1
|
Feng Y, Zhu Z, Zhao S, Jiang X, Zhang W, Xu Z. Bioorthogonally Activatable Photosensitizer for NIR Fluorescence Imaging-Guided Highly Selective Elimination of Senescent Tumor Cells and Chemotherapy Enhancement. Bioconjug Chem 2025; 36:1066-1078. [PMID: 40329576 DOI: 10.1021/acs.bioconjchem.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Chemotherapy is a primary modality in cancer treatment, but it may induce cellular senescence, which in turn triggers the release of senescence-associated secretory phenotypes (SASPs) that promote tumor growth and metastasis. To selectively identify senescent cells and mitigate their negative impact on cancer therapy, herein, we have developed a β-galactosidase (β-Gal)-activated and self-immobilizing photosensitizer CyGF-DBCO-T. This photosensitizer can be selectively activated and fluorescently label proteins in situ within senescent cells, enabling near-infrared (NIR) fluorescence imaging-guided photodynamic therapy (PDT) for the precise ablation of these cells. First, we developed an activatable NIR fluorescent probe CyGF-N3 that can specifically in situ label senescent cells. Subsequently, DBCO-T with free radicals underwent a bioorthogonal click reaction with activated CyGF-N3 in senescent cells to generate the photosensitizer CyO-DBCO-T. Under light irradiation, CyO-DBCO-T generated singlet oxygen (1O2) in situ, thereby enabling precise PDT with fluorescence guidance and photoactivation. Both CyGF-N3 and DBCO-T were encapsulated in biotinylated liposomes (CyGF-N3@LIP-B and DBCO-T@LIP-B), which enhanced their water solubility, tumor targeting, and in vivo circulation time. This promoted the accumulation of the probes in senescent tumor cells, thus enabling intense fluorescence imaging of tumor senescence regions in mice and enhancing the efficacy of PDT. This dual-module strategy, guided by fluorescence imaging for PDT, has achieved selective identification and precise ablation of senescent tumor cells in a chemotherapy-induced senescence model, effectively alleviating chemotherapy resistance and suppressing tumor growth.
Collapse
Affiliation(s)
- Yun Feng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zifan Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shirui Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xingyu Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Yu G, Nanding A. Salidroside overcomes cisplatin resistance in ovarian cancer via the inhibition of CRNDE-mediated autophagy. Mol Cell Biochem 2025; 480:3097-3116. [PMID: 39636431 DOI: 10.1007/s11010-024-05168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Cisplatin (DDP) resistance significantly affects the survival rate of patients with ovarian cancer (OC). Autophagy is recognized as a common cause of resistance to DDP. This study aimed to investigate the impact of salidroside on OC progression and explore its potential regulatory effects on DDP resistance and autophagy. A DDP-resistant A2780 (A2780/DDP) cell line was induced by exposure to increasing DDP concentrations. The protein levels of autophagy proteins (p62, Beclin-1, ATG5, and LC3 II/LC3 I), apoptosis proteins (cleaved caspase-3 and cleaved caspase-9), and PI3K/AKT/mTOR pathway were determined by western blotting. Autophagic vacuoles in cells were observed with LC3 dyeing with confocal fluorescent microscopy. Cell viability and apoptosis were evaluated by cell counting kit-8 assays and flow cytometry. RT-qPCR was conducted to measure the relative levels of various lncRNAs in A2780 or A2780/DDP cells. A xenograft model was established by subcutaneous injection of 1 × 107 A2780 cells into the posterior flank of nude mice. Tumor size and weight were recorded. The expression of Ki67, cleaved caspase-3 and LC3 in tumor tissues was assessed by immunohistochemistry staining. The biodistribution of DDP in organs and blood of normal nude mice and tumors of tumor-bearing mice was detected using the ICP-MS. Hematoxylin-eosin staining was used to assess the histopathological changes of kidney, liver, and spleen sections. For in vitro analysis, autophagy was enhanced in DDP-resistant A2780 cells. Additionally, salidroside inhibits DDP resistance to A2780 cells via autophagy inhibition. Mechanistically, salidroside downregulated CRNDE in DDP-resistant A2780 cells. CRNDE knockdown inhibited autophagy, while CRNDE overexpression reversed the protective effects of salidroside. Additionally, salidroside activated the PI3K/AKT/mTOR pathway in DDP-resistant A2780 cells, and inhibition of PI3K reversed the effect of salidroside on inhibiting autophagy and apoptosis of A2780/DDP cells. For in vivo analysis, salidroside inhibited tumor growth, autophagy, and nephrotoxicity of DDP. Additionally, salidroside downregulated CRNDE and activated PI3K/AKT/mTOR signaling in vivo. Salidroside prevents autophagy-mediated DDP resistance in OC by downregulating lncRNA CRNDE and activating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ge Yu
