1
|
Zhao Y, Li T, Kjaerulff L, Venter H, Coriani S, Møller BL, Semple S, Staerk D. Orthogonal Reversed-Phase C 18 and Pentafluorophenyl HPLC Separation for Phytochemical Profiling of Serrulatanes in Eremophila denticulata. JOURNAL OF NATURAL PRODUCTS 2023; 86:2638-2650. [PMID: 38013449 DOI: 10.1021/acs.jnatprod.3c00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Serrulatanes constitute a class of unique diterpenoids derived from all-Z nerylneryl diphosphate rather than the conventional all-E diterpenoid precursor geranylgeranyl diphosphate and thus provide an intriguing expansion of the chemical space of plant specialized metabolites. Plants of the Australian Eremophila genus are rich sources of structurally diverse serrulatanes. Here, we report the identification of 15 hitherto undescribed serrulatanes (eremoculatanes A-N), together with 16 previously reported compounds, from the EtOAc extract of Eremophila denticulata leaves. Isolation was performed by a combined use of systematic HPLC-PDA-HRMS-based phytochemical profiling and orthogonal reversed-phase C18 and pentafluorophenyl separations. Among the new compounds isolated, eremoculatane A contains a C12 backbone, for which the configuration was established by comparison of experimentally measured and theoretically calculated ECD spectra. The antihyperglycemic and antibacterial activities of the E. denticulata extract were investigated by high-resolution inhibition profiling, and they indicated that major constituents, mainly serrulatanes and flavonoids, contributed to the observed activity of the extract. One flavonoid, eupafolin (4), displayed moderate α-glucosidase inhibitory activity with an IC50 value of 41.3 μM, and four serrulatanes (8, 9, 19g, and 19j) showed more than 50% PTP1B inhibition at 200 μM.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Tuo Li
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide, SA 5000, Australia
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Susan Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Zhao Y, Gericke O, Li T, Kjaerulff L, Kongstad KT, Heskes AM, Møller BL, Jørgensen FS, Venter H, Coriani S, Semple SJ, Staerk D. Polypharmacology-Labeled Molecular Networking: An Analytical Technology Workflow for Accelerated Identification of Multiple Bioactive Constituents in Complex Extracts. Anal Chem 2023; 95:4381-4389. [PMID: 36802535 DOI: 10.1021/acs.analchem.2c04859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Discovery of sustainable and benign-by-design drugs to combat emerging health pandemics calls for new analytical technologies to explore the chemical and pharmacological properties of Nature's unique chemical space. Here, we present a new analytical technology workflow, polypharmacology-labeled molecular networking (PLMN), where merged positive and negative ionization tandem mass spectrometry-based molecular networking is linked with data from polypharmacological high-resolution inhibition profiling for easy and fast identification of individual bioactive constituents in complex extracts. The crude extract of Eremophila rugosa was subjected to PLMN analysis for the identification of antihyperglycemic and antibacterial constituents. Visually easy-interpretable polypharmacology scores and polypharmacology pie charts as well as microfractionation variation scores of each node in the molecular network provided direct information about each constituent's activity in the seven assays included in this proof-of-concept study. A total of 27 new non-canonical nerylneryl diphosphate-derived diterpenoids were identified. Serrulatane ferulate esters were shown to be associated with antihyperglycemic and antibacterial activities, including some showing synergistic activity with oxacillin in clinically relevant (epidemic) methicillin-resistant Staphylococcus aureus strains and some showing saddle-shaped binding to the active site of protein-tyrosine phosphatase 1B. PLMN is scalable in the number and types of assays included and thus holds potential for a paradigm shift toward polypharmacological natural-products-based drug discovery.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Oliver Gericke
- Department of Plant and Environment Sciences, Faculty of Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Tuo Li
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Allison Maree Heskes
