1
|
Singh RP, Mankad NP. Molecular Design of Al(II) Intermediates for Small Molecule Activation. JACS AU 2025; 5:2076-2088. [PMID: 40443891 PMCID: PMC12117437 DOI: 10.1021/jacsau.5c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Promoting societally important small molecule activation processes with earth-abundant metals is foundational for a sustainable chemistry future. In this context, mapping new reaction pathways that would enable abundant main-group elements to mimic the behaviors of d- and f-block elements is facilitated by exploring unusual oxidation states. The most abundant metal on earth, aluminum, has been well studied in the Lewis acidic +III and Lewis basic +I oxidation states but rarely in the potentially biphilic +II oxidation state until recently, when a renaissance of Al-(II) chemistry emerged from a range of research groups. In this Perspective, we review the chemistry of mononuclear Al radicals, including both Al-centered radicals (i.e., Al-(II) compounds) and redox non-innocent systems (i.e., formally Al-(II) species that are physically Al-(III) with ligand-centered radicals), with an emphasis on small molecule reactivity. We also provide a meta-analysis of the Al-(II) literature to summarize how different design strategies (e.g., redox non-innocence, strained coordination geometries) have been shown to impart biphilic character to Al radicals and tune their behavior, thus allowing Al radicals to mimic the chemistry of certain d- and f-block metal ions such as Ti-(III) and Sm-(II). We expect these molecular design concepts to inform future Al-(II) studies as the chemistry of this unusual oxidation state of Al continues to grow.
Collapse
Affiliation(s)
- Roushan Prakash Singh
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois60607, United States
| |
Collapse
|
2
|
Pavlidis S, Alasadi J, Opis-Basilio A, Abbenseth J. Two-fold proton coupled electron transfer of a Ta(V) aniline complex mediated by a redox active NNN pincer ligand. Dalton Trans 2025; 54:2421-2429. [PMID: 39717910 DOI: 10.1039/d4dt03281k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We report the proton-coupled electron transfer (PCET) reactivity of an octahedral Ta(V) aniline complex supported by an acridane-derived redox active NNN pincer ligand. The reversible binding of aniline to a Ta(V) dichloride induces significant coordination-induced bond weakening (CIBW) of the aniline N-H bonds. This enables a rare two-fold hydrogen atom abstraction, resulting in a terminal imido complex and a two-electron oxidation of the NNN pincer ligand, all while maintaining the metal's oxidation state. The bond dissociation free energies (BDFEs) of the aniline and a transient radical amido complex are estimated through stoichiometric reactions with different hydrogen atom abstractors and donors, further supported by density functional theory calculations.
Collapse
Affiliation(s)
- Sotirios Pavlidis
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Jasmin Alasadi
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Amanda Opis-Basilio
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Josh Abbenseth
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
3
|
Alanís-Manzano EI, León-Pimentel CI, Maron L, Ramírez-Solís A, Saint-Martin H. Exploring the Dynamic Coordination Sphere of Lanthanide Aqua Ions: Insights from r 2SCAN-3c Composite-DFT Born-Oppenheimer Molecular Dynamics Studies. ACS OMEGA 2024; 9:50978-50991. [PMID: 39758678 PMCID: PMC11696431 DOI: 10.1021/acsomega.4c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Born-Oppenheimer molecular dynamics (BOMD) simulations were performed to investigate the structure and dynamics of the first hydration shells of five trivalent lanthanide ions (Ln3+) at room temperature. These ions are relevant in various environments, including the bulk aqueous solution. Despite numerous studies, accurately classifying the molecular geometry of the first hydration sphere remains a challenge. To addres this, a cluster microsolvation approach was employed to study the interaction of Ln3+ ions (La, Nd, Gd, Er, and Lu) with up to 27 explicit water molecules. Electronic structure calculations were performed with the composite r2SCAN-3c method. The results demonstrate that this method offers an optimal balance between precision and computational efficiency. Specifically, it accurately predicts average Ln-O distances (MAE = 0.02 Å) of the first hydration sphere and preferred coordination numbers (CN) for the different lanthanide cations as compared to reported data in bulk. Highly dynamic first hydration shells for the examined Ln3+ ions were found, with noticeable and rapid rearrangements in their coordination geometries, some of which can be recognized as the tricapped trigonal prism (TTP) and the capped square antiprism (CSAP) for CN = 9, and as the square antiprism (SAP), the bicapped trigonal prism (BTP), and the trigonal dodecahedron (DDH) for CN = 8. However, ca. 70% of the nonacoordinated configurations did not meet the criteria of TTP or CSAP structures. For CN = 8, the percentage of configurations that could not be assigned to SAP, BTP, or DDH was lower, around 30%. The theoretical EXAFS spectra obtained from the BOMD simulations are in good agreement with the experimental data and confirm that model microsolvated environments accurately represent the near-solvation structure of these trivalent rare-earth ions. Moreover, this demonstrates that the faster dynamics of the first hydration shell can be studied separately from the dynamics of water exchange in the bulk aqueous solution.
