1
|
Liu C, Qin X, Yuan W, Li H, Sun S, Li H, Xu T, Yin Z. Direct Photocatalytic Reductive Amidation of Nitroarenes: A Tandem Reduction-Decarboxylation Approach to Amide Bond Construction. Org Lett 2025. [PMID: 40372764 DOI: 10.1021/acs.orglett.5c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
We report a photocatalytic strategy for direct amide synthesis from readily available nitroarenes and benzoylformic acids using flavin as an efficient photocatalyst. This one-pot transformation proceeds through a tandem reduction-decarboxylation-amidation sequence under mild blue light irradiation. Preliminary mechanistic studies indicated that nitrosoarene and N-hydroxyamides could be the key intermediates. The method demonstrates a broad substrate scope, excellent functional group tolerance, and remarkable operational simplicity, as it can be conducted under an ambient atmosphere. Notably, this protocol represents a significant advancement in step economy by directly employing diverse nitroarenes as nitrogen sources, avoiding the need for pre-reduced amine intermediates.
Collapse
Affiliation(s)
- Chenwei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowen Qin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Weiheng Yuan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Heng Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Shuhui Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hongxia Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Tiefeng Xu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Maurya MR, Nandi M, Kumar S, Gupta P, Avecilla F. Symmetrical Bis-Hydrazone Ligand-Based Binuclear Oxido/Dioxido-Vanadium(IV/V) Complexes: Synthesis, Reactivity, and Catalytic Applications for the Synthesis of Biologically Potent 2-Phenylquinazolin-4-(3 H)-ones. Inorg Chem 2025; 64:1734-1751. [PMID: 39838882 DOI: 10.1021/acs.inorgchem.4c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Symmetrical bis(hydrazone)-based ligands, H4dar(bhz)2 (I), H4dar(fah)2 (II), H4dar(nah)2 (III), and H4dar(inh)2 (IV) obtained from 4,6-diacetylresorcinol (H2dar) and different hydrazides [benzoylhydrazide (Hbhz), isonicotinoylhydrazide (Hinh), nicotinoylhydrazide (Hnah), and 2-furoylhydrazide (Hfah)], were used to prepare potassium salts of binuclear cis-[VVO2]+ complexes, {K(H2O)2}2[(VVO2)2dar(bhz)2] (1), {K(H2O)2}2[(VVO2)2dar(fah)2] (2), {K(H2O)2}2[(VVO2)2dar(nah)2] (3), and {K(H2O)2}2[(VVO2)2dar(inh)2] (4), and binuclear [VIVO]2+ complexes, [{VIVO(MeOH)}2dar(bhz)2] (5), [{VIVO(MeOH)}2dar(fah)2] (6), [{VIVO(MeOH)}2dar(nah)2] (7), and [{VIVO(MeOH)}2dar(inh)2] (8). In the presence of warm MeOH/DMSO (4:1), 3 changed to {K(H2O)2}[(VVO2)2Hdar(nah)2]·DMSO (3a·DMSO). Single crystal XRD studies of 1 and 3a confirm a binuclear structure along with a distorted square pyramidal geometry of each vanadium center where bis{ONO(2-)} ligands coordinate through phenolate-O, azomethine-N, and enolate-O atoms of each unit. While growing crystals of 6 in EtOH, part of it oxidizes and gives [{VVO(OEt)}2dar(fah)2] (9) along with powdery 6. Complex 9 has a distorted octahedral structure. These complexes were used as catalysts for the synthesis of biologically important 2-phenylquinazolin-4-(3H)-ones having different aryl aldehydes, and they all show excellent catalytic performance (up to 97% yield) in less reaction time and low temperature, in the presence of 70% aqueous TBHP/30% aqueous H2O2 as a greener oxidant. Generally, these complexes perform better than their mononuclear analogues. Spectroscopy, DFT studies, and isolated intermediates have helped in proposing a suitable reaction mechanism for the catalytic reaction.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sonu Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruna 15071, Spain
| |
Collapse
|
3
|
Dasmahapatra U, Maiti B, Chanda K. A microwave assisted tandem synthesis of quinazolinones using ionic liquid supported copper(II) catalyst with mechanistic insights. Org Biomol Chem 2024; 22:8459-8471. [PMID: 39320933 DOI: 10.1039/d4ob01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Quinazolinone is a preferred structural motif with notable pharmacological activity that is present in a wide range of naturally occurring compounds. A microwave assisted tandem cyclooxidative method has been developed to afford quinazolinones via a recyclable ionic liquid supported copper catalyst. This sustainable method exhibits operational simplicity through a rapid, clean, and energy-efficient route and a variety of 2-substituted quinazolinones are obtained in excellent yields. In addition, this innovative approach enables us to develop a library of nitriles in an environment-friendly synthetic protocol. Moreover, the catalyst can be recycled and reused up to three consecutive cycles without any significant loss of catalytic activity. Further organic transformation of the synthesized quinazolinones was carried out to afford reported as well as novel bioactive heterocyclic compounds.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam-782435, India.
