1
|
Kil YS, You J, Wendt KL, King JB, Cichewicz RH. Resolving a Natural Product Cold Case: Elucidation of Fusapyrone Structure and Absolute Configuration and Demonstration of Their Fungal Biofilm Disrupting Properties. J Org Chem 2023; 88:9167-9186. [PMID: 37343240 DOI: 10.1021/acs.joc.3c00765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Fusapyrones are fungal metabolites, which have been reported to have broad-spectrum antibacterial and antifungal properties. Despite the first members of this chemical class being described three decades prior, many aspects of their structures have remained unresolved, thereby constraining efforts to fully understand structure-activity relationships within this metabolite family and impeding the design of streamlined syntheses. Among the main challenges posed by fusapyrones is the incorporation of several single and groups of stereocenters separated by atoms with freely rotating bonds, which have proven unyielding to spectroscopic analyses. In this study, we obtained a series of new (2-5 and 7-9) and previously reported fusapyrones (1 and 6), which were subjected to a combination of spectroscopic, chemical, and computational techniques enabling us to offer proposals for their full structures, as well as provide a pathway to reinterpreting the absolute configurations of other published fusapyrone metabolites. Biological testing of the fusapyrones revealed their abilities to inhibit and disrupt biofilms made by the human fungal pathogen, Candida albicans. These results show that fusapyrones reduce hyphae formation in C. albicans, as well as decrease the surface adherence capabilities of planktonic cells and cells transitioning into early-stage biofilm formation.
Collapse
Affiliation(s)
- Yun-Seo Kil
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jianlan You
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jarrod B King
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
2
|
Keshawa Ediriweera M. Fatty acids as histone deacetylase inhibitors: old biochemistry tales in a new life sciences town. Drug Discov Today 2023; 28:103569. [PMID: 36990144 DOI: 10.1016/j.drudis.2023.103569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Histone acetylation is a key epigenetic event. Although the keywords fatty acids, histones, and histone acetylation have a long history in biochemistry, these topics continue to attract much attention among researchers. The acetylation of histones is controlled by the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). An imbalance in the activities of HATs and HDACs is common in a range of human cancers. Histone deacetylase inhibitors (HDACi) can restore dysregulated histone acetylation profiles in cancer cells and have been identified as promising anti-cancer therapeutics. Short-chain fatty acids mediate anti-cancer effects by inhibiting the activity of HDACs. Recent studies have identified odd-chain fatty acids as novel HDACi. This review summarizes recent findings regarding fatty acids as HDACi in cancer therapy. Teaser: Inhibition of histone deacetylase (HDAC) activity by fatty acids.
Collapse
|
3
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Hong LL, Ding YF, Zhang W, Lin HW. Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:356-372. [PMID: 37073163 PMCID: PMC10077299 DOI: 10.1007/s42995-022-00132-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Marine sponges are productive sources of bioactive secondary metabolites with over 200 new compounds isolated each year, contributing 23% of approved marine drugs so far. This review describes statistical research, structural diversity, and pharmacological activity of sponge derived new natural products from 2009 to 2018. Approximately 2762 new metabolites have been reported from 180 genera of sponges this decade, of which the main structural types are alkaloids and terpenoids, accounting for 50% of the total. More than half of new molecules showed biological activities including cytotoxic, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibition, and antimalarial activities. As summarized in this review, macrolides and peptides had higher proportions of new bioactive compounds in new compounds than other chemical classes. Every chemical class displayed cytotoxicity as the dominant activity. Alkaloids were the major contributors to antibacterial, antifungal, and antioxidant activities while steroids were primarily responsible for pest resistance activity. Alkaloids, terpenoids, and steroids displayed the most diverse biological activities. The statistic research of new compounds by published year, chemical class, sponge taxonomy, and biological activity are presented. Structural novelty and significant bioactivities of some representative compounds are highlighted. Marine sponges are rich sources of novel bioactive compounds and serve as animal hosts for microorganisms, highlighting the undisputed potential of sponges in the marine drugs research and development. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00132-3.