Collapse
Affiliation(s)
| | - C. I. León-Pimentel
- Departamento
de Matemáticas/Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, México
| | - Laurent Maron
- INSA
Laboratoire de Physicochimie de Nano-Objets, Université de Toulouse, 135 Avenue de Rangueil, F31077 Toulouse, France
| | - Alejandro Ramírez-Solís
- Depto.
de Física, Centro de Investigación
en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| | - Humberto Saint-Martin
- Instituto
de Ciencias Físicas, Universidad
Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
4
|
Steiner L, Achazi AJ, Kelterer AM, Paulus B, Reissig HU. Diastereoselective Dearomatizing Cyclizations of 5-Arylpentan-2-ones by Samarium Diiodide - A Computational Analysis. Chemistry 2024; 30:e202401120. [PMID: 38512639 DOI: 10.1002/chem.202401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
This study analyzes the samarium diiodide-promoted cyclizations of 5-arylpentan-2-ones to dearomatized bicyclic products utilizing density functional theory. The reaction involves a single electron transfer to the carbonyl group, which occurs synchronously with the rate determining cyclization event, and a second subsequent proton-coupled electron transfer. These redox reactions are accurately computed employing small core pseudo potentials explicitly involving all f-electrons of samarium. Comparison of the energies of the possible final products rules out thermodynamic control of the observed regio- and diastereoselectivities. Kinetic control via appropriate transition states is correctly predicted, but to obtain reasonable energy levels the influence of the co-solvent hexamethylphosphortriamide has to be estimated by using a correction term. The steric effect of the bulky samarium ligands is decisive for the observed stereoselectivity. Carbonyl groups in para-position of the aryl group change the regioselectivity of the cyclization and lead to spiro compounds. The computations suggest again kinetic control of this deviating outcome. However, the standard mechanism has to be modified and the involvement of a complex activated by two SmI2 moieties is proposed in which two electrons are transferred simultaneously to form the new C-C bond. Computation of model intermediates show the feasibility of this alternative+ mechanism.
Collapse
Affiliation(s)
- Luca Steiner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- Institut für Physikalische und Theoretischen Chemie, Technische Universität Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Andreas J Achazi
- Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Zentrum für Materialforschung, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392, Gießen, Germany
| | - Anne-Marie Kelterer
- Institut für Physikalische und Theoretischen Chemie, Technische Universität Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
5
|
Sinhababu S, Singh RP, Radzhabov MR, Kumawat J, Ess DH, Mankad NP. Coordination-induced O-H/N-H bond weakening by a redox non-innocent, aluminum-containing radical. Nat Commun 2024; 15:1315. [PMID: 38351122 PMCID: PMC10864259 DOI: 10.1038/s41467-024-45721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Several renewable energy schemes aim to use the chemical bonds in abundant molecules like water and ammonia as energy reservoirs. Because the O-H and N-H bonds are quite strong (>100 kcal/mol), it is necessary to identify substances that dramatically weaken these bonds to facilitate proton-coupled electron transfer processes required for energy conversion. Usually this is accomplished through coordination-induced bond weakening by redox-active metals. However, coordination-induced bond weakening is difficult with earth's most abundant metal, aluminum, because of its redox inertness under mild conditions. Here, we report a system that uses aluminum with a redox non-innocent ligand to achieve significant levels of coordination-induced bond weakening of O-H and N-H bonds. The multisite proton-coupled electron transfer manifold described here points to redox non-innocent ligands as a design element to open coordination-induced bond weakening chemistry to more elements in the periodic table.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | | | - Maxim R Radzhabov
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jugal Kumawat
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, 84604, UT, USA
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, 84604, UT, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
6
|
Romero-Ramírez IE, Ramírez-Solís A, Saint-Martin Posada H. Entropic Effects on the Aqueous Microsolvation of Protonated Glycine and Protonated β-Alanine. Hybrid Density Functional Theory Born-Oppenheimer Molecular Dynamics Studies. J Phys Chem A 2023; 127:1803-1817. [PMID: 36790739 DOI: 10.1021/acs.jpca.2c07476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recent low-temperature infrared-based experimental studies provided information about the effects of aqueous microsolvation on the intramolecular hydrogen bond of protonated glycine and β-alanine [J. Phys. Chem. A 2019, 123, 3355]. Here we address the temperature-dependent entropic effects on the aqueous microsolvation patterns of these protonated amino acids using the AAH+(H2O)n (n = 1-8) cluster model at 50 K and room temperature with Born-Oppenheimer molecular dynamics using a calibrated hybrid density functional. The CCOOH-Ow, N-Ow, and center-of-mass-Ow radial distribution functions provide accurate structural data and temperature-dependent water coordination numbers vs. solvation degree. The solvation patterns for protonated glycine at 50 K show