1
|
Lapoot L, Jabeen S, O’Connor RM, Korytowski W, Girotti A, Greer A. Photosensitized Oxidative Damage from a New Perspective: The Influence of Before-Light and After-Light Reaction Conditions. J Org Chem 2024; 89:12873-12885. [PMID: 39231123 PMCID: PMC11421024 DOI: 10.1021/acs.joc.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Photooxidative damage is heavily influenced by the presence of bioactive agents. Conversely, bioactive agents influence the local environment, which in turn is perturbed by photooxidative damage. These sorts of processes give rise to a version of the "chicken-and-egg" quandary. In this Perspective, we probe this issue by referring to photooxidative damage in one direction as the light-dark (L-D) sequence and in a second direction as the dark-light (D-L) sequence with a reversed cause and effect. The L-D sequence can lead to the downstream production of reactive molecular species (RMS) in the dark, whereas the D-L sequence can be a pre-irradiation period, such as an additive to limit cellular iron levels to enhance biosynthesized amounts of a protoporphyrin sensitizer. A third direction comes from L-D or D-L sequences, or both simultaneously, which can also be useful for optimizing photodynamics. Photodynamic optimization will benefit from understanding and quantitating unidirectional L-D and D-L pathways, and bidirectional L-D/D-L pathways, for improved control over photooxidative damage. Photooxidative damage, which occurs during anticancer photodynamic therapy (PDT), will be shown to involve RMS. Such RMS include persulfoxides (R2S+OO-), NO2•, peroxynitrate (O2NOO-), OOSCN-, SO3•-, selenocyanogen [(SeCN)2], the triselenocyanate anion [(SeCN)3-], I•, I2•-, I3-, and HOOI, as well as additives to destabilize membranes (e.g., caspofungin and saponin A16), inhibit DNA synthesis (5-fluorouracil), or sequester iron (desferrioxamine). In view of the success that additive natural products and repurposed drugs have had in PDT, a Perspective of additive types is expected to reveal mechanistic details for enhanced photooxidation reactions in general. Indeed, strategies for how to potentiate photooxidations with additives remain highly underexplored.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ryan M. O’Connor
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
| | - Witold Korytowski
- Department
of Biophysics, Jagiellonian University, Gołębia 24 Street, 31-007 Kraków, Poland
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Albert Girotti
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
2
|
V. Cabral F, Xu Q, Greer A, Lyons AM, Hasan T. Superhydrophobic Dressing for Singlet Oxygen Delivery in Antimicrobial Photodynamic Therapy against Multidrug-Resistant Bacterial Biofilms. ACS APPLIED BIO MATERIALS 2024; 7:6175-6185. [PMID: 39166743 PMCID: PMC11409211 DOI: 10.1021/acsabm.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The rise of antimicrobial resistance poses a critical public health threat worldwide. While antimicrobial photodynamic therapy (aPDT) has demonstrated efficacy against multidrug-resistant (MDR) bacteria, its effectiveness can be limited by several factors, including the delivery of the photosensitizer (PS) to the site of interest and the development of bacterial resistance to PS uptake. There is a need for alternative methods, one of which is superhydrophobic antimicrobial photodynamic therapy (SH-aPDT), which we report here. SH-aPDT is a technique that isolates the PS on a superhydrophobic (SH) membrane, generating airborne singlet oxygen (1O2) that can diffuse up to 1 mm away from the membrane. In this study, we developed a SH polydimethylsiloxane dressing coated with PS verteporfin. These dressings contain air channels called a plastron for supplying oxygen for aPDT and are designed so that there is no direct contact of the PS with the tissue. Our investigation focuses on the efficacy of SH-aPDT on biofilms formed by drug-sensitive and MDR strains of Gram-positive (Staphylococcus aureus and S. aureus methicillin-resistant) and Gram-negative bacteria (Pseudomonas aeruginosa and P. aeruginosa carbapenem-resistant). SH-aPDT reduces bacterial biofilms by approximately 3 log with a concomitant decrease in their metabolism as measured by MTT. Additionally, the treatment disrupted extracellular polymeric substances, leading to a decrease in biomass and biofilm thickness. This innovative SH-aPDT approach holds great potential for combating antimicrobial resistance, offering an effective strategy to address the challenges posed by drug-resistant wound infections.