Collapse
Affiliation(s)
- Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Ya-Fang Ding
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316000 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, Flinders University, Adelaide, SA 5042 Australia
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| |
Collapse
|
5
|
Carretero-Molina D, Ortiz-López FJ, Gren T, Oves-Costales D, Martín J, Román-Hurtado F, Sparholt Jørgensen T, de la Cruz M, Díaz C, Vicente F, Blin K, Reyes F, Weber T, Genilloud O. Discovery of gargantulides B and C, new 52-membered macrolactones from Amycolatopsis sp. Complete absolute stereochemistry of the gargantulide family. Org Chem Front 2022. [DOI: 10.1039/d1qo01480c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gargantulides B and C are among the most complex bacterial polyketides discovered so far. A combination of NMR and genome-based bioinformatics analyses allowed us to complete and revise the absolute stereochemistry of the entire gargantulide family.
Collapse
Affiliation(s)
- Daniel Carretero-Molina
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisco Javier Ortiz-López
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Fernando Román-Hurtado
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| |
Collapse
|
6
|
Histone Deacetylase Inhibitors from Marine Invertebrates. BIOLOGY 2020; 9:biology9120429. [PMID: 33260710 PMCID: PMC7760191 DOI: 10.3390/biology9120429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Histone deacetylases (HDACs) are key components of the epigenetic machinery controlling gene expression. They are involved in chromatin remodeling events via post-translational histone modifications but may also act on nonhistone proteins, influencing many fundamental cellular processes. Due to the key involvement of HDACs in serious human pathologies, including cancer, HDAC inhibitors (HDACis) have received increased attention in recent years. It is known that marine invertebrates produce significant amounts of secondary metabolites showing active pharmacological properties and an extensive spectrum of biomedical applications. The aim of this review is to gather selected studies that report the extraction and identification of marine invertebrate-derived compounds that possess HDACi properties, grouping the producing species according to their taxonomic hierarchy. The molecular, biochemical, and/or physiological aspects, where available, and modes of action of these naturally occurring HDACis will be recapitulated, taking into consideration their possible utilization for the future design of analogs with increased bioavailability and efficacy, less toxicity, and, also, higher isoform selectivity.
Collapse
|
7
|
Kil YS, Risinger AL, Petersen CL, Mooberry SL, Cichewicz RH. Leucinostatins from Ophiocordyceps spp. and Purpureocillium spp. Demonstrate Selective Antiproliferative Effects in Cells Representing the Luminal Androgen Receptor Subtype of Triple Negative Breast Cancer. JOURNAL OF NATURAL PRODUCTS 2020; 83:2010-2024. [PMID: 32510949 PMCID: PMC7704123 DOI: 10.1021/acs.jnatprod.0c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The structures of four leucinostatin analogues (1-4) from Ophiocordyceps spp. and Purpureocillium spp. were determined together with six known leucinostatins [leucinostatins B (5), A (6), B2 (7), A2 (8), F (9), and D (10)]. The structures of the metabolites were established using a combination of analytical methods including HRESIMS and MS/MS experiments, 1D and 2D NMR spectroscopy, chiral HPLC, and advanced Marfey's analysis of the acid hydrolysate, as well as additional empirical and chemical methods. Compounds 1-10 were evaluated for their biological effects on triple negative breast cancer (TNBC) cells. Leucinostatins 1-10 showed selective cytostatic activities in MDA-MB-453 and SUM185PE cells representing the luminal androgen receptor subtype of TNBC. This selective activity motivated further investigation into the mechanism of action of leucinostatin B (5). The results demonstrate that this peptidic fungal metabolite rapidly inhibits mTORC1 signaling in leucinostatin-sensitive TNBC cell lines, but not in leucinostatin-resistant cells. Leucinostatins have been shown to repress mitochondrial respiration through inhibition of the ATP synthase, and we demonstrated that both the mTORC1 signaling and LAR-selective activities of 5 were recapitulated by oligomycin. Thus, inhibition of the ATP synthase with either leucinostatin B or oligomycin is sufficient to selectively impede mTORC1 signaling and inhibit the growth of LAR-subtype cells.