| |
Collapse
|
4
|
Dong CL, Liu HC, He YH, Guan Z. Photoinduced Redox Cascade Reaction of Isatins and Aliphatic Carboxylic Acids to Access 6-Hydroxyindoloquinazolinones. Chemistry 2024; 30:e202400655. [PMID: 38959118 DOI: 10.1002/chem.202400655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
A visible-light-induced cascade reaction is described for the one-pot synthesis of 6-hydroxyindoloquinazolinones using isatins (or isatins and isatoic anhydrides) and aliphatic carboxylic acids. The method provides 36 desired products in 33-96 % yield, exhibiting broad substrate scope and good functional group tolerance. This approach utilizes inexpensive and commercially available starting materials, enabling the direct construction of high-value complex structures under mild conditions without the need for photocatalyst, showcasing significant applicability and environmental friendliness.
Collapse
Affiliation(s)
- Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Han-Chi Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
5
|
Gola AK, Kumar N, Pandey SK. I 2-Promoted Chemoselective Annulative Coupling of 2-Aminobenzamides with Sulfoxonium Ylides: Easy Access to Quinazolinones. J Org Chem 2024; 89:12410-12420. [PMID: 39160687 DOI: 10.1021/acs.joc.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A flexible and metal-free synthetic approach for synthesizing 2-benzoyl quinazolinones and 2-aryl quinazolinones via molecular iodine-mediated annulative coupling of sulfoxonium ylides with 2-aminobenzamides has been disclosed. The method demonstrates remarkable chemoselectivity and efficiency, leading to high yields of 2-benzoyl quinazolinones and 2-aryl quinazolinones under optimized conditions. The broad substrate scope, scalability, and practical utility were highlighted through diverse applications, including gram-scale reactions and the synthesis of biologically significant compounds such as tryptanthrin and the chemo/biosensor derivative.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
6
|
Zhou X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Med Chem 2024; 15:1127-1147. [PMID: 38665827 PMCID: PMC11042161 DOI: 10.1039/d3md00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
Tryptanthrin is one of the well-known natural alkaloids with a broad spectrum of biological activities and can act as anti-inflammatory, anticancer, antibacterial, antifungal, antiviral, antitubercular, and other agents. Owing to its potent anticancer activity, tryptanthrin has been widely explored for the therapy of various cancers besides being effective against other diseases. Tryptanthrin with a pharmacological indoloquinazoline moiety can not only be modified by different functional groups to achieve various tryptanthrin derivatives, which may realize the improvement of anticancer activity, but also bind with different metal ions to obtain varied tryptanthrin metal complexes as potential anticancer agents, due to their higher anticancer activities in comparison with tryptanthrin (or its derivatives) and cisplatin. This review outlines the recent advances in the syntheses, structures, and anticancer activities of tryptanthrin derivatives and their metal complexes, trying to reveal their structure-activity relationships and to provide a helpful way for medicinal chemists in the development of new and effective tryptanthrin-based anticancer agents.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Second Clinical Medicine College of Lanzhou University Lanzhou China
| |
Collapse
|
7
|
