1
|
Nanto F, Ciato D, Stivanello M, Canu P. Impact of Reactant Dissolution in the Kinetics of a Catalytic Hydrogenation for the Production of Argatroban. Org Process Res Dev 2025; 29:735-747. [PMID: 40144862 PMCID: PMC11934128 DOI: 10.1021/acs.oprd.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
An experimental study was performed for a fed-batch catalytic hydrogenation for the production of Argatroban. The penultimate expensive and scarcely available intermediate is characterized by a slow dissolution rate that evolves in parallel with the reaction process. The study investigated the coupling between the reaction and dissolution kinetics. In these circumstances, the standard Area Percentage method in HPLC was found to be misleading, requiring calibration and then absolute peak area measurements to correctly identify the dissolution rate and thus the actual chemical kinetics. Experiments quantified the role of the temperature, stirring rate, and catalyst loading. Shifting from 40 to 80 °C reduced the batch time by 58%, although higher temperatures promoted the formation of undesired impurities. Stirring rate controlled the initial reaction phases when reagent dissolution is critical. Catalyst loading is key in reducing batch time. The increase in catalyst loading was proved to affect the reagent dissolution rate, by increasing the collision frequency between reagent and catalyst particles. A refined first-principles model, incorporating the effect of the catalyst amount on the dissolution mass transfer coefficient, significantly improved the accuracy of dissolution predictions and enabled better identification of the intrinsic reaction kinetics. The addition of a microkinetic description further improved the predictions of intermediates and products.
Collapse
Affiliation(s)
- Filippo Nanto
- Industrial
Engineering Department, University of Padova, Via Marzolo 9, Padova 35131, Italy
| | - Dario Ciato
- Lundbeck
Pharmaceuticals Italy, Quarta Strada 2, Padova 35129, Italy
| | | | - Paolo Canu
- Industrial
Engineering Department, University of Padova, Via Marzolo 9, Padova 35131, Italy
| |
Collapse
|
2
|
Alimuddin M, Bernier L, Braganza JF, Collins MR, Ornelas M, Richardson PF, Sach N, Shariff D, Wang W, Yanovsky A. A Tool for Reaction Monitoring in Real Time, the Development of a "Walk-Up Automated Reaction Profiling" System. J Org Chem 2024; 89:17374-17381. [PMID: 39576125 DOI: 10.1021/acs.joc.4c02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Optimization of chemical reactions requires a thorough analysis of reaction products and intermediates over a given time course. Chemical reactions are often analyzed by liquid chromatography-mass spectrometry (LC-MS), but generating LC-MS samples and data analysis is time-consuming and produces a significant amount of waste. We sought to remove the sample preparation and data analysis steps by implementing an iChemExplorer/Agilent LC-MS instrument as our reactor and analysis tool, coupled with an automated report generator of reaction progress over time. Herein, we show that our easy-to-use walk-up automated reaction profiling (WARP) system can sample chemical reactions multiple times to produce a data-rich report of reaction progress over time.