Collapse
Affiliation(s)
- Yun-Seo Kil
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 102 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Mays Cancer Center, 7703 Floyd Curl Drive, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Cora L. Petersen
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Mays Cancer Center, 7703 Floyd Curl Drive, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Corresponding Author: Tel: 210-567-4788. Fax: 210-567-4300. ., Tel: 405-325-6969. Fax: 405-325-6111.
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 102 Stephenson Parkway, Norman, Oklahoma 73019, United States
- Corresponding Author: Tel: 210-567-4788. Fax: 210-567-4300. ., Tel: 405-325-6969. Fax: 405-325-6111.
| |
Collapse
|
8
|
Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Popov RS, Kuzmich AS, Fedorov SN, Krasokhin VB, Kim NY, Stonik VA. Melonoside B and Melonosins A and B, Lipids Containing Multifunctionalized ω-Hydroxy Fatty Acid Amides from the Far Eastern Marine Sponge Melonanchora kobjakovae. JOURNAL OF NATURAL PRODUCTS 2018; 81:2763-2767. [PMID: 30525604 DOI: 10.1021/acs.jnatprod.8b00785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Melonoside B (1) and melonosins B (2) and A (3), new lipids based on polyoxygenated fatty acid amides, and known melonoside A (4) were isolated from two different collections of the marine sponge Melonanchora kobjakovae. The structures of these compounds, including their absolute configurations, were established using detailed analysis of 1D and 2D NMR, ECD, and mass spectra as well as chemical transformations. Melonosins 2 and 3 inhibit AP-1- and NF-kB-dependent transcriptional activities in JB6 Cl41 cells at noncytotoxic concentrations, demonstrating potential cancer preventive activity.
Collapse
Affiliation(s)
- Alla G Guzii
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Tatyana N Makarieva
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Vladimir A Denisenko
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Roman S Popov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Alexandra S Kuzmich
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Sergey N Fedorov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Vladimir B Krasokhin
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Natalya Yu Kim
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| | - Valentin A Stonik
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry , Far Eastern Branch of the Russian Academy of Sciences , Prospect 100-let Vladivostoku 159 , Vladivostok 690022 , Russian Federation
| |
Collapse
|
9
|
Li J, Tang H, Kurtán T, Mándi A, Zhuang CL, Su L, Zheng GL, Zhang W. Swinhoeisterols from the South China Sea Sponge Theonella swinhoei. JOURNAL OF NATURAL PRODUCTS 2018; 81:1645-1650. [PMID: 29989811 DOI: 10.1021/acs.jnatprod.8b00281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Swinhoeisterols C-F (1-4), four new steroids having a rearranged 6/6/5/7 ring system, were isolated from the Xisha sponge Theonella swinhoei, together with the known analogue swinhoeisterol A (5). Their structures were determined based on spectroscopic analysis, TDDFT-ECD and optical rotation calculations, and biogenetic correlations. In an in vitro assay, compound 1 showed an inhibitory effect on (h)p300 with an IC50 value of 8.8 μM, whereas compounds 2-4 were not active.