- Department of Plant and Environment Sciences, Faculty of Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Birger Lindberg Møller
- Department of Plant and Environment Sciences, Faculty of Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Henrietta Venter
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australian
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Kgs. Lyngby DK-2800, Denmark
| | - Susan J Semple
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australian
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
3
|
Cock IE, Baghtchedjian L, Cordon ME, Dumont E. Phytochemistry, Medicinal Properties, Bioactive Compounds, and Therapeutic Potential of the Genus Eremophila (Scrophulariaceae). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227734. [PMID: 36431834 PMCID: PMC9697388 DOI: 10.3390/molecules27227734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The genus Eremophila (family Scrophulariaceae) consists of approximately 200 species that are widely distributed in the semi-arid and arid regions of Australia. Multiple Eremophila spp. are used as traditional medicines by the First Australians in the areas in which they grow. They are used for their antibacterial, antifungal, antiviral, antioxidant, anti-diabetic, anti-inflammatory, and cardiac properties. Many species of this genus are beneficial against several diseases and ailments. The antibacterial properties of the genus have been relatively well studied, with several important compounds identified and their mechanisms studied. In particular, Eremophila spp. are rich in terpenoids, and the antimicrobial bioactivities of many of these compounds have already been confirmed. The therapeutic properties of Eremophila spp. preparations and purified compounds have received substantially less attention, and much study is required to validate the traditional uses and to highlight species that warrant further investigation as drug leads. The aim of this study is to review and summarise the research into the medicinal properties, therapeutic mechanisms, and phytochemistry of Eremophila spp., with the aim of focussing future studies into the therapeutic potential of this important genus.
Collapse
Affiliation(s)
- Ian Edwin Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane 4127, Australia
- Correspondence: ; Tel.: +61-7-3735-7637
| | | | | | | |
Collapse
|
4
|
Wang W, Lin X, Yang H, Huang X, Pan L, Wu S, Yang C, Zhang L, Li Y. Anti-quorum sensing evaluation of methyleugenol, the principal bioactive component, from the Melaleuca bracteata leaf oil. Front Microbiol 2022; 13:970520. [PMID: 36118239 PMCID: PMC9477228 DOI: 10.3389/fmicb.2022.970520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication in bacteria that couples gene expression through the accumulation of signaling molecules, which finally induce the production of several virulence factors and modulate bacterial behaviors. Plants have evolved an array of quorum sensing inhibitors (QSIs) to inhibit the pathogens, of which aromatic compounds are widely recognized. The essential oil of Melaleuca bracteata was found to exhibit anti-quorum sensing activity, and its principal bioactive component, methyleugenol (ME), had been isolated in our previous study. Here, ME interfered effectively with the QS-regulated processes of toxin secretion in Chomobacterium violaceum ATCC31532, resulting in strong inhibition of QS genes, cviR, cviI, vioA-E, hmsHNR, lasA-B, pilE1-3, and hcnABC, leading to impaired virulence, including violacein production, biofilm biomass, and swarming motility. The accumulation of the signal molecule (N-hexanoyl-DL-homoserine lactone, C6-HSL) in C. violaceum declined upon treatment with ME, suggesting an inhibition effect on the C6-HSL production, and the ME was also capable of degrading the C6-HSL in vitro assay. Molecular docking technique and the consumption change of exogenous C6-HSL in C. violaceum CV026 revealed the anti-QS mechanism of ME consisted of inhibition of C6-HSL production, potentially via interaction with CviR and/or CviI protein. Collectively, the isolated ME, the principal active components of M. bracteata EO, exhibited a wide range of inhibition processes targeting C. violaceum QS system, which supports the potential anti-pathogenic use of M. bracteata EO and ME for treatment of pathogen contamination caused by bacterial pathogens.