Collapse
Affiliation(s)
- Muhammad Alimuddin
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Louise Bernier
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - John F Braganza
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michael R Collins
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Martha Ornelas
- Department of Process Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Paul F Richardson
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Neal Sach
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Deszra Shariff
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Wei Wang
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Alex Yanovsky
- Department of Medicinal Chemistry, Pfizer Global Research and Development, La Jolla Laboratories, 10770 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
3
|
Christensen M, Xu Y, Kwan EE, Di Maso MJ, Ji Y, Reibarkh M, Sun AC, Liaw A, Fier PS, Grosser S, Hein JE. Dynamic sampling in autonomous process optimization. Chem Sci 2024; 15:7160-7169. [PMID: 38756794 PMCID: PMC11095507 DOI: 10.1039/d3sc06884f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Autonomous process optimization (APO) is a technology that has recently found utility in a multitude of process optimization challenges. In contrast to most APO examples in microflow reactor systems, we recently presented a system capable of optimization in high-throughput batch reactor systems. The drawback of APO in a high-throughput batch reactor system is the reliance on reaction sampling at a predetermined static timepoint rather than a dynamic endpoint. Static timepoint sampling can lead to the inconsistent capture of the process performance under each process parameter permutation. This is important because critical process behaviors such as rate acceleration accompanied by decomposition could be missed entirely. To address this drawback, we implemented a dynamic reaction endpoint determination strategy to capture the product purity once the process stream stabilized. We accomplished this through the incorporation of a real-time plateau detection algorithm into the APO workflow to measure and report the product purity at the dynamically determined reaction endpoint. We then applied this strategy to the autonomous optimization of a photobromination reaction towards the synthesis of a pharmaceutically relevant intermediate. In doing so, we not only uncovered process conditions to access the desired monohalogenation product in 85 UPLC area % purity with minimal decomposition risk, but also measured the effect of each parameter on the process performance. Our results highlight the advantage of incorporating dynamic sampling in APO workflows to drive optimization toward a stable and high-performing process.
Collapse
Affiliation(s)
- Melodie Christensen
- Department of Chemistry, University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Yuting Xu
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Eugene E Kwan
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Michael J Di Maso
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Yining Ji
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Mikhail Reibarkh
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Alexandra C Sun
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Andy Liaw
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Patrick S Fier
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Shane Grosser
- Department of Process Research and Development, Merck & Co., Inc Rahway NJ 07065 USA
| | - Jason E Hein
- Department of Chemistry, University of British Columbia Vancouver British Columbia V6T 1Z1 Canada
- Acceleration Consortium, University of Toronto Toronto ON Canada
- Department of Chemistry, University of Bergen Bergen Norway
| |
Collapse
|
4
|
McInturff EL, France SP, Leverett CA, Flick AC, Lindsey EA, Berritt S, Carney DW, DeForest JC, Ding HX, Fink SJ, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, McAlpine IJ, Watson RB, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2021. J Med Chem 2023; 66:10150-10201. [PMID: 37528515 DOI: 10.1021/acs.jmedchem.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.
Collapse
Affiliation(s)
- Emma L McInturff
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scott P France
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Carolyn A Leverett
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Simon Berritt
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co. Ltd., Beijing, 100085, China
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Kaitlyn Gray
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M Johnson
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yiyang Liu
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Subham Mahapatra
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Indrawan J McAlpine
- Genesis Therapeutics, 11568 Sorrento Valley Road, Suite 8, San Diego, California 92121, United States
| | - Rebecca B Watson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J O'Donnell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
5
|
Capaldo L, Wen Z, Noël T. A field guide to flow chemistry for synthetic organic chemists. Chem Sci 2023; 14:4230-4247. [PMID: 37123197 PMCID: PMC10132167 DOI: 10.1039/d3sc00992k] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
6
|
Deem MC, Cai I, Derasp JS, Prieto PL, Sato Y, Liu J, Kukor AJ, Hein JE. Best Practices for the Collection of Robust Time Course Reaction Profiles for Kinetic Studies. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Madeleine C. Deem