- Department of Gynecology, Harbin Medical University Cancer Hospital, NO.150 Haping Road, Nangang District, Harbin, Heilongjiang Province, China
| | - Abiyasi Nanding
- Department of Pathology, Harbin Medical University Cancer Hospital, NO.150 Haping Road, Nangang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
3
|
Wang N, Gao Z, Zhan H, Jing L, Meng F, Chen M. Salidroside alleviates doxorubicin-induced hepatotoxicity via Sestrin2/AMPK-mediated pyroptotic inhibition. Food Chem Toxicol 2025; 199:115335. [PMID: 39993461 DOI: 10.1016/j.fct.2025.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Doxorubicin (DOX) is a potent anticancer drug, while its toxic side effects involve multi-organ toxicity, including hepatotoxicity. This study aims to investigate the therapeutic potential of salidroside against DOX-induced hepatotoxicity and elucidate its underlying mechanisms. Result showed that salidroside exhibited a liver protective effect in DOX-induced hepatotoxicity in mice, represented by the decreased serum ALT, AST and LDH levels, as well as the rescue of pathological changes in mice livers. Further study showed salidroside reduced the expression level of pyroptosis-associated proteins, including NLRP3, cleaved-caspase 1, gasdermin D (GSDMD-N) and mature IL-1β in mice liver tissues. In vitro study confirmed salidroside exerted a similar effect in AML12 cells. Mechanistically, salidroside alleviated mitochondrial dysfunction by activating the PGC-1α/Mfn2 signaling pathway, and restrained the endoplasmic reticulum (ER) stress, represented by the downregulation of GRP78 and p-PERK/PERK level. Subsequent investigations revealed that salidroside activated the Sestrin2/AMPK pathway, while the application of AMPK inhibitors, PGC-1α siRNA or Sestrain2 siRNA reversed the effects of salidroside on ameliorating mitochondrial dysfunction and ER stress, suggesting salidroside could be a promising therapeutic strategy for alleviating DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Nan Wang
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, PR China
| | - Zhengshan Gao
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Honghong Zhan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lin Jing
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Fancheng Meng
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Min Chen
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
4
|
Li Q, Chen Q, Xiao S, Wang S, Ge X, Wang Q, Zheng L, Wei Q, Du W, Shen W, Wu Y, Song J. A Salidroside-Based Radiosensitizer Regulates the Nrf2/ROS Pathway for X-Ray Activated Synergistic Cancer Precise Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413226. [PMID: 40195850 DOI: 10.1002/adma.202413226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/26/2025] [Indexed: 04/09/2025]
Abstract
The hypoxic microenvironment and radioresistance of tumor cells, as well as the delay in efficacy evaluation, significantly limit the effect of clinical radiotherapy. Therefore, developing effective radiosensitizers with monitoring of tumor response is of great significance for precise radiotherapy. Herein, a novel radiosensitizer (term as: SCuFs) is developed, consisting of traditional Chinese medicine (TCM) compounds salidroside, Cu2+, and hydroxyl radical (•OH) activated second near-infrared window fluorescence (NIR-II FL) molecules, which make the radiosensitization effect and boosted chemodynamic therapy (CDT) efficacy. The overexpressed glutathione in the tumor induces the SCuFs dissociation, allowing deep penetration of the drug to the whole tumor region. After X-ray irradiation, salidroside inhibits the Nuclear factor erythroid 2-like 2 (Nrf2)protein expression and blocks cells in the G2/M phase with the highest radiosensitivity, which amplifies the reactive oxygen species (ROS) generation to exacerbate DNA damage, thus achieving radiosensitization. Meanwhile, the upregulated ROS provides sufficient chemical fuel for Cu+-mediated CDT to produce more •OH. NIR-II FL imaging can monitor the •OH changes during the therapy process, confirming the radiosensitization effect and CDT process related to •OH. This study not only achieves effective radiosensitization and cascaded ROS-mediated CDT efficacy, but also provides a useful tool for monitoring therapeutic efficacy, showing great prospects for clinical application.
