, Su B, Chen Y, Zhao M, Yuan J, Si S, Zheng R, Li K, Chen M. Peunipyrone A, an Unexpected Highly Oxygenated γ-Pyrone with a 6/6/6/6/6 Pentacyclic Ring System from a Sponge-Derived Fungus Aspergillus peuniceus. Org Lett 2025. [PMID: 40329452 DOI: 10.1021/acs.orglett.5c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
A highly oxygenated γ-pyrone with an unprecedented carbon skeleton, peunipyrone A (1), was isolated from the sponge-derived fungus Aspergillus peuniceus. Compound 1 features a unique fused 6/6/6/6/6 pentacyclic ring system. The chemical structure of compound 1 was elucidated by comprehensive spectroscopic techniques and single-crystal X-ray diffraction. The plausible biosynthetic pathway of compound 1 was proposed. Compound 1 promoted leukemic cell apoptosis by increasing p53 expression.
Collapse
Affiliation(s)
- Tongmei Xiao
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Peitao Zhang
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuyue Guo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Bingjie Su
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yuchuan Chen
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Mingxuan Zhao
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jian Yuan
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Shuyi Si
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Ruifang Zheng
- Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang Uygur Autonomous Region, Urumqi 830004, People's Republic of China
| | - Ke Li
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Minghua Chen
- Beijing Key Laboratory of Technology and Application for Anti-Infective New Drugs Research and Development, Institute of Medicinal Biotechnology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang Uygur Autonomous Region, Urumqi 830004, People's Republic of China
| |
Collapse
|
2
|
Li S, Li Y, Yu T, Wei X, Zhang Y, Chen B, Si S, Xu Y, Gan M. Discovery of potent antiosteoporotic cyclic depsipeptides with an unusual nitrile hydroxy acid from Microascus croci. Bioorg Chem 2025; 155:108133. [PMID: 39798453 DOI: 10.1016/j.bioorg.2025.108133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Two cyclic octadepsipeptides, microascusins A and B (1 and 2), were identified from the marine sponge-associated Microascus croci IMB19-064 co-cultivated with Escherichia coli. Their structures and conformations in solution were determined by comprehensive spectroscopic data analysis. The absolute configurations of amino and hydroxy acids were determined by the advanced Marfey's and O-Marfey's methods, respectively, as well as chiral-phase HPLC analysis. Microascusins A (1) and B (2) represent a new type of cyclic octadepsipeptides characterized by the presence of the unique hydroxy acid l-2-hydroxy-4-cyanobutyric acid. Compound 1 exhibited potent in vitro antiosteoporotic activity with dual regulation effects of promoting the osteoblast-mediated bone formation as well as inhibiting the RANKL-induced osteoclast differentiation at the concentrations of 0.1-10 nM. Further in vivo study showed that compound 1 could improve bone mineralization after dexamethasone-induced bone damage in zebrafish through up-regulating the expression of the osteoblast-specific genes Bmp2 and Oc.
Collapse
Affiliation(s)
- Shasha Li
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yining Li
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ting Yu
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Xinwei Wei
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yuyan Zhang
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Bo Chen
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Shuyi Si
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yanni Xu
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Maoluo Gan
- National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
3
|
Chen XD, Li X, Li XM, Yang SQ, Wang BG. Eremophilane- and Acorane-Type Sesquiterpenes from the Deep-Sea Cold-Seep-Derived Fungus Furcasterigmium furcatum CS-280 Cultured in the Presence of Autoclaved Pseudomonas aeruginosa QDIO-4. Mar Drugs 2024; 22:574. [PMID: 39728148 DOI: 10.3390/md22120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A-D (1-4) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with autoclaved Pseudomonas aeruginosa QDIO-4. All the six compounds were highly oxygenated especially 2 and 3 with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of 1-6 were established on the basis of detailed interpretation of 1D and 2D NMR and MS data. Their relative and absolute configurations were assigned by a combination of NOESY and single crystal X-ray crystallographic analysis, and by time-dependent density functional (TDDFT) ECD calculations as well. All compounds were tested the anti-inflammatory activity against human COX-2 protein, among which, compounds 2 and 3 displayed activities with IC50 values 123.00 µM and 93.45 µM, respectively. The interaction mechanism was interpreted by molecular docking.