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Isabelle Cai
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Joshua S. Derasp
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Paloma L. Prieto
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yusuke Sato
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Junliang Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Andrew J. Kukor
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jason E. Hein
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
7
|
Ruck RT, Strotman NA, Krska SW. The Catalysis Laboratory at Merck: 20 Years of Catalyzing Innovation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rebecca T. Ruck
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Neil A. Strotman
- Department of Pharmaceutical Sciences & Clinical Supplies, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Shane W. Krska
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| |
Collapse
|
8
|
Park I, Park G, Choi Y, Jo SW, Kwon HC, Park JS, Cha JW. Facile Detection of Light-Controlled Radical Scavengers from Natural Products Using In Situ UV-LED NMR Spectroscopy. Antioxidants (Basel) 2022; 11:2206. [PMID: 36358578 PMCID: PMC9687055 DOI: 10.3390/antiox11112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/08/2024] Open
Abstract
With the recent development of chemical analysis technology, attention has been placed on natural light-sensitive compounds that exhibit photoreactivity to expand the structural diversity of natural product chemistry. Photochemical reactions that proceed via a free radical mechanism could be used to modulate the radical-scavenging ability of natural products as well as involve structural change. As the health benefits of radicals are also presented, there is a need for a controllable radical scavenging method for topical and selective application. In this study, we developed a novel acquisition and processing method to identify light-controlled radical scavengers in plant extracts and evaluate their antioxidant activity under light irradiation based on in situ UV-LED NMR spectroscopy. Using the developed method, licochalcones A and B, in which the trans and cis isomers undergo reversible photoisomerization, were selectively identified from licorice root extract, and their light-induced free radical scavenging activity was confirmed.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Jin Wook Cha
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea
| |
Collapse
|
9
|
Swords WB, Chapman SJ, Hofstetter H, Dunn AL, Yoon TP. Variable Temperature LED-NMR: Rapid Insights into a Photocatalytic Mechanism from Reaction Progress Kinetic Analysis. J Org Chem 2022; 87:11776-11782. [PMID: 35969669 DOI: 10.1021/acs.joc.2c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multitude of techniques are available to obtain a useful understanding of photocatalytic mechanisms. The combination of LED illumination with nuclear magnetic resonance spectroscopy (LED-NMR) provides a rapid, convenient means to directly monitor a photocatalytic reaction in situ. Herein, we describe a study of the mechanism of an enantioselective intermolecular [2 + 2] photocycloaddition catalyzed by a chiral Ir photocatalyst using LED-NMR. The data-rich output of this experiment is suitable for same-excess and variable time normalization analyses (VTNA). Together, these identified an unexpected change in mechanism between reactions conducted at ambient and cryogenic temperatures. At -78 °C, the kinetic data are consistent with the triplet rebound mechanism we previously proposed for this reaction, involving sensitization of maleimide and rapid reaction with a hydrogen-bound quinoline within the solvent cage. At room temperature, the cycloaddition instead proceeds through intracomplex energy transfer to the hydrogen-bound quinolone. These results highlight the potential sensitivity of photocatalytic reaction mechanisms to the precise reaction conditions and the further utility of LED-NMR as a fast, data-rich tool for their interrogation that compares favorably to conventional ex situ kinetic analyses.
Collapse
Affiliation(s)
- Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53703, United States
| | - Steven J Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53703, United States
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53703, United States
| | - Anna L Dunn
- Drug Product Development, GlaxoSmithKline, Upper Providence, Pennsylvania19426, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53703, United States
| |
Collapse
|
10
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Comparative Evaluation of Light-Driven Catalysis: A Framework for Standardized Reporting of Data. Angew Chem Int Ed Engl 2022; 61:e202114106. [PMID: 35698245 PMCID: PMC9401044 DOI: 10.1002/anie.202114106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Light-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment. This Scientific Perspective highlights the importance of collecting and reporting experimental data in homogeneous and heterogeneous light-driven catalysis. A critical analysis of the benefits and limitations of the commonly used experimental indicators is provided. Data collection and reporting according to FAIR principles is discussed in the context of future automated data analysis. The authors propose a minimum dataset as a basis for unified collecting and reporting of experimental data in homogeneous and heterogeneous light-driven catalysis. The community is encouraged to support the future development of this parameter list through an open online repository.