Collapse
Affiliation(s)
- Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qing Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shenggan Xiao
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuhan Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoguang Ge
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiaoqiao Wei
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Du
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wenbin Shen
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
El-Samad LM, Maklad AM, Elkady AI, Hassan MA. Unveiling the mechanism of sericin and hydroxychloroquine in suppressing lung oxidative impairment and early carcinogenesis in diethylnitrosamine-induced mice by modulating PI3K/Akt/Nrf2/NF-κB signaling pathway. Biomed Pharmacother 2025; 182:117730. [PMID: 39671723 DOI: 10.1016/j.biopha.2024.117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
This study sheds light on the ameliorative influence of combined sericin and hydroxychloroquine (HQ) on mitigating diethylnitrosamine (DEN)-induced lung oxidative impairment and inflammation, thereby precluding early carcinogenic episodes in mice. Besides, the pivotal role of sericin and HQ in controlling the PI3K/Akt/Nrf2/NF-κB signaling pathway was probed. Therefore, male Swiss albino mice were assigned to different groups and treated with different drugs. Oxidative stress and inflammatory biomarkers, in addition to the expression of PI3K and Akt genes were evaluated in lung tissues. Treatment with DEN disturbed the redox homeostasis associated with inflammation in the lungs. Conversely, sericin combined with HQ remarkably upregulated Nrf2 expression in the lungs associated with significant ameliorations of antioxidant factors, including SOD, GST, GSH, and MDA. Furthermore, sericin and HQ abated inflammation instigated by DEN through downregulating NF-κB and inflammatory biomarkers, including TNF-α and IL-6, with an increase in IL-10. Importantly, sericin and HQ treatment significantly downregulated PI3K and Akt expression. Immunohistochemical investigations demonstrated marked diminutions in Ki-67 and p53 expressions in animals cotreated with sericin and HQ compared to the DEN-treated group, inhibiting lung cancer progression. Histopathological and ultrastructural anomalies were detected in lung tissues from the DEN group, while significant enhancements were perceived in lung tissues treated with sericin and HQ. Our findings emphasized that the combinatorial therapy of sericin and HQ could orchestrate the PI3K/Akt/Nrf2/NF-κB signaling pathway in the lungs, counteracting oxidative stress, inflammation, and uncontrolled cellular proliferation and sustaining lung structures. Furthermore, they could serve as anticancer agents, hindering lung cancer progression.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Alaa M Maklad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Ayman I Elkady
- Department of Zoology, Faculty of Science, Alexandria University, Egypt; Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| |
Collapse
|
6
|
Wang X, Zhang Z, Cao X. Salidroside inhibited the proliferation of gastric cancer cells through up-regulating tumor suppressor miR-1343-3p and down-regulating MAP3K6/MMP24 signal molecules. Cancer Biol Ther 2024; 25:2322206. [PMID: 38436092 PMCID: PMC10913707 DOI: 10.1080/15384047.2024.2322206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Zhendong Zhang
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Xiaolan Cao
- Department of Medicine, KeyLaboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
7
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
8
|
Yang J, Liu B, Wang Q, Yan H, Li G, Wang X, Shang Z, Ou T, Chen W. Carboxylated mesoporous silica nanoparticle-nucleic acid chimera conjugate-assisted delivery of siRNA and doxorubicin effectively treat drug-resistant bladder cancer. Biomed Pharmacother 2024; 178:117185. [PMID: 39053429 DOI: 10.1016/j.biopha.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Chemotherapy is the main treatment for bladder cancer, but drug resistance and side effects limit its application and therapeutic effect. Herein, we constructed doxorubicin (DOX)/COOH-mesoporous silica nanoparticle/polyethylenimine (PEI)/nucleic acid chimeras (DOX/MSN/Chimeras) to reduce the toxicity of chemotherapy drugs and the resistance of bladder cancer cells. Transmission electron microscopy showed that PEI was coated on the DOX/MSN/BSA nanoparticles with a diameter of about 150 nm. DOX/MSN/PEI could control DOX release for over 48 h, and the sudden release rate was significantly lower than DOX/MSN. Immunohistochemical results showed that DOX/MSN/Chimera specifically bound to bladder cancer cells, and markedly inhibited PI3K expression and proliferation of DOX-resistant bladder cancer cells. DOX/MSN/Chimera promoted the apoptosis of drug-resistant bladder cancer cells, which was superior to DOX/MSN/Aptamer or DOX/MSN. We further carried out animal experiments and found that DOX/MSN/Chimera could reduce the volume of transplanted tumors in vivo. Compared with DOX/MSN/Aptamer group, the proliferation rate was significantly decreased and the proportion of apoptotic cells was highly increased. Through the histological observation of kidneys and lungs, we believed that DOX/MSN/Chimera can effectively reduce the damage of chemotherapy drugs to normal tissues. In conclusion, we constructed a COOH-MSN/nucleic acid chimera conjugate for the targeted delivery of siRNA and anti-cancer drugs. Our study provides a new method for personalized and targeted treatment of drug-resistant bladder cancer.