Collapse
Affiliation(s)
- Jiao Li
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Hua Tang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , POB 400, H-4002 Debrecen , Hungary
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , POB 400, H-4002 Debrecen , Hungary
| | - Chun-Lin Zhuang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Li Su
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| | - Gui-Liang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery , Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , 1665 Kong-Jiang Road , Shanghai 200092 , People's Republic of China
| | - Wen Zhang
- School of Pharmacy , Second Military Medical University , 325 Guo-He Road , Shanghai 200433 , People's Republic of China
| |
Collapse
|
10
|
Hu Y, Wang M, Wu C, Tan Y, Li J, Hao X, Duan Y, Guan Y, Shang X, Wang Y, Xiao C, Gan M. Identification and Proposed Relative and Absolute Configurations of Niphimycins C-E from the Marine-Derived Streptomyces sp. IMB7-145 by Genomic Analysis. JOURNAL OF NATURAL PRODUCTS 2018; 81:178-187. [PMID: 29308897 DOI: 10.1021/acs.jnatprod.7b00859] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Analysis of the whole genome sequence of Streptomyces sp. IMB7-145 revealed the presence of seven type I polyketide synthase biosynthetic gene clusters, one of which was highly homologous to the biosynthetic gene cluster of azalomycin F. Detailed bioinformatic analysis of the modular organization of the PKS gene suggested that this gene is responsible for niphimycin biosynthesis. Guided by genomic analysis, a large-scale cultivation ultimately led to the discovery and characterization of four new niphimycin congeners, namely, niphimycins C-E (1-3) and 17-O-methylniphimycin (4). The configurations of most stereocenters of niphimycins have not been determined to date. In the present study, the relative configurations were elucidated by spectroscopic analysis, including J-based analysis and the CNMR database method. Further, the full absolute configurations of niphimycins were completely proposed for the first time based on biosynthetic gene cluster analysis of the ketoreductase and enoylreductase domains for hydroxy- and methyl-bearing stereocenters. Compounds 1, 3, 4, and niphimycin Iα (5) showed antimicrobial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci (MIC: 8-64 μg/mL), as well as cytotoxicity against the human HeLa cancer cell line (IC50: 3.0-9.0 μM). In addition, compounds 1 and 5 displayed significant activity against several Mycobacterium tuberculosis clinical isolates (MIC: 4-32 μg/mL).
Collapse
Affiliation(s)
- Yuanyuan Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Mian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Chunyan Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University , Beijing 100191, People's Republic of China
| | - Yi Tan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Jiao Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Xiaomeng Hao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Yanbo Duan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Yan Guan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Xiaoya Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University , Beijing 100191, People's Republic of China
| | - Yiguang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Chunling Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | - Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| |
Collapse
|
11
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
12
|
Mohamad H, Rashid Z, Ali A, Douzenel P, Bourgougnon N, Shaari K, Andriani Y, Tengku Muhammad S. Phenolics, fatty acids composition and biological activities of various extracts and fractions of Malaysian Aaptos aaptos. Asian Pac J Trop Biomed 2018. [DOI: 10.4103/2221-1691.245971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Ueoka R, Hitora Y, Ito A, Yoshida M, Okada S, Takada K, Matsunaga S. Curacin E from the Brittle Star Ophiocoma scolopendrina. JOURNAL OF NATURAL PRODUCTS 2016; 79:2754-2757. [PMID: 27684202 DOI: 10.1021/acs.jnatprod.6b00701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bioassay-guided fractionation of the extract of the brittle star Ophiocoma scolopendrina afforded curacin E (1), a congener of curacin A (2). Curacin A (2) is an antimitotic agent of cyanobacterial origin. The structure of curacin E was studied by interpretation of NMR data and the ECD spectrum. Curacin E has an ethylcarbonyl terminus in its side chain and inhibits the proliferation of P388 cells.
Collapse
Affiliation(s)
- Reiko Ueoka
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuki Hitora
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akihiro Ito
- Chemical Genomics Reserach Group, RIKEN Center for Sustainable Resource Science , Wako Saitama 351-0198, Japan
- Chemical Genetics Laboratory, RIKEN , Wako Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Reserach Group, RIKEN Center for Sustainable Resource Science , Wako Saitama 351-0198, Japan
- Chemical Genetics Laboratory, RIKEN , Wako Saitama 351-0198, Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Takada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|