1
|
Kim GY, Park S, Park G, Kang Y, Kim H, Kim J. Mn(acac) 3/Hydrazide-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Couplings of 1,2,3,4-Tetrahydroisoquinolines and Their Mechanistic Studies. J Org Chem 2025; 90:5966-5972. [PMID: 40254860 DOI: 10.1021/acs.joc.5c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Aerobic oxidative cross-dehydrogenative couplings of 1,2,3,4-tetrahydroisoquinolines were developed using a Mn(acac)3 and ethyl 2-(4-nitrophenyl)hydrazine-1-carboxylate cocatalytic system. Nucleophiles, including nitroalkanes, dialkyl malonates, acetophenones, indoles, phosphonates, and phosphine oxides, were successfully employed to produce α-functionalized 1,2,3,4-tetrahydroisoquinolines. Control experiments revealed that radical species are not involved in the mechanism. Additionally, 1H NMR and HRMS analyses in the stoichiometric reaction identified an aminal structure as a crucial intermediate. Computational studies further support the plausibility of a hydride transfer process in the oxidation of 1,2,3,4-tetrahydroisoquinolines instead of the triazane pathway, which was predominantly proposed in the DEAD-mediated reaction.
Collapse
Affiliation(s)
- Ga Young Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Sehee Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Gayeong Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yeongyeong Kang
- Department of Chemistry, and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinho Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
3
|
Kim SB, Park G, Park ES, Maiti S, Kim J. Mn-Catalyzed Aerobic Oxidative α-Cyanation of Tertiary Amines Using Azo/Hydrazide Redox. J Org Chem 2024; 89:14543-14548. [PMID: 39298278 DOI: 10.1021/acs.joc.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Azo compounds such as diethyl azodicarboxylate have been used in oxidative coupling reactions to generate iminium ions from tertiary amines. However, the requirement of stoichiometric amounts of azo compounds limits their large-scale applications. Herein, we present an aerobic oxidative α-cyanation of tertiary amines using catalytic amounts of an azo compound or hydrazine. The developed protocol provides a practical and ecofriendly route for α-cyanated tertiary amines, using molecular oxygen as the terminal oxidant.
Collapse
Affiliation(s)
- Su Been Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Gayeong Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Eun Sun Park
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Santanu Maiti
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jinho Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Sellet N, Frey J, Cormier M, Goddard JP. Near-infrared photocatalysis with cyanines: synthesis, applications and perspectives. Chem Sci 2024; 15:8639-8650. [PMID: 38873079 PMCID: PMC11168079 DOI: 10.1039/d4sc00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cyanines are organic dyes bearing two aza-heterocycles linked by a polymethine chain. Excited states, fluorescence, redox activity, and energy transfer are interesting properties of cyanines which have been used by chemists. Moreover, they are easily accessible and highly tunable. For all these reasons, cyanines are often selected for applications like fluorescent probes, phototherapy and photovoltaics. However, considering cyanines as photocatalysts is a new field of investigation and has been sparsely reported in the literature. This field of research has been launched on the basis of near-infrared light photocatalysis. With a deeper NIR light penetration, the irradiation is compatible with biological tissues. Due to the longer wavelengths that are involved, the safety of the operator can be guaranteed. In this perspective review, the photophysical/redox properties of cyanines are reported as well as their preparations and applications in modern synthetic approaches. Finally, recent examples of cyanine-based NIR-photocatalysis are discussed including photopolymerization and organic synthesis.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| |
Collapse
|
5
|
Martins GM, Braga FC, de Castro PP, Brocksom TJ, de Oliveira KT. Continuous flow reactions in the preparation of active pharmaceutical ingredients and fine chemicals. Chem Commun (Camb) 2024; 60:3226-3239. [PMID: 38441166 DOI: 10.1039/d4cc00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, we present an overview of continuous flow chemistry, including photoflow and electroflow technologies in the preparation of active pharmaceutical ingredients (APIs) and fine chemical intermediates. Examples highlighting the benefits and challenges associated with continuous flow processes, mainly involving continuous thermal, photo- and electrochemical transformations, are drawn from the relevant literature, especially our experience and collaborations in this area, with emphasis on the synthesis and prospective scale-up.
Collapse
Affiliation(s)
- Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Pedro P de Castro
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
6
|
Isozaki K, Iseri K, Saito R, Ueda K, Nakamura M. Dual Catalysis of Gold Nanoclusters: Photocatalytic Cross-Dehydrogenative Coupling by Cooperation of Superatomic Core and Molecularly Modified Staples. Angew Chem Int Ed Engl 2024; 63:e202312135. [PMID: 37926682 DOI: 10.1002/anie.202312135] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Thiolate-protected gold nanoclusters (AuNCs) have attracted significant attention as nano-catalysts, revealing a superatomic core and gold-thiolate staples as distinct structural units. Here, we demonstrate the unprecedented dual catalytic activity of thiolate-protected [Au25 (SR)18 ]- nanoclusters, involving both photosensitized 1 O2 generation by the Au13 superatomic core and catalytic carbon-carbon bond formation facilitated by Au2 (SR)3 staples. This synergistic combination of two different catalytic units enables efficient cross-dehydrogenative coupling of terminal alkynes and tertiary aliphatic amines to afford propargylamines in high yields of up to 93 %. Mixed-ligand AuNCs bearing both thiolate and alkynyl ligands revealed the intermediacy of the alkynyl-exchanged AuNCs toward both photosensitization and C-C bond-forming catalytic cycles. Density functional theory calculations also supported the intermediacy of the alkynyl-exchanged AuNCs. Thus, the use of ligand-protected metal nanoclusters has enabled the development of an exceptional multifunctional catalyst, wherein distinct nanocluster components facilitate cooperative photo- and chemo-catalysis.
Collapse
Affiliation(s)
- Katsuhiro Isozaki
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenta Iseri
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryohei Saito
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyosuke Ueda
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Sellet N, Clement-Comoy L, Elhabiri M, Cormier M, Goddard JP. Second Generation of Near-Infrared Cyanine-Based Photocatalysts for Faster Organic Transformations. Chemistry 2023; 29:e202302353. [PMID: 37688503 DOI: 10.1002/chem.202302353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
A second generation of cyanine-based near-infrared photocatalysts has been developed to accelerate organic transformations. Cyanines were prepared and fully characterized prior to evaluation of their photocatalytic activities. Catalyst efficiency was determined by using two model oxidation and reduction reactions. For the aza-Henry reaction, cyanines bearing an amino group on the heptamethine chain led to the best results. For trifluoromethylation, the stability of the photocatalyst was found to be the key parameter for efficient and rapid conversion.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| | - Leo Clement-Comoy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bioorganic and MUMR 7042, Université de Strasbourg, Université de Haute-Alsace (UHA), CNRS, Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 67087, Strasbourg, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100, Mulhouse, France
| |
Collapse
|
8
|
Schade AH, Mei L. Applications of red light photoredox catalysis in organic synthesis. Org Biomol Chem 2023; 21:2472-2485. [PMID: 36880439 DOI: 10.1039/d3ob00107e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Photoredox catalysis has emerged as an efficient and versatile approach