Collapse
Affiliation(s)
- Jintao Yang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Biao Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guangping Li
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xu Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
9
|
Yin ZH, Tan WH, Jiang YL. Exploration of the Molecular Mechanism of Curcuma aromatica Salisb's Anticolorectal Cancer Activity via the Integrative Approach of Network Pharmacology and Experimental Validation. ACS OMEGA 2024; 9:21426-21439. [PMID: 38764617 PMCID: PMC11097187 DOI: 10.1021/acsomega.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Curcuma aromatica Salisb (Cur), a well-known herbal medicine, has a wide spectrum of anti-inflammatory, anticarcinogenic, and antioxidant activities. However, the roles of its active compounds and potential mechanisms in colorectal cancer remain unknown. This research utilized network pharmacology and experimental validation to explore the possible mechanisms by which Cur protects against colorectal cancer. The active compounds of Cur and related genes for colorectal cancer were obtained from public databases. The DrugBank database was used to search for anticolorectal cancer drugs licensed through the FDA and their targets, and a "drug-component-target" relationship network was created using the Cytoscape program. The String database produced the PPI network. The ability of these active ingredients to bind to core targets was confirmed by molecular docking using AutoDock Vina. Cell and animal experiments were then carried out. A total of 274 targets were obtained from Cur, 49 of which were potential therapeutic targets. Four key targets, PTGS2, AKT1, TP53, and estrogen receptor 1 (ESR1), were screened via the PPI network and the FDA drug-target network. Molecular docking results revealed that Cur had strong binding abilities to these targets. In vivo and in vitro experiments demonstrated that Cur suppressed the development of colorectal cancer by regulating its targets (PTGS2, AKT1, TP53, and ESR1), which play crucial roles in promoting apoptosis and suppressing cell proliferation, migration, and invasion. Collectively, Cur protects against colorectal cancer by regulating the AKT1/PTGS2/ESR1 and P53 pathways, which lays the groundwork for further research and clinical applications of Cur in colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhi-Hui Yin
- The First Affiliated Hospital, Department of Anorectal, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Hua Tan
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Ling Jiang
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
10
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
11
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
12
|
Fang B, Kim S, Kim Y, Qiu Y, Lee CM, Lai Y, Liu Z, Wang K, Cho N. 1-Methoxyerythrabyssin II Induces Autophagy in Leukemia Cells via PI3K/Akt/mTOR Pathways. PLANTA MEDICA 2023; 89:1204-1214. [PMID: 37459859 DOI: 10.1055/a-2114-0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Leukemia, despite currently being one of the most lethal cancers worldwide, still lacks a focused treatment. The purpose of the present investigation was to evaluate the pharmacological effect of 1-methoxyerythrabyssin II, a pterocarpan identified in the roots of Lespedeza bicolor, on leukemic cells and to explore its underlying mechanism using a network pharmacology strategy. 1-Methoxyerythrabyssin II showed an antiproliferative effect in a concentration-dependent manner and exhibited a higher potency in human acute leukemia T cells (Jurkat). The G1 phase arrest induced by 1-methoxyerythrabyssin II was confirmed using a cell cycle assay, and the downregulation of CDK2 and cyclin D1 was observed using an immunoblot assay. Moreover, 1-methoxyerythrabyssin II-treated cells exhibited higher expression levels of LC3B, Atg-7, and Beclin 1 in addition to an enhanced fluorescence intensity in monodansylcadaverine staining, indicating autophagy induction by 1-methoxyerythrabyssin II. Furthermore, network pharmacology and molecular docking analyses revealed that the PI3K/Akt/mTOR pathway is a potential target of 1-methoxyerythrabyssin II in leukemic cells. In vitro assays further demonstrated that 1-methoxyerythrabyssin II promoted autophagy and suppressed cell proliferation by inhibiting the PI3K/Akt/mTOR pathway in leukemic cells. This discovery will contribute to the development of novel therapeutics and prophylactics against leukemia.