Collapse
Affiliation(s)
- Dirk Ziegenbalg
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical Chemistry and Center of Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
11
|
Bottecchia C, Lehnherr D, Lévesque F, Reibarkh M, Ji Y, Rodrigues VL, Wang H, Lam YH, Vickery TP, Armstrong BM, Mattern KA, Stone K, Wismer MK, Singh AN, Regalado EL, Maloney KM, Strotman NA. Kilo-Scale Electrochemical Oxidation of a Thioether to a Sulfone: A Workflow for Scaling up Electrosynthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cecilia Bottecchia
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dan Lehnherr
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - François Lévesque
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yining Ji
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Heather Wang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yu-hong Lam
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Thomas P. Vickery
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Brittany M. Armstrong
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Keith A. Mattern
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin Stone
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael K. Wismer
- Scientific Engineering and Design, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Andrew N. Singh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erik L. Regalado
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
12
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Vergleichende Evaluierung lichtgetriebener Katalyse: Ein Rahmenkonzept für das standardisierte Berichten von Daten**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dirk Ziegenbalg
- Institut für Chemieingenieurwesen Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Andrea Pannwitz
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Sven Rau
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Benjamin Dietzek‐Ivanšić
- Institut für Physikalische Chemie und Center of Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
- Department Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Carsten Streb
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
13
|
McCabe EM, Lee S, Rasmussen TP. Belzutifan (Welireg™) for von Hippel Lindau disease. Trends Pharmacol Sci 2022; 43:882-883. [PMID: 35691787 DOI: 10.1016/j.tips.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - SooWan Lee
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Theodore P Rasmussen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
14
|
Radjagobalou R, Imbratta M, Bergraser J, Gaudeau M, Lyvinec G, Delbrayelle D, Jentzer O, Roudin J, Laroche B, Ognier S, Tatoulian M, Cossy J, Echeverria PG. Selective Photochemical Continuous Flow Benzylic Monochlorination. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robbie Radjagobalou
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Miguel Imbratta
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Julie Bergraser
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Marion Gaudeau
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Gildas Lyvinec
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | | | - Olivier Jentzer
- Minakem Recherche, 145 Chemin des Lilas, Beuvry-La-Forêt 59310, France
| | - Jérémy Roudin
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Benjamin Laroche
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Stéphanie Ognier
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Michael Tatoulian
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | - Janine Cossy
- Paris FLOW Tech − PSL, ENSCP, 11 rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|
15
|
Quasdorf K, Murray JI, Nguyen H, Silva Elipe MV, Ericson A, Kircher E, Guan L, Caille S. Development of a Continuous Photochemical Bromination/Alkylation Sequence En Route to AMG 423. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyle Quasdorf
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - James I. Murray
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hanh Nguyen
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Maria V. Silva Elipe
- Attribute Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ari Ericson
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Eric Kircher
- Attribute Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Lianxiu Guan
- Attribute Sciences Department, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Seb Caille
- Pivotal and Commercial Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
16
|
Bottecchia C, Lévesque F, McMullen JP, Ji Y, Reibarkh M, Peng F, Tan L, Spencer G, Nappi J, Lehnherr D, Narsimhan K, Wismer MK, Chen L, Lin Y, Dalby SM. Manufacturing Process Development for Belzutifan, Part 2: A Continuous Flow Visible-Light-Induced Benzylic Bromination. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cecilia Bottecchia
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - François Lévesque
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jonathan P. McMullen
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yining Ji
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feng Peng
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Glenn Spencer
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jarod Nappi
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dan Lehnherr
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Karthik Narsimhan
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael K. Wismer
- Scientific Engineering & Design, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Like Chen
- Shanghai SynTheAll Pharmaceutical Co. Ltd., 9 Yuegong Road, Jinshan District, Shanghai 201507, China
| | - Yipeng Lin
- Shanghai SynTheAll Pharmaceutical Co. Ltd., 9 Yuegong Road, Jinshan District, Shanghai 201507, China
| | - Stephen M. Dalby
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
17
|
Chen Z, Salehi Marzijarani N, Quirie S, Pirrone GF, Dalby SM, Wang T, Kim J, Peng F, Fine AJ. Manufacturing Process Development for Belzutifan, Part 3: Completing a Streamlined Through-Process with a Safe and Scalable Oxidation. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhiwei Chen
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Scott Quirie
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Gregory F. Pirrone
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen M. Dalby
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tao Wang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jungchul Kim
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feng Peng
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Adam J. Fine
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|