Collapse
Affiliation(s)
- Xiao-Dan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
4
|
Barzkar N, Sukhikh S, Babich O. A comprehensive review of marine sponge metabolites, with emphasis on Neopetrosia sp. Int J Biol Macromol 2024; 280:135823. [PMID: 39313052 DOI: 10.1016/j.ijbiomac.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The secondary metabolites that marine sponges create are essential to the advancement of contemporary medicine and are often employed in clinical settings. Over the past five years, microbes associated with sponges have yielded the identification of 140 novel chemicals. Statistics show that most are derived from actinomycetes (bacteria) and ascomycotes (fungi). The aim of this study was to investigate the biological activity of metabolites from marine sponges. Chlocarbazomycins A-D, which are a group of novel chlorinated carbazole alkaloids isolated from the sponge Neopetrosia fennelliae KUFA 0811, exhibit antimicrobial, cytotoxic, and enzyme inhibitory activities. Recently, marine sponges of the genus Neopetrosia have attracted attention due to the unique chemical composition of the compounds they produce, including alkaloids of potential importance in drug discovery. Fridamycin H and fridamycin I are two novel type II polyketides synthesized by sponge-associated bacteria exhibit antitrypanosomal activity. Fintiamin, composed of amino acids and terpenoid moieties, shows affinity for the cannabinoid receptor CB 1. It was found that out of 27 species of Neopetrosia sponges, the chemical composition of only 9 species has been studied. These species mainly produce bioactive substances such as alkaloids, quinones, sterols, and terpenoids. The presence of motuporamines is a marker of the species Neopetrosia exigua. Terpenoids are specific markers of Neopetrosia vanilla species. Although recently discovered, secondary metabolites from marine sponges have been shown to have diverse biological activities, antimicrobial, antiviral, antibacterial, antimicrobial, antioxidant, antimalarial, and anticancer properties, providing many lead compounds for drug development. The data presented in this review on known and future natural products derived from sponges will further clarify the role and importance of microbes in marine sponges and trace the prospects of their applications, especially in medicine, cosmeceuticals, environmental protection, and manufacturing industries.
Collapse
Affiliation(s)
- Noora Barzkar
- Higher Institution Center of Excellence, Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Stanislav Sukhikh
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| | - Olga Babich
- SEC "Applied Biotechnologies", Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad, 236016, Russia
| |
Collapse
|
5
|
Goulart MO, Paulino JM, Silveira NN, Bertonha AF, Berlinck RGS, Santos RA. Isolation and comparative genotoxicity screening of trichokonins VI and VIII on CHO-K1 cells. Drug Chem Toxicol 2024:1-9. [PMID: 39262131 DOI: 10.1080/01480545.2024.2389977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/10/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
Peptaibols are fungal peptides that exhibit efficacy against pathogen microorganisms. Trichokonin VI (TK-VI) and trichokonin VIII (TK-VIII) are known peptaibols isolated from the endolichenic fungi Hypocrea sp. Previous investigations reported that trichokonin VI presents antiproliferative effects on tumor cells. This study is pioneering in elucidating the genotoxic effects of TK-VI and TK-VIII, contributing to the thorough assessment of their safety as potential therapeutic agents. The present investigation aimed to evaluate the genotoxicity of TK-VI and TK-VIII on CHO-K1 cells. Cytotoxicity was evaluated using the XTT assay and clonogenic survival assays, followed by evaluation of DNA damage using the comet assay and micronucleus test conducted in vitro. The XTT assay results indicated IC50 values of 10.30 µM and 9.89 µM for TK-VI and TK-VIII, respectively. The clonogenic survival assay indicated that concentrations of 10 µM or higher completely inhibited the cell colony formation. In the comet assay, both TK-VI and TK-VIII increased the DNA damage score and the frequency of comet nuclei in all tested concentrations. In the micronucleus assay, TK-VI and TK-VIII at 10 µM increased the frequency of MN in CHO-K1 cells. Both TK-VI and TK-VIII exhibited genotoxic effects. Our findings underscore the importance of considering the genotoxicological safety of peptaibols, particularly when assessing their potential for other biological activities.
Collapse
Affiliation(s)
| | | | | | - Ariane F Bertonha
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | | |
Collapse
|
6
|
Wang A, Li S, Wei Y, Wang G, Shi W, Shang Y, Yu L, Chen S, Li Y, Gan M. Quinomycins with an unusual N-methyl-3-methylsulfinyl-alanine residue from a Streptomyces sp. J Antibiot (Tokyo) 2024; 77:506-514. [PMID: 38745102 DOI: 10.1038/s41429-024-00736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Four new echinomycin congeners, quinomycins M-P (1-4) were isolated from the cultures of the soil-derived Streptomyces sp. CPCC205575. The planar structures were determined by comprehensive analyses of NMR and HRESIMS/MS data. The absolute configurations were elucidated by the advanced Marfey's method combined with biosynthetic gene analysis. Compounds 1-4 represent the first examples of quinomycin-type natural products with the sulfur atom at the N,S-dimethylcysteine residue oxidized as a sulfoxide group forming the unusual N-methyl-3-methylsulfinyl-alanine residue. Bioassay results revealed that the oxidation of the sulfur atom at the Cys or Cys' residues led to dramatic decrease of cytotoxicity and antimicrobial activity.