structural features in agreement with previous static optimizations. However, entropic effects at room temperature play a crucial role in the evolution of the intramolecular HB strength vs. solvation degree for both protonated amino acids. With increasing hydration entropic effects favor the making of solvent hydrogen bond networks over full solvation of protonated glycine. At room temperature four water molecules are needed to build the first solvation shell for protonated glycine while five are required for protonated β-alanine. A new statistical Cumulative Percentage of Structures (CPS) scheme is proposed; when the CPS data are analyzed in light of the empirical formula of Rozenberg et al. [Phys. Chem. Chem. Phys. 2000, 2, 2699] and the hydrogen bond relative strength (HBRS) criteria of Jeffrey [An Introduction to Hydrogen Bonding; Oxford University: 1997] we can provide a detailed molecular mechanism for the weakening of the intramolecular hydrogen bond based on the average dynamical structures, which clearly reveals the temperature dependence of this process. The new CPS-HBRS scheme proposed here can be utilized using any type of molecular dynamics trajectory (classical, BOMD, CPMD, etc.).
Collapse
Affiliation(s)
- Iván Eliezer Romero-Ramírez
- Departamento de Física, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos, México
| | - Alejandro Ramírez-Solís
- Departamento de Física, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos, México
| | | |
Collapse
|
7
|
Yamamoto A, Liu X, Arashiba K, Konomi A, Tanaka H, Yoshizawa K, Nishibayashi Y, Yoshida H. Coordination Structure of Samarium Diiodide in a Tetrahydrofuran-Water Mixture. Inorg Chem 2023; 62:5348-5356. [PMID: 36728764 DOI: 10.1021/acs.inorgchem.2c03752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemoselective reductive conversion of organic and inorganic compounds has been developed by the combination of samarium(II) diiodide (SmI2) and water. Despite the extensive previous studies to elucidate the role of water in the reactivity of SmI2, the direct structural data of the reactive Sm2+-water complexes, SmI2(H2O)n, in an organic solvent-water mixture have not been reported experimentally so far. Herein, we performed the structure analysis of the Sm2+-water complex in tetrahydrofuran (THF) in the presence of water by in situ X-ray absorption spectroscopy using high-energy X-rays (Sm K-edge, 46.8 keV). The analysis revealed the dissociation of the Sm2+-I bonds in the presence of ≥ eight equivalents of water in the THF-water mixture. The origin of the peak shift in the UV/visible absorption spectra after the addition of water into SmI2/THF solution was proposed based on electron transitions simulated with time-dependent density-functional-theory calculations using optimized structures in THF or water. The obtained structural information provides the fundamental insights for elucidating the reactivity and chemoselectivity in the Sm2+-water complex system.
Collapse
Affiliation(s)
- Akira Yamamoto
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| | - Xueshi Liu
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya457-8530, Japan
| | - Kazunari Yoshizawa
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka819-0395, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Hisao Yoshida
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto606-8501, Japan.,Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8520, Japan
| |
Collapse
|
8
|
Boyd EA, Peters JC. Sm(II)-Mediated Proton-Coupled Electron Transfer: Quantifying Very Weak N-H and O-H Homolytic Bond Strengths and Factors Controlling Them. J Am Chem Soc 2022; 144:21337-21346. [PMID: 36346706 PMCID: PMC10281198 DOI: 10.1021/jacs.2c09580] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coordination of alcohols to the single-electron reductant samarium diiodide (SmI2) results in substantial O-H bond weakening, affording potent proton-coupled electron transfer (PCET) reagents. However, poorly defined speciation of SmI2 in tetrahydrofuran (THF)/alcohol mixtures limits reliable thermodynamic analyses of such systems. Rigorous determination of bond dissociation free energy (BDFE) values in such Sm systems, important to evaluating their reactivity profiles, motivates studies of model Sm systems where contributing factors can be teased apart. Here, a bulky and strongly chelating macrocyclic ligand ((tBu2ArOH)2Me2cyclam) maintains solubility, eliminates dimerization pathways, and facilitates clean electrochemical behavior in a well-defined functional model for the PCET reactivity of SmII with coordinating proton sources. Direct measurement of thermodynamic parameters enables reliable experimental estimation of the BDFEs in 2-pyrrolidone and MeOH complexes of ((tBu2ArO)2Me2cyclam)SmII, thereby revealing exceptionally weak N-H and O-H BDFEs of 27.2 and <24.1 kcal mol-1, respectively. Expanded thermochemical cycles reveal that this bond weakening stems from the very strongly reducing SmII center and the formation of strong SmIII-alkoxide (and -pyrrolidonate) interactions in the PCET products. We provide a detailed analysis comparing these BDFE values with those that have been put forward for SmI2 in THF in the presence of related proton donors. We suggest that BDFE values for the latter systems may in fact be appreciably higher than the system described herein. Finally, protonation and electrochemical reduction steps necessary for the regeneration of the PCET donors from SmIII-alkoxides are demonstrated, pointing to future strategies aimed at achieving (electro)catalytic turnover using SmII-based PCET reagents.