Collapse
Affiliation(s)
- Bo Fang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Soeun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Yinda Qiu
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Korea
| | - Yinshuang Lai
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Kun Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, Korea
| |
Collapse
|
13
|
Yang P, Chai Y, Wei M, Ge Y, Xu F. Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking. Sci Rep 2023; 13:14114. [PMID: 37644107 PMCID: PMC10465614 DOI: 10.1038/s41598-023-41157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Salidroside is a natural product of phenols, which has a wide scape of pharmacological effects, but its pharmacological effects and molecular mechanism on endometrial cancer are not clear. To systematically explore the pharmacological effects and molecular mechanisms of salidroside on endometrial cancer through the method of network pharmacology. The possible target genes of salidroside were obtained through different pharmacological databases and analysis platforms, and then the relevant target genes of endometrial cancer were obtained through the GeneCards website, and the target genes were uniformly converted into standardized gene names with Uniprot. The collected data were then processed to obtain common target genes and further analyzed through the String website to construct a protein-protein interaction (PPI) network, followed by gene ontology (GO) functional annotation and Kyoto Gene and Genome Encyclopedia (KEGG) pathway analysis. We further interpreted the molecular mechanism of salidroside for the treatment of endometrial cancer by constructing a "drug component-target gene-disease" network. Finally, we performed molecular docking to validate the binding conformation between salidroside and the candidate target genes. There were 175 target genes of salidroside after normalization, among which 113 target genes interacted with endometrial cancer. GO analysis indicated that the anti-endometrial cancer effect of salidroside may be strongly related to biological processes such as apoptosis and response to drug. KEGG analysis indicated that its mechanism may be related to pathway in cancer and PI3K-AKT signaling pathway. Molecular docking showed that salidroside had high affinity with five key genes. Based on the novel network pharmacology and molecular docking validation research methods, we have revealed for the first time the potential mechanism of salidroside in the therapy of endometrial cancer.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Min Wei
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yan Ge
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Feixue Xu
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
14
|
Bernatoniene J, Jakstas V, Kopustinskiene DM. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. Int J Mol Sci 2023; 24:12293. [PMID: 37569669 PMCID: PMC10418374 DOI: 10.3390/ijms241512293] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The roots and rhizomes of Rhodiola rosea L. (Crassulaceae), which is widely growing in Northern Europe, North America, and Siberia, have been used since ancient times to alleviate stress, fatigue, and mental and physical disorders. Phenolic compounds: phenylpropanoids rosavin, rosarin, and rosin, tyrosol glucoside salidroside, and tyrosol, are responsible for the biological action of R. rosea, exerting antioxidant, immunomodulatory, anti-aging, anti-fatigue activities. R. rosea extract formulations are used as alternative remedies to enhance mental and cognitive functions and protect the central nervous system and heart during stress. Recent studies indicate that R. rosea may be used to treat diabetes, cancer, and a variety of cardiovascular and neurological disorders such as Alzheimer's and Parkinson's diseases. This paper reviews the beneficial effects of the extract of R. rosea, its key active components, and their possible use in the treatment of chronic diseases. R. rosea represents an excellent natural remedy to address situations involving decreased performance, such as fatigue and a sense of weakness, particularly in the context of chronic diseases. Given the significance of mitochondria in cellular energy metabolism and their vulnerability to reactive oxygen species, future research should prioritize investigating the potential effects of R. rosea main bioactive phenolic compounds on mitochondria, thus targeting cellular energy supply and countering oxidative stress-related effects.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
| |
Collapse
|
15
|