Collapse
Affiliation(s)
- Anqi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China
| | - Yuanjuan Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China
| | - Guiyang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China
| | - Wenjing Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China
| | - Shuzhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China.
| | - Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China.
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, PR China.
| |
Collapse
|
7
|
Hao X, Li S, Li J, Wang G, Li J, Peng Z, Gan M. Acremosides A-G, Sugar Alcohol-Conjugated Acyclic Sesquiterpenes from a Sponge-Derived Acremonium Species. JOURNAL OF NATURAL PRODUCTS 2024; 87:1059-1066. [PMID: 38561238 DOI: 10.1021/acs.jnatprod.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Seven new sugar alcohol-conjugated acyclic sesquiterpenes, acremosides A-G (1-7), were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. The structures were determined by comprehensive analyses of 1D and 2D NMR spectroscopic data. The relative configurations were established by J-based configuration analysis and acetonide derivatization. The absolute configurations were elucidated by the Mosher ester method and ECD calculations. The structures of acremosides E-G (5-7) featured the linear sesquiterpene skeleton with a tetrahydrofuran moiety attached to a sugar alcohol. Acremosides A (1) and C-E (3-5) showed significant inhibitory activities against hepatitis C virus (EC50 values of 4.8-8.8 μM) with no cytotoxicity (CC50 of >200 μM).
Collapse
Affiliation(s)
- Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jianrui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Guiyang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiao Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Zonggen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
8
|
Song K, Ai Y, Zhou J, Dun B, Yue Q, Zhang L, Xu Y, Wang C. Isolation, Characterization, and Bioherbicidal Potential of the 16-Residue Peptaibols from Emericellopsis sp. XJ1056. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6315-6326. [PMID: 38470442 DOI: 10.1021/acs.jafc.3c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Eco-friendly bioherbicides are urgently needed for managing the problematic weed Amaranthus retroflexus. A mass spectrometry- and bioassay-guided screening approach was employed to identify phytotoxic secondary metabolites from fungi for the development of such bioherbicides. This effort led to the discovery of six phytotoxic 16-residue peptaibols, including five new compounds (2-6) and a known congener (1), from Emericellopsis sp. XJ1056. Their planar structures were elucidated through the analysis of tandem mass and NMR spectroscopic data. The absolute configurations of the chiral amino acids were determined by advanced Marfey's method and chiral-phase liquid chromatography-mass spectrometry (LC-MS) analysis. Bioinformatic analysis and targeted gene disruption identified the biosynthetic gene cluster for these peptaibols. Compounds 1 and 2 significantly inhibited the radicle growth of A. retroflexus seedlings, and 1 demonstrated potent postemergence herbicidal activity against A. retroflexus while exhibiting minimal toxicity to Sorghum bicolor. Structure-activity relationship analysis underscored the importance of trans-4-hydroxy-l-prolines at both the 10th and 13th positions for the herbicidal activities of these peptaibols.
Collapse
Affiliation(s)
- Kainan Song
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yutong Ai
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Jianshuang Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, P. R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, P. R. China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, P. R. China
| |
Collapse
|
9
|
Li Q, Li S, Li S, Hao X, Wang A, Si S, Xu Y, Shu J, Gan M. Antimicrobial and Anti-inflammatory Cyclic Tetrapeptides from the Co-cultures of Two Marine-Derived Fungi. JOURNAL OF NATURAL PRODUCTS 2024; 87:365-370. [PMID: 38276888 DOI: 10.1021/acs.jnatprod.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Violaceotides B-E (1-4), four new cyclic tetrapeptides, along with seven known compounds, were identified from the sponge-associated Aspergillus insulicola IMB18-072 co-cultivated with the marine-derived Alternaria angustiovoidea IMB20-805. Their structures were elucidated by extensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and MS/MS data. The absolute configurations were determined by the advanced Marfey's method. Compounds 2, 3, and violaceotide A (5) displayed selective antimicrobial activities against the aquatic pathogenic bacteria Edwardsiella tarda and E. ictaluri. In addition, compounds 1-5 showed inhibitory activities against the LPS-induced expression of the inflammatory mediator IL-6 in RAW264.7 cells at a concentration of 10 μM.