Kumar S, Kumar M, Bhalla V. Cobalt-Centered Supramolecular Nanoensemble for Regulated Aerobic Oxidation of Alcohols and "One-Pot" Synthesis of Quinazolin-4(3 H)-ones. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49246-49258. [PMID: 37844300 DOI: 10.1021/acsami.3c11244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The supramolecular assemblies of the donor-acceptor (D-A) system Im-Tpy, having phenanthro[9,10-d]imidazole as the donor and terpyridyl group as the acceptor unit, have been developed, which serve as supramolecular host to stabilize Co(II) in its nanoform. The as-prepared supramolecular nanoensemble Im-Tpy@Co in DMSO:water (7:3) shows high thermal stability and photostability. Even in the case of solvent mismatch, i.e., on dilution with cosolvent THF/DMSO, insignificant changes were observed in the size/morphology of the nanoensemble. The as-prepared Im-Tpy@Co nanoensemble in low catalytic loading (0.1 mol % of Co) catalyzes the oxidation of a wide variety of alcohols to aromatic aldehydes/ketones using visible light radiations as the source of energy without the need of any additive at room temperature. In comparison to already reported systems, the Im-Tpy@Co nanoensemble exhibits high turnover numbers (TONs) and turnover frequencies (TOFs). The practical application of the catalytic system has also been demonstrated in the gram-scale synthesis of 4-chlorobenzaldehyde. The Im-Tpy@Co nanoensemble exhibits recyclability up to four catalytic cycles with insignificant leaching and morphological changes. The present study also demonstrates the catalytic activity of the Im-Tpy@Co nanoensemble in "one-pot" synthesis of quinazolin-4(3H)-ones from 2-aminobenzamide and primary alcohols with better efficiency in comparison to other transition-metal-based catalytic systems.
Collapse
Affiliation(s)
- Sourav Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
8
|
Sahoo S, Rao MA, Pal S. An Aldehyde-Driven, Fe(0)-Mediated, One-Pot Reductive Cyclization: Direct Access to 5,6-Dihydro-quinazolino[4,3- b]quinazolin-8-ones and Photophysical Study. J Org Chem 2023. [PMID: 37471271 DOI: 10.1021/acs.joc.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
A short, proficient, and regioselective synthesis of biheterocyclic 5,6-dihydro-quinazolino[4,3-b]quinazolin-8-ones has been revealed via an Fe(0)-powder-mediated, one-pot reductive cyclization protocol. Mechanistic investigation proved that water acts as a source of hydrogen for the reduction of the nitro group and the reaction rate was accelerated by an aldehyde. The designed transformation works under aerobic conditions, providing a series of bio-inspired molecular scaffolds. In addition, the photophysical study showed blue fluorescence emission with a good fluorescence quantum yield.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Manthri Atchuta Rao
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
9
|
Zhang W, Chen Z, Jiang YX, Liao LL, Wang W, Ye JH, Yu DG. Arylcarboxylation of unactivated alkenes with CO 2 via visible-light photoredox catalysis. Nat Commun 2023; 14:3529. [PMID: 37316537 DOI: 10.1038/s41467-023-39240-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Photocatalytic carboxylation of alkenes with CO2 is a promising and sustainable strategy to synthesize high value-added carboxylic acids. However, it is challenging and rarely investigated for unactivated alkenes due to their low reactivities. Herein, we report a visible-light photoredox-catalyzed arylcarboxylation of unactivated alkenes with CO2, delivering a variety of tetrahydronaphthalen-1-ylacetic acids, indan-1-ylacetic acids, indolin-3-ylacetic acids, chroman-4-ylacetic acids and thiochroman-4-ylacetic acids in moderate-to-good yields. This reaction features high chemo- and regio-selectivities, mild reaction conditions (1 atm, room temperature), broad substrate scope, good functional group compatibility, easy scalability and facile derivatization of products. Mechanistic studies indicate that in situ generation of carbon dioxide radical anion and following radical addition to unactivated alkenes might be involved in the process.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li-Li Liao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