Collapse
Affiliation(s)
- Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojie Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huixiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liaoyuan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liaoyuan Zhang,
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- Yongyu Li,
| |
Collapse
|
5
|
Semple SJ, Staerk D, Buirchell BJ, Fowler RM, Gericke O, Kjaerulff L, Zhao Y, Pedersen HA, Petersen MJ, Rasmussen LF, Bredahl EK, Pedersen GB, McNair LM, Ndi CP, Hansen NL, Heskes AM, Bayly MJ, Loland CJ, Heinz N, Møller BL. Biodiscoveries within the Australian plant genus Eremophila based on international and interdisciplinary collaboration: results and perspectives on outstanding ethical dilemmas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:936-953. [PMID: 35696314 PMCID: PMC9543726 DOI: 10.1111/tpj.15866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 05/26/2023]
Abstract
In a cross-continental research initiative, including researchers working in Australia and Denmark, and based on joint external funding by a 3-year grant from the Novo Nordisk Foundation, we have used DNA sequencing, extensive chemical profiling and molecular networking analyses across the entire Eremophila genus to provide new knowledge on the presence of natural products and their bioactivities using polypharmocological screens. Sesquiterpenoids, diterpenoids and dimers of branched-chain fatty acids with previously unknown chemical structures were identified. The collection of plant material from the Eremophila genus was carried out according to a 'bioprospecting agreement' with the Government of Western Australia. We recognize that several Eremophila species hold immense cultural significance to Australia's First Peoples. In spite of our best intentions to ensure that new knowledge gained about the genus Eremophila and any potential future benefits are shared in an equitable manner, in accordance with the Nagoya Protocol, we encounter serious dilemmas and potential conflicts in making benefit sharing with Australia's First Peoples a reality.
Collapse
Affiliation(s)
- Susan J. Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health SciencesUniversity of South AustraliaAdelaide5000Australia
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | | | - Rachael M. Fowler
- School of BioSciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
- Present address:
Carlsberg Research LaboratoryJ.C. Jacobsens Gade 4DK‐1799CopenhagenValbyDenmark.
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Hans Albert Pedersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Malene J. Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Line Fentz Rasmussen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Emilie Kold Bredahl
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Laura Mikél McNair
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Chi P. Ndi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health SciencesUniversity of South AustraliaAdelaide5000Australia
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Allison M. Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Michael J. Bayly
- School of BioSciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Claus J. Loland
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Nanna Heinz
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| |
Collapse
|
6
|
Ge J, Liu Z, Zhong Z, Wang L, Zhuo X, Li J, Jiang X, Ye XY, Xie T, Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg Chem 2022; 124:105817. [DOI: 10.1016/j.bioorg.2022.105817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
7
|
Varela K, Al Mahmud H, Arman HD, Martinez LR, Wakeman CA, Yoshimoto FK. Autoxidation of a C2-Olefinated Dihydroartemisinic Acid Analogue to Form an Aromatic Ring: Application to Serrulatene Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2022; 85:951-962. [PMID: 35357832 PMCID: PMC9035337 DOI: 10.1021/acs.jnatprod.1c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dihydroartemisinic acid (DHAA) is a plant natural product that undergoes a spontaneous endoperoxide-forming cascade reaction to yield artemisinin in the presence of air. The endoperoxide functional group gives artemisinin its biological activity that kills Plasmodium falciparum, the parasite that causes malaria. To enhance our understanding of the mechanism of this cascade reaction, 2,3-didehydrodihydroartemisinic acid (2,3-didehydro-DHAA), a DHAA derivative with a double bond at the C2-position, was synthesized. When 2,3-didehydro-DHAA was exposed to air over time, instead of forming an endoperoxide, this compound predominantly underwent aromatization. This olefinated DHAA analogue reveals the requirement of a monoalkene functional group to initiate the endoperoxide-forming cascade reaction to yield artemisinin from DHAA. In addition, this aromatization process was exploited to illustrate the autoxidation process of a different plant natural product, dihydroserrulatene, to form the aromatic ring in serrulatene. This spontaneous aromatization process has applications in other natural products such as leubethanol and erogorgiaene. Due to their similarity in structure to antimicrobial natural products, the synthesized compounds in this study were tested for biological activity. A group of the tested compounds had minimum inhibitory concentration (MIC) values ranging from 12.5 to 25 μg/mL against the bacterial pathogen Staphylococcus aureus and the fungal pathogen Cryptococcus neoformans.