Liu Z, Yokoyama NN, Song L, Xie J, Sadeghi Z, Wu YX, Yee S, Wu XR, Wang B, Uchio E, Zi X. The Potent Anti-Tumor Effects of Rhodiola Drinking Are Associated with the Inhibition of the mTOR Pathway and Modification of Tumor Metabolism in the UPII-Mutant Ha-Ras Model. Cancers (Basel) 2023; 15:3086. [PMID: 37370698 PMCID: PMC10296277 DOI: 10.3390/cancers15123086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Background: SHR-5 has been used as an "adaptogen" for enhancing physical and mental performance and for fighting stress in the healthy population. The purpose of this study is to determine the chemopreventive efficacy of SHR-5 for superficial bladder cancer and to investigate the underlying mechanisms of action. Methods: UPII-mutant Ha-ras bladder-cancer-transgenic mice, that developed low-grade and noninvasive papillary transitional urothelial cell carcinoma, were fed with 1.25 and 6.25 mg/mL SHR-5 in drinking water for 6 months. The survival of the mice, obstructive uropathy, tumor burden and morphology, and proliferation were evaluated by pathological, molecular, metabolic, and statistical analyses. Results: Approximately 95% or more of the male UPII-mutant Ha-ras mice that drank SHR-5 daily survived over 6 months of age, while only 33.3% of those mice that drank normal water survived over 6 months of age (p < 0.0001); SHR-5 drinking exposure also reduced tumor-bearing bladder weight and urinary tract obstruction and inhibited mTOR signaling in neoplastic tissues. Global metabolic analysis revealed that SHR-5 resulted in increased phenolic metabolites and decreased CoA, a critical metabolic cofactor for lipid metabolism. Conclusions: Our findings highlight the potential of SHR-5 as an anti-aging agent for bladder cancer prevention through reshaping tumor metabolism via the inhibition of the mTOR signaling. Global metabolomics profiling provides a unique and efficient tool for studying the mechanisms of complex herb extracts' action.
Collapse
Affiliation(s)
- Zhongbo Liu
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
| | - Noriko N Yokoyama
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
| | - Liankun Song
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
| | - Jun Xie
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
| | - Zhina Sadeghi
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
| | - Yi Xi Wu
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
| | - Sarah Yee
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
| | - Xue-Ru Wu
- Veterans Affairs New York Harbor Healthcare System, New York, NY 10010, USA;
| | - Beverly Wang
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92868, USA;
| | - Edward Uchio
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, CA 92868, USA; (Z.L.); (N.N.Y.); (L.S.); (J.X.); (Z.S.); (Y.X.W.); (E.U.)
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92868, USA
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| |
Collapse
|
16
|
Masi F, Chianese G, Hofstetter RK, Cavallaro AL, Riva A, Werz O, Taglialatela-Scafati O. Phytochemical profile and anti-inflammatory activity of a commercially available Rhodiola rosea root extract. Fitoterapia 2023; 166:105439. [PMID: 36716798 DOI: 10.1016/j.fitote.2023.105439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Rhodiola rosea roots and rhizomes hold an important place in the folk medicines of Russia, Scandinavia, Mongolia, and China as a health supplement for stimulating the nervous system, enhancing physical and mental performances, and nowadays they constitute the active ingredient in many popular commercial preparations sold worldwide as food additives, pharmaceutical remedies, and drinks. This study was aimed at providing a detailed phytochemical characterization of the Rhodiola 5%, a commercially available extract of R. rosea roots, and resulted in the characterization of 18 secondary metabolites, including 13 polyphenols and 6 terpenoids, and in the discovery of the new rhodiosidin (5), the first R. rosea metabolite to show both terpenoid and cinnamoyl moieties. The 5-lipoxygenase inhibiting activity of the main components was characterized and disclosed that rosiridin (6), kenposide A and rosavins are mainly responsible for this activity of the extract.
Collapse
Affiliation(s)
- Francesca Masi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Robert K Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Arianna Lucia Cavallaro
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Antonella Riva
- Indena SpA, Product Innovation and Development & LCM, Viale Ortles, 12, 20139 Milan, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
17
|
Jin M, Wang C, Xu Y, Zhang Z, Wu X, Ye R, Zhang Q, Han D. Pharmacological effects of salidroside on central nervous system diseases. Biomed Pharmacother 2022; 156:113746. [DOI: 10.1016/j.biopha.2022.113746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022] Open
|
18
|
Li J, Wang R, Chen Q, Tian Y, Gao L, Lei A. Salidroside improves porcine oocyte maturation and subsequent embryonic development by promoting lipid metabolism. Theriogenology 2022; 192:89-96. [DOI: 10.1016/j.theriogenology.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022]
|