Collapse
Affiliation(s)
- Fernanda V. Cabral
- Wellman
Center for Photomedicine, Massachusetts
General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - QianFeng Xu
- SingletO2
Therapeutics LLC, VentureLink,
Room 524B, 211 Warren Street, Newark, New Jersey 07103, United States
| | - Alexander Greer
- SingletO2
Therapeutics LLC, VentureLink,
Room 524B, 211 Warren Street, Newark, New Jersey 07103, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department
of Chemistry, Brooklyn College, City University
of New York, Brooklyn, New York 11210, United States
| | - Alan M. Lyons
- SingletO2
Therapeutics LLC, VentureLink,
Room 524B, 211 Warren Street, Newark, New Jersey 07103, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department
of Chemistry, College of Staten Island, City University of New York, Staten
Island, New York 10314, United States
| | - Tayyaba Hasan
- Wellman
Center for Photomedicine, Massachusetts
General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Division
of Health Sciences and Technology, Harvard
University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Durantini AM, Lapoot L, Jabeen S, Ghosh G, Bipu J, Essang S, Singh BC, Greer A. Tuning the 1O 2 Oxidation of a Phenol at the Air/Solid Interface of a Nanoparticle: Hydrophobic Surface Increases Oxophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37497839 DOI: 10.1021/acs.langmuir.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although silica surfaces have been used in organic oxidations for the production of peroxides, studies of airborne singlet oxygen at interfaces are limited and have not found widespread advantages. Here, with prenyl phenol-coated silica and delivery of singlet oxygen (1O2) through the gas phase, we uncover significant selectivity for dihydrofuran formation over allylic hydroperoxide formation. The hydrophobic particle causes prenyl phenol to produce an iso-hydroperoxide intermediate with an internally protonated oxygen atom, which leads to dihydrofuran formation as well as O atom transfer. In contrast, hydrophilic particles cause prenyl phenol to produce allylic hydroperoxide, due to phenol OH hydrogen bonding with SiOH surface groups. Mechanistic insight is provided by air/nanoparticle interfaces coated with the prenyl phenol, in which product yield was 6-fold greater on the hydrophobic nanoparticles compared to the hydrophilic nanoparticles and total rate constants (ASI-kT) of 1O2 were 13-fold greater on the hydrophobic vs hydrophilic nanoparticles. A slope intersection method was also developed that uses the airborne 1O2 lifetime (τairborne) and surface-associated 1O2 lifetime (τsurf) to quantitate 1O2 transitioning from volatile to non-volatile and surface boundary (surface···1O2). Further mechanistic insights on the selectivity of the reaction of prenyl phenol with 1O2 was provided by density functional theory calculations.
Collapse
Affiliation(s)
- Andrés M Durantini
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nac. 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Lloyd Lapoot
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Johirul Bipu
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Serah Essang
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Britney C Singh
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Jabeen S, Ghosh G, Lapoot L, Durantini AM, Greer A. Sensitized Photooxidation of Ortho-prenyl Phenol: Biomimetic Dihydrobenzofuran Synthesis and Total 1 O 2 Quenching. Photochem Photobiol 2022; 99:637-641. [PMID: 35977738 DOI: 10.1111/php.13689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The sensitized photooxidation of ortho-prenyl phenol is described with evidence that solvent aproticity favors the formation of a dihydrobenzofuran [2-(prop-1-en-2-yl)-2,3-dihydrobenzofuran], a moiety commonly found in natural products. Benzene solvent increased the total quenching rate constant (kT ) of singlet oxygen with prenyl phenol by ~10-fold compared to methanol. A mechanism is proposed with preferential addition of singlet oxygen addition to prenyl site due to hydrogen bonding with phenol OH group, which causes a divergence away from the singlet oxygen 'ene' reaction toward the dihydrobenzofuran as the major product. The reaction is a mixed photooxidized system since an epoxide arises by a type I sensitized photooxidation.
Collapse
Affiliation(s)
- Shakeela Jabeen
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Lloyd Lapoot
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Andrés M Durantini
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.,IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nac. 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
5
|
Malek B, Lu W, Mohapatra PP, Walalawela N, Jabeen S, Liu J, Greer A. Probing the Transition State-to-Intermediate Continuum: Mechanistic Distinction between a Dry versus Wet Perepoxide in the Singlet Oxygen "Ene" Reaction at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6036-6048. [PMID: 35506607 DOI: 10.1021/acs.langmuir.2c00279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A mechanistic study is reported for the reactions of singlet oxygen (1O2) with alkene surfactants of tunable properties. Singlet oxygen was generated either top-down (photochemically) by delivery as a gas to an air-water interface or bottom-up (chemically) by transport to the air-water interface as a solvated species. In both cases, reactions were carried out in the presence of 7-carbon (7C), 9-carbon (9C), or 11-carbon (11C) prenylsurfactants [(CH3)2C═CH(CH2)nSO3- Na+ (n = 4, 6, 8)]. Higher "ene" hydroperoxide regioselectivities (secondary ROOH 2 to tertiary ROOH 3) were reached in delivering 1O2 top-down through air as compared to bottom-up via aqueous solution. In the photochemical reaction, ratios of 2:3 increased from 2.5:1 for 7C, to 2.8:1 for 9C, and to 3.2:1 for 11C. In contrast, in the bubbling system that generated 1O2 chemically, the selectivity was all but lost, ranging only from 1.3:1 to 1:1. The phase-dependent regioselectivities appear to be correlated with the "ene" reaction with photochemically generated, drier 1O2 at the air-water interface vs those with wetter 1O2 from the bubbling reactor. Density functional theory-calculated reaction potential energy surfaces (PESs) were used to help rationalize the reaction phase dependence. The reactions in the gas phase are mediated by perepoxide transition states with 32-41 kJ/mol binding energy for C═C(π)···1O2. The perepoxide species, however, evolve to well-defined stationary structures in the aqueous phase, with covalent C-O bonds and 85-88 kJ/mol binding energy. The combined experimental and computational evidence points to a unique mechanism for 1O2 "ene" tunability in a perepoxide continuum from a transition state to an intermediate.
Collapse
Affiliation(s)
- Belaid Malek
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
| | - Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Prabhu Prasad Mohapatra
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Niluksha Walalawela
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|