10
|
Catalyst- and solvent-free coupling of 2-methyl quinazolinones and 3-(trifluoroacetyl)coumarins: An environmentally benign access of quinazolinone derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023. [DOI: 10.1016/j.jscs.2023.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Sahoo S, Pal S. Access to Dihydroquinazolinones, spiro‐Quinazolinones and their Bioactive Molecular Scaffolds by Exploring the Unique Reactivity of 2‐Nitrobenzonitrile towards Cu‐Hydrazine Hydrate. ChemistrySelect 2023. [DOI: 10.1002/slct.202300290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory School of Basic Sciences Indian Institute of Technology Bhubaneswar Arugul, Khordha Bhubaneswar, Odisha 752050 India
| | - Shantanu Pal
- Organic Chemistry Laboratory School of Basic Sciences Indian Institute of Technology Bhubaneswar Arugul, Khordha Bhubaneswar, Odisha 752050 India
| |
Collapse
|
12
|
Fast quinazolinone synthesis by combining enzymatic catalysis and photocatalysis. Photochem Photobiol Sci 2022; 22:525-534. [PMID: 36445645 DOI: 10.1007/s43630-022-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022]
Abstract
A fast and highly efficient method for the synthesis of functionalized quinazolinones by combining enzymatic catalysis and photocatalysis is reported. The α-Chymotrypsin catalyzed the cyclization of aldehyde and 2-aminobenzamide, which was subsequently followed by White LED-induced oxidation of 2-phenyl-2, 3-dihydroquinazolin-4(1H)-one to obtain quinazolinone. The reaction process was highly efficient with a reaction yield of 99% in just 2 h, and a wide range of quinazolinones could be synthesized. Furthermore, the plausible mechanism was investigated by control experiments and DFT calculations. This protocol provides an alternative synthetic route for the preparation of quinazolinone derivatives.
Collapse
|
13
|
Xu R, Wang Z, Zheng Q, Patil P, Dömling A. A Bifurcated Multicomponent Synthesis Approach to Polycyclic Quinazolinones. J Org Chem 2022; 87:13023-13033. [PMID: 36095044 PMCID: PMC9552225 DOI: 10.1021/acs.joc.2c01561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The rapid synthesis of diverse substituted polycyclic
quinazolinones
was achieved by two orthogonal Ugi four-component reaction (Ugi-4CR)-based
protocols: the first two-step approach via an ammonia-Ugi-4CR followed
by palladium-catalyzed annulation; in the second approach, cyanamide
was used unprecedently as an amine component in Ugi-4CR followed by
an AIBN/tributyltin hydride-induced radical reaction. Like no other
method, MCR and cyclization could efficiently construct many biologically
interesting compounds with tailored properties in very few steps.
Collapse
Affiliation(s)
- Ruixue Xu
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Zefeng Wang
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Qiang Zheng
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Pravin Patil
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| |
Collapse
|
14
|
Bera SK, Bhanja R, Mal P. DDQ in mechanochemical C-N coupling reactions. Beilstein J Org Chem 2022; 18:639-646. [PMID: 35706992 PMCID: PMC9174842 DOI: 10.3762/bjoc.18.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a commonly known oxidant. Herein, we report that DDQ can be used to synthesize 1,2-disubstituted benzimidazoles and quinazolin-4(3H)-ones via the intra- and intermolecular C-N coupling reaction under solvent-free mechanochemical (ball milling) conditions. In the presence of DDQ, the intramolecular C(sp2)-H amidation of N-(2-(arylideneamino)phenyl)-p-toluenesulfonamides leads to 1,2-disubstituted benzimidazoles and the one-pot coupling of 2-aminobenzamides with aryl/alkyl aldehydes resulted in substituted quinazolin-4(3H)-one derivatives in high yields.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|