1
|
Tsurusaki A, Kishimoto M, Komura A, Ura R, Kamikawa K. Benzo-Fused Phosphepines: Synthesis by Gold(I)-Catalyzed Intramolecular Hydroarylation and Ring Inversion. Chemistry 2025; 31:e202404731. [PMID: 39854116 DOI: 10.1002/chem.202404731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Gold(I)-catalyzed intramolecular hydroarylation of dialkynyl(biaryl)phosphine oxides provided versatile benzo-fused phosphepine oxides. O-exo adducts were obtained as the major product, and O-endo adducts were the minor product. O-exo and O-endo indicate the position of an oxygen atom with respect to the central phosphepine framework. The isomers of dibenzo[b,d]phosphepine oxides with methyl and phenyl groups in an adjacent position (shown as 2 a and 3 a in the main text) were determined by X-ray crystallographic analysis. O-exo and O-endo adducts are diastereomers owing to the central chirality of the phosphorus atom and the planar chirality of phosphepine, and they are interconverted through a ring inversion of phosphepine via a transition state with a planar structure. The inversion barrier, fully estimated through theoretical calculations, drastically varied depending on the substituents in the phosphepine framework and/or the fusion of benzene and thiophene rings. Furthermore, the kinetics of the thermal isomerization of less stable O-endo product 3 a into O-exo product 2 a was examined.
Collapse
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Marii Kishimoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Akihiro Komura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Rikako Ura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
2
|
Sumida A, Imoto H, Naka K. Synthetic Strategy for AB 2-Type Arsines via Bidentate Dithiolate Leaving Groups. Inorg Chem 2022; 61:17419-17426. [PMID: 36206531 DOI: 10.1021/acs.inorgchem.2c01974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite their potential for several transition-metal-catalyzed reactions, arsenic ligands are poorly diversified. In this work, we developed an efficient synthetic methodology for AB2-type ligands, which is a typical motif in phosphorus systems, for example, in Buchwald ligands. The introduction of 1,2-benzenedithiol to tribromoarsine reduces the reactivity of two of the three reaction sites. After the substitution reaction with the first nucleophile involving the elimination of bromide, the substitution reaction with the second nucleophile produced AB2-type arsines through the elimination of the dithiolate anion. Among the various types of obtained AB2-type arsines, the arsa-Buchwald ligands, which are arsenic analogues of Buchwald ligands, were applied to the Suzuki-Miyaura cross-coupling reaction. Some of the arsa-Buchwald ligands showed activity comparable to that of the well-known Buchwald ligand, SPhos. Furthermore, the arsenic analogue of SPhos showed higher activity and stability than SPhos under open-air conditions.
Collapse
Affiliation(s)
- Akifumi Sumida
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
3
|
Koprowski M, Owsianik K, Knopik Ł, Vivek V, Romaniuk A, Różycka-Sokołowska E, Bałczewski P. Comprehensive Review on Synthesis, Properties, and Applications of Phosphorus (P III, P IV, P V) Substituted Acenes with More Than Two Fused Benzene Rings. Molecules 2022; 27:molecules27196611. [PMID: 36235148 PMCID: PMC9570788 DOI: 10.3390/molecules27196611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
This comprehensive review, covering the years 1968-2022, is not only a retrospective investigation of a certain group of linearly fused aromatics, called acenes, but also a presentation of the current state of the knowledge on the synthesis, reactions, and applications of these compounds. Their characteristic feature is substitution of the aromatic system by one, two, or three organophosphorus groups, which determine their properties and applications. The (PIII, PIV, PV) phosphorus atom in organophosphorus groups is linked to the acene directly by a P-Csp2 bond or indirectly through an oxygen atom by a P-O-Csp2 bond.
Collapse
Affiliation(s)
- Marek Koprowski
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Correspondence: (M.K.); (P.B.)
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Łucja Knopik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Vivek Vivek
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Adrian Romaniuk
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Piotr Bałczewski
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
- Correspondence: (M.K.); (P.B.)
| |
Collapse
|