Collapse
Affiliation(s)
- Kaitlyn Varela
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hafij Al Mahmud
- Biological Sciences, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Center for Immunology and Transplantation, Center for Translational Research in Neurodegenerative Disease, and The Emerging Pathogens Institute, Gainesville, Florida 32610, United States
| | - Catherine A Wakeman
- Biological Sciences, Texas Tech University, Lubbock, Texas 79409, United States
| | - Francis K Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Schumacher CE, Rausch M, Greven T, Neudörfl JM, Schneider T, Schmalz HG. Total Synthesis and Antibiotic Properties of Amino‐Functionalized Aromatic Terpenoids Related to Erogorgiaene and the Pseudopterosins. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Marvin Rausch
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Pharmaceutical Microbiology GERMANY
| | - Tobias Greven
- University of Cologne: Universitat zu Koln Chemistry GERMANY
| | | | - Tanja Schneider
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Pharmaceutical Biology GERMANY
| | | |
Collapse
|
9
|
Reversal of ABCG2/BCRP-Mediated Multidrug Resistance by 5,3',5'-Trihydroxy-3,6,7,4'-Tetramethoxyflavone Isolated from the Australian Desert Plant Eremophila galeata Chinnock. Biomolecules 2021; 11:biom11101534. [PMID: 34680166 PMCID: PMC8534154 DOI: 10.3390/biom11101534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023] Open
Abstract
Multidrug resistance (MDR) is a major challenge in cancer treatment, and the breast cancer resistance protein (BCRP) is an important target in the search for new MDR-reversing drugs. With the aim of discovering new potential BCRP inhibitors, the crude extract of leaves of Eremophila galeata, a plant endemic to Australia, was investigated for inhibitory activity of parental (HT29par) as well as BCRP-overexpressing HT29 colon cancer cells resistant to the chemotherapeutic SN-38 (i.e., HT29SN38 cells). This identified a fraction, eluted with 40% acetonitrile on a solid-phase extraction column, which showed weak growth-inhibitory activity on HT29SN38 cells when administered alone, but exhibited concentration-dependent growth inhibition when administered in combination with SN-38. The major constituent in this fraction was isolated and found to be 5,3′,5′-trihydroxy-3,6,7,4′-tetramethoxyflavone (2), which at a concentration of 25 μg/mL potentiated the growth-inhibitory activity of SN-38 to a degree comparable to that of the known BCRP inhibitor Ko143 at 1 μM. A dye accumulation experiment suggested that 2 inhibits BCRP, and docking studies showed that 2 binds to the same BCRP site as SN-38. These results indicate that 2 acts synergistically with SN-38, with 2 being a BCRP efflux pump inhibitor while SN-38 inhibits topoisomerase-1.
Collapse
|
10
|
Gericke O, Fowler RM, Heskes AM, Bayly MJ, Semple SJ, Ndi CP, Stærk D, Løland CJ, Murphy DJ, Buirchell BJ, Møller BL. Navigating through chemical space and evolutionary time across the Australian continent in plant genus Eremophila. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:555-578. [PMID: 34324744 PMCID: PMC9292440 DOI: 10.1111/tpj.15448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 05/13/2023]
Abstract
Eremophila is the largest genus in the plant tribe Myoporeae (Scrophulariaceae) and exhibits incredible morphological diversity across the Australian continent. The Australian Aboriginal Peoples recognize many Eremophila species as important sources of traditional medicine, the most frequently used plant parts being the leaves. Recent phylogenetic studies have revealed complex evolutionary relationships between Eremophila and related genera in the tribe. Unique and structurally diverse metabolites, particularly diterpenoids, are also a feature of plants in this group. To assess the full dimension of the chemical space of the tribe Myoporeae, we investigated the metabolite diversity in a chemo-evolutionary framework applying a combination of molecular phylogenetic and state-of-the-art computational metabolomics tools to build a dataset involving leaf samples from a total of 291 specimens of Eremophila and allied genera. The chemo-evolutionary relationships are expounded into a systematic context by integration of information about leaf morphology (resin and hairiness), environmental factors (pollination and geographical distribution), and medicinal properties (traditional medicinal uses and antibacterial studies), augmenting our understanding of complex interactions in biological systems.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Rachael M. Fowler