Collapse
Affiliation(s)
- Emily A Boyd
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States
| |
Collapse
|
9
|
Kolin G, Schwartz R, Shuster D, Major DT, Hoz S. Cooperative Intrinsic Basicity and Hydrogen Bonding Render SmI 2 More Azaphilic than Oxophilic. ACS OMEGA 2022; 7:40021-40024. [PMID: 36385862 PMCID: PMC9647864 DOI: 10.1021/acsomega.2c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
It has been recently shown that SmI2 is more azaphilic than oxophilic. Density functional theory calculations reveal that coordination of 1-3 molecules of ethylenediamine is more exothermic by up to 10 kcal/mol than coordination of the corresponding number of ethylene glycol molecules. Taking into account also hydrogen bonds between ligands and tetrahydrofuran doubles this preference. The intrinsic affinity parallels the order of basicity. The cooperativity with the hydrogen bonding makes SmI2 more azaphilic than oxophilic.
Collapse
|
10
|
Abstract
Coordination-induced bond weakening is a phenomenon wherein ligand X-H bond homolysis occurs in concert with the energetically favorable oxidation of a coordinating metal complex. The coupling of these two processes enables thermodynamically favorable proton-coupled electron transfer reductions to form weak bonds upon formal hydrogen atom transfer to substrates. Moreover, systems utilizing coordination-induced bond weakening have been shown to facilitate the dehydrogenation of feedstock molecules including water, ammonia, and primary alcohols under mild conditions. The formation of exceptionally weak substrate X-H bonds via small molecule homolysis is a powerful strategy in synthesis and has been shown to enable nitrogen fixation under mild conditions. Coordination-induced bond weakening has also been identified as an integral process in biophotosynthesis and has promising applications in renewable chemical fuel storage systems. This review presents a discussion of the advances made in the study of coordination-induced bond weakening to date. Because of the broad range of metal and ligand species implicated in coordination-induced bond weakening, each literature report is discussed individually and ordered by the identity of the low-valent metal. We then offer mechanistic insights into the basis of coordination-induced bond weakening and conclude with a discussion of opportunities for further research into the development and applications of coordination-induced bond weakening systems.
Collapse
Affiliation(s)
- Nicholas G Boekell
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
11
|
Bokouende SS, Jenks TC, Ward CL, Allen MJ. Solid-state and solution-phase characterization of Sm II-aza[2.2.2]cryptate and its methylated analogue. Dalton Trans 2022; 51:10852-10855. [PMID: 35781473 PMCID: PMC9650674 DOI: 10.1039/d2dt01823c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new SmII-azacryptates are reported that differ in steric hindrance and Lewis basicity of donor atoms. The sterically hindered complex has a smaller coordination number and a more negative electrochemical potential than the complex with less steric hindrance.
Collapse
Affiliation(s)
| | - Tyler C Jenks
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA
| | - Matthew J Allen
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Rao CN, Reissig HU. Samarium(II)‐Promoted Cyclizations of Non‐activated Indolyl Sulfinyl Imines to Polycyclic Tertiary Carbinamines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chintada Nageswara Rao
- Freie Universität Berlin: Freie Universitat Berlin Institut für Chemie und Biochemie 14195 Berlin GERMANY
| | - Hans-Ulrich Reissig
- Freie Universität Berlin Institut für Chemie und Biochemie Takustr. 3 14195 Berlin GERMANY
| |
Collapse
|