Collapse
Affiliation(s)
- Qin Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Shasha Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shunwang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Anqi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, People's Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
10
|
Qin Y, Lu H, Qi X, Lin M, Gao C, Liu Y, Luo X. Recent Advances in Chemistry and Bioactivities of Secondary Metabolites from the Genus Acremonium. J Fungi (Basel) 2024; 10:37. [PMID: 38248947 PMCID: PMC10820033 DOI: 10.3390/jof10010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Acremonium fungi is one of the greatest and most complex genera in Hyphomycetes, comprising 130 species of marine and terrestrial sources. The past decades have witnessed substantial chemical and biological investigations on the diverse secondary metabolites from the Acremonium species. To date, over 600 compounds with abundant chemical types as well as a wide range of bioactivities have been obtained from this genus, attracting considerable attention from chemists and pharmacologists. This review mainly summarizes the sources, chemical structures, and biological activities of 115 recently reported new compounds from the genus Acremonium from December 2016 to September 2023. They are structurally classified into terpenoids (42%), peptides (29%), polyketides (20%), and others (9%), among which marine sources are predominant (68%). Notably, these compounds were primarily screened with cytotoxic, antibacterial, and anti-inflammatory activities. This paper provides insights into the exploration and utilization of bioactive compounds in this genus, both within the scientific field and pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
11
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
13
|
Liang J, She J, Fu J, Wang J, Ye Y, Yang B, Liu Y, Zhou X, Tao H. Advances in Natural Products from the Marine-Sponge-Associated Microorganisms with Antimicrobial Activity in the Last Decade. Mar Drugs 2023; 21:md21040236. [PMID: 37103375 PMCID: PMC10143917 DOI: 10.3390/md21040236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Microorganisms are the dominating source of food and nutrition for sponges and play an important role in sponge structure, chemical defense, excretion and evolution. In recent years, plentiful secondary metabolites with novel structures and specific activities have been identified from sponge-associated microorganisms. Additionally, as the phenomenon of the drug resistance of pathogenic bacteria is becoming more and more common, it is urgent to discover new antimicrobial agents. In this paper, we reviewed 270 secondary metabolites with potential antimicrobial activity against a variety of pathogenic strains reported in the literature from 2012 to 2022. Among them, 68.5% were derived from fungi, 23.3% originated from actinomycetes, 3.7% were obtained from other bacteria and 4.4% were discovered using the co-culture method. The structures of these compounds include terpenoids (13%), polyketides (51.9%), alkaloids (17.4%), peptides (11.5%), glucosides (3.3%), etc. Significantly, there are 124 new compounds and 146 known compounds, 55 of which have antifungal activity in addition to antipathogenic bacteria. This review will provide a theoretical basis for the further development of antimicrobial drugs.
Collapse
Affiliation(s)
- Jiaqi Liang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Fu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiu Ye
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaming Tao
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
14
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
15
|
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar Drugs 2023; 21:md21020063. [PMID: 36827104 PMCID: PMC9965070 DOI: 10.3390/md21020063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.
Collapse
|
16
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Zhang SH, Zhao X, Xu R, Yang Y, Tang J, Yue XL, Wang YT, Tan HY, Zhang GG, Li CW. Eleven-Residue Peptaibols Isolated from Trichoderma Longibrachiatum Rifai DMG-3-1-1 and Their Structure-Activity Relationship. Chem Biodivers 2022; 19:e202200627. [PMID: 35921066 DOI: 10.1002/cbdv.202200627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Total 23 eleven-residue peptaibols, including five reported ones (1-5) in our previous work, were isolated from the fungus Trichoderma longibrachiatum Rifai DMG-3-1-1, which was obtained from the mushroom Clitocybe nebularis (Batsch) P. Kumm. The structures of the 13 new peptaibols (6-10 and 12-19) were determined by their NMR and MALDI-MS/MS data, their absolute structures were further determined by Marfey's analyses and their ECD data. Careful comparison of the structures of 1-23 showed that only seven residues varied including the 2nd (Gln 2 /Asn 2 ), 3rd (Ile 3 /Val 3 ), 4th (Ile 4 /Val 4 ), 6th (Pro 6 /Hyp 6 ), 8 th (Pro 6 /Hyp 6 ), 10th (Pro 10 /Hyp 10 ) and 11th (Leuol 11 /Ileol 11 /Valol 11 ) residues. Comparison of the IC 50 s against the three tested cell lines of 1-23 indicated that 2nd, 3rd and 4th amino acid residues affected their cytotoxicities powerfully. Compounds 2, 5, 9, 11, 21 and 22 showed moderate antibacterial activities against Staphylococcus aureus MRSA T144, which also showed stronger cytotoxicities against BV2 and MCF-7 cells.
Collapse
Affiliation(s)
- Shu-Hua Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Xue Zhao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Rui Xu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Yu Yang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Jing Tang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Xian-Lin Yue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Yu-Ting Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Hong-Yu Tan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Taiping road 27, Haidian District, Beijing, Beijing, CHINA
| | - Guo-Gang Zhang
- Shenyang Pharmaceutical University, School of Traditional Chinese Materia Medica, Wenhua road 103, Shenhe District, Shenyang, Shenyang, CHINA
| | - Chang-Wei Li
- Beijing Institute of Pharmacology and Toxicology, Institute of Pharmacology and Toxicology, Taiping Road 27, Haidian District, Beijing, China, 100850, Beijing, CHINA
| |
Collapse
|