- School of BioSciencesThe University of MelbourneParkvilleVic.3010Australia
| | - Allison M. Heskes
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Michael J. Bayly
- School of BioSciencesThe University of MelbourneParkvilleVic.3010Australia
| | - Susan J. Semple
- Quality Use of Medicines and Pharmacy Research CentreSchool of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSA5000Australia
| | - Chi P. Ndi
- Quality Use of Medicines and Pharmacy Research CentreSchool of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSA5000Australia
| | - Dan Stærk
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | - Claus J. Løland
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2100Denmark
| | | | | | - Birger Lindberg Møller
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| |
Collapse
|
11
|
Sadgrove NJ, Padilla-González GF, Green A, Langat MK, Mas-Claret E, Lyddiard D, Klepp J, Legendre SVAM, Greatrex BW, Jones GL, Ramli IM, Leuner O, Fernandez-Cusimamani E. The Diversity of Volatile Compounds in Australia's Semi-Desert Genus Eremophila (Scrophulariaceae). PLANTS 2021; 10:plants10040785. [PMID: 33923613 PMCID: PMC8073941 DOI: 10.3390/plants10040785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Australia’s endemic desert shrubs are commonly aromatic, with chemically diverse terpenes and phenylpropanoids in their headspace profiles. Species from the genus Eremophila (Scrophulariaceae ex. Myoporaceae) are the most common, with 215 recognised taxa and many more that have not yet been described, widely spread across the arid parts of the Australian continent. Over the years, our research team has collected multiple specimens as part of a survey to investigate the chemical diversity of the genus and create leads for further scientific enquiry. In the current study, the diversity of volatile compounds is studied using hydrodistilled essential oils and leaf solvent extracts from 30 taxa. Several rare terpenes and iridoids were detected in chemical profiles widely across the genus, and three previously undescribed sesquiterpenes were isolated and are assigned by 2D NMR—E-11(12)-dehydroisodendrolasin, Z-11-hydroxyisodendrolasin and 10-hydroxydihydro-α-humulene acetate. Multiple sampling from Eremophila longifolia, Eremophila arbuscular, Eremophila latrobei, Eremophila deserti, Eremophila sturtii, Eremophila oppositifolia and Eremophila alternifolia coneys that species in Eremophila are highly chemovariable. However, taxa are generally grouped according to the expression of (1) furanosesquiterpenes, (2) iridoids or oxides, (3) mixtures of 1 and 2, (4) phenylpropanoids, (5) non-furanoid terpenes, (6) mixtures of 4 and 5, and less commonly (7) mixtures of 1 and 5. Furthermore, GC–MS analysis of solvent-extracted leaves taken from cultivated specimens conveys that many heavier ‘volatiles’ with lower vapour pressure are not detected in hydrodistilled essential oils and have therefore been neglected in past chemical studies. Hence, our data reiterate that chemical studies of the genus Eremophila will continue to describe new metabolites and that taxon determination has limited predictive value for the chemical composition.
Collapse
Affiliation(s)
- Nicholas J. Sadgrove
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; (G.F.P.-G.); (A.G.); (M.K.L.); (E.M.-C.)
- Correspondence: (N.J.S.); (E.F.-C.); Tel.: +44-785-756-9823 (N.J.S.); +420-224-382-183 (E.F.-C.)
| | - Guillermo F. Padilla-González
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; (G.F.P.-G.); (A.G.); (M.K.L.); (E.M.-C.)
| | - Alison Green
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; (G.F.P.-G.); (A.G.); (M.K.L.); (E.M.-C.)
| | - Moses K. Langat
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; (G.F.P.-G.); (A.G.); (M.K.L.); (E.M.-C.)
| | - Eduard Mas-Claret
- Jodrell Science Laboratory, Royal Botanic Gardens Kew, Richmond TW9 3DS, UK; (G.F.P.-G.); (A.G.); (M.K.L.); (E.M.-C.)
| | - Dane Lyddiard
- School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; (D.L.); (J.K.); (S.V.A.-M.L.); (B.W.G.); (G.L.J.); (I.M.R.)
| | - Julian Klepp
- School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; (D.L.); (J.K.); (S.V.A.-M.L.); (B.W.G.); (G.L.J.); (I.M.R.)
| | - Sarah V. A.-M. Legendre
- School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; (D.L.); (J.K.); (S.V.A.-M.L.); (B.W.G.); (G.L.J.); (I.M.R.)
| | - Ben W. Greatrex
- School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; (D.L.); (J.K.); (S.V.A.-M.L.); (B.W.G.); (G.L.J.); (I.M.R.)
| | - Graham L. Jones
- School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; (D.L.); (J.K.); (S.V.A.-M.L.); (B.W.G.); (G.L.J.); (I.M.R.)
| | - Iskandar M. Ramli
- School of Science and Technology and School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia; (D.L.); (J.K.); (S.V.A.-M.L.); (B.W.G.); (G.L.J.); (I.M.R.)
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
- Correspondence: (N.J.S.); (E.F.-C.); Tel.: +44-785-756-9823 (N.J.S.); +420-224-382-183 (E.F.-C.)
| |
Collapse
|
12
|
Miller GP, Bhat WW, Lanier ER, Johnson SR, Mathieu DT, Hamberger B. The biosynthesis of the anti-microbial diterpenoid leubethanol in Leucophyllum frutescens proceeds via an all-cis prenyl intermediate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:693-705. [PMID: 32777127 PMCID: PMC7649979 DOI: 10.1111/tpj.14957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 05/04/2023]
Abstract
Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.
Collapse
Affiliation(s)
- Garret P. Miller
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Wajid Waheed Bhat
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Emily R. Lanier
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Sean R. Johnson
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Davis T. Mathieu
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Björn Hamberger
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
13
|
Sharma A, Biharee A, Kumar A, Jaitak V. Antimicrobial Terpenoids as a Potential Substitute in Overcoming Antimicrobial Resistance. Curr Drug Targets 2020; 21:1476-1494. [PMID: 32433003 DOI: 10.2174/1389450121666200520103427] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
There was a golden era where everyone thought that microbes can no longer establish threat to humans but the time has come where microbes are proposing strong resistance against the majority of antimicrobials. Over the years, the inappropriate use and easy availability of antimicrobials have made antimicrobial resistance (AMR) to emerge as the world's third leading cause of death. Microorganisms over the time span have acquired resistance through various mechanisms such as efflux pump, transfer through plasmids causing mutation, changing antimicrobial site of action, or modifying the antimicrobial which will lead to become AMR as the main cause of death worldwide by 2030. In order to overcome the emerging resistance against majority of antimicrobials, there is a need to uncover drugs from plants because they have proved to be effective antimicrobials due to the presence of secondary metabolites such as terpenoids. Terpenoids abundant in nature are produced in response to microbial attack have huge potential against various microorganisms through diverse mechanisms such as membrane disruption, anti-quorum sensing, inhibition of protein synthesis and ATP. New approaches like combination therapy of terpenoids and antimicrobials have increased the potency of treatment against various multidrug resistant microorganisms by showing synergism to each other.
Collapse
Affiliation(s)
- Aditi Sharma
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Avadh Biharee
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab-151001, India
| |
Collapse
|
14
|
Gericke O, Hansen NL, Pedersen GB, Kjaerulff L, Luo D, Staerk D, Møller BL, Pateraki I, Heskes AM. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC PLANT BIOLOGY 2020; 20:91. [PMID: 32111159 PMCID: PMC7049213 DOI: 10.1186/s12870-020-2293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Dan Luo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
15
|
Antibacterial Performance of Terpenoids from the Australian Plant Eremophila lucida. Antibiotics (Basel) 2019; 8:antibiotics8020063. [PMID: 31108851 PMCID: PMC6627632 DOI: 10.3390/antibiotics8020063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
Plants in the Australian genus Eremophila (Scrophulariaceae) have attracted considerable recent attention for their antimicrobial compounds, which possess a wide range of chemical structures. As they are typically associated with the oily-waxy resin layer covering leaves and green branchlets, and Eremophila lucida is prominent among the species containing a pronounced sticky resin layer, this species was considered of interest for assessing its antibacterial constituents. The n-hexane fraction of the crude acetone extract of the leaves exhibited antibacterial activity against Staphylococcus aureus. Isolation led to the known compounds cembratriene, (3Z, 7E, 11Z)-15-hydroxycembra-3,7,11-trien-19-oic acid (1), the sesquiterpenoid, farnesal (2) and the viscidane diterpenoid, 5α-hydroxyviscida-3,14-dien-20-oic acid (3). The purified compounds were tested for antibacterial activity with 2 and 3 showing moderate antibacterial activity against Gram-positive bacteria.
Collapse
|
16
|
Hossain MA, Biva IJ, Kidd SE, Whittle JD, Griesser HJ, Coad BR. Antifungal Activity in Compounds from the Australian Desert Plant Eremophila alternifolia with Potency Against Cryptococcus spp. Antibiotics (Basel) 2019; 8:antibiotics8020034. [PMID: 30935155 PMCID: PMC6628298 DOI: 10.3390/antibiotics8020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Plant metabolites that have shown activity against bacteria and/or environmental fungi represent valuable leads for the identification and development of novel drugs against clinically important human pathogenic fungi. Plants from the genus Eremophila were highly valued in traditional Australian Aboriginal medicinal practices, and E. alternifolia was the most prized among them. As antibacterial activity of extracts from E. alternifolia has been documented, this study addresses the question whether there is also activity against infectious fungal human pathogens. Compounds from leaf-extracts were purified and identified by 1- and 2-D NMR. These were then tested by disk diffusion and broth microdilution assays against ten clinically and environmentally relevant yeast and mould species. The most potent activity was observed with the diterpene compound, 8,19-dihydroxyserrulat-14-ene against Cryptococcus gattii and Cryptococcus neoformans, with minimum inhibition concentrations (MIC) comparable to those of Amphotericin B. This compound also exhibited activity against six Candida species. Combined with previous studies showing an antibacterial effect, this finding could explain a broad antimicrobial effect from Eremophila extracts in their traditional medicinal usage. The discovery of potent antifungal compounds from Eremophila extracts is a promising development in the search for desperately needed antifungal compounds particularly for Cryptococcus infections.
Collapse
Affiliation(s)
- Mohammed A Hossain
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Israt J Biva
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia 5000, Australia.
| | - Jason D Whittle
- School of Engineering, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia.
| |
Collapse
|
17
|
Metabolomic analysis of low and high biofilm-forming Helicobacter pylori strains. Sci Rep 2018; 8:1409. [PMID: 29362474 PMCID: PMC5780479 DOI: 10.1038/s41598-018-19697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value < 0.005) between low and high biofilm-formers. These metabolites include major categories of lipids and metabolites involve in prostaglandin and folate metabolism. Our findings suggest that biofilm formation in H. pylori is complex and probably driven by the bacterium’ endogenous metabolism. Understanding the underlying metabolic differences between low and high biofilm-formers may enhance our current understanding of pathogenesis, extragastric survival and transmission of H. pylori infections.
Collapse
|
18
|
Algreiby AA, Hammer KA, Durmic Z, Vercoe P, Flematti GR. Antibacterial compounds from the Australian native plant Eremophila glabra. Fitoterapia 2017; 126:45-52. [PMID: 29155275 DOI: 10.1016/j.fitote.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Recent reports of Eremophila glabra (R.Br.) Ostenf. (Scrophulariaceae) displaying antibacterial activity has led us to investigate the bioactive secondary metabolites responsible for this activity. Bioassay-directed fractionation of solvent extracts prepared from the leaves of E. glabra led to the isolation of seven serrulatane diterpenes, three flavonoids and the caffeoyl ester disaccharide verbascoside. Among these, four serrulatanes, namely 18-acetoxy-8, 20-dihydroxyserrulat-14-en-19-oic acid (14), 18,20-diacetoxy-8-hydroxyserrulat-14-en-19-oic acid (16), 8,18,20-triacetoxyserrulat-14-en-19-oic acid (17) and 18-acetoxy-8-hydroxyserrulat-14-en-19-oic acid (18) are described for the first time, while 8,20-diacetoxyserrulat-14-en-19-oic acid (3), 8,18,20-trihydroxyserrulat-14-en-19-oic acid (5) and 20-acetoxy-8-hydroxyserrulat-14-en-19-oic acid (19) were previously reported. All three flavonoids hispidulin (12), jaceosidin (13) and cirsimaritin (15) are known but reported for the first time in E. glabra. All compounds were tested in an agar diffusion antimicrobial assay against Staphylococcus aureus (NCTC 10442) and Staphylococcus epidermidis (ATCC 14990). Compounds 12, 13, 17, 18 and 19 exhibited moderate activity, with minimum inhibitory concentrations (MICs) ranging from 32 to 512μg/mL. Compound 19 demonstrated the highest activity against S. epidermidis ATCC 14990 with MIC of 32μg/mL, while 13 demonstrated the highest activity against S. aureus NCTC 10442 with MIC of 128μg/mL.
Collapse
Affiliation(s)
- Azizah A Algreiby
- School of Molecular Science, The University of Western Australia, Crawley 6009, Australia
| | - Katherine A Hammer
- School of Biomedical Sciences, The University of Western Australia Crawley, 6009, Australia
| | - Zoey Durmic
- School of Agriculture and Environment, The University of Western Australia, Crawley, 6009, Australia
| | - Phil Vercoe
- School of Agriculture and Environment, The University of Western Australia, Crawley, 6009, Australia
| | - Gavin R Flematti
- School of Molecular Science, The University of Western Australia, Crawley 6009, Australia.
| |
Collapse
|
19
|
Cao F, Shao CL, Liu YF, Zhu HJ, Wang CY. Cytotoxic Serrulatane-Type Diterpenoids from the Gorgonian Euplexaura sp. and Their Absolute Configurations by Vibrational Circular Dichroism. Sci Rep 2017; 7:12548. [PMID: 28970539 PMCID: PMC5624892 DOI: 10.1038/s41598-017-12841-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022] Open
Abstract
Vibrational circular dichroism (VCD) method has become robust and reliable alternative for the stereochemical characterization of natural products. In this paper, three new serrulatane-type diterpenoids, euplexaurenes A-C (1-3), and a known metabolite, anthogorgiene P (4), were obtained from the South China Sea gorgonian Euplexaura sp. GXWZ-05. The absolute configuration of C-11 in 1-4, which was difficult to be determined by common means due to the high conformational flexibility of the eight-carbon aliphatic chain attached at C-4, was determined by VCD method, suggesting a new horizon to define the absolute configurations of natural products possessing chains. Compounds 1-4 were found to show selective cytotoxic activities against human laryngeal carcinoma (Hep-2) cell line with the IC50 values of 1.95, 7.80, 13.6 and 5.85 μM, respectively.
Collapse
Affiliation(s)
- Fei Cao
- School of Medicine and Pharmacy, Ocean University of China; Key Laboratory of Marine Drugs, The Ministry of Education of China, Qingdao, 266003, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Chang-Lun Shao
- School of Medicine and Pharmacy, Ocean University of China; Key Laboratory of Marine Drugs, The Ministry of Education of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Yun-Feng Liu
- School of Medicine and Pharmacy, Ocean University of China; Key Laboratory of Marine Drugs, The Ministry of Education of China, Qingdao, 266003, China
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Hua-Jie Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Chang-Yun Wang
- School of Medicine and Pharmacy, Ocean University of China; Key Laboratory of Marine Drugs, The Ministry of Education of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
20
|
Kumar R, Duffy S, Avery VM, Davis RA. Synthesis of antimalarial amide analogues based on the plant serrulatane diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid. Bioorg Med Chem Lett 2017; 27:4091-4095. [DOI: 10.1016/j.bmcl.2017.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
|
21
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, pimaranes, abietanes, kauranes, cembranes and their cyclization products. The literature from January to December, 2015 is reviewed.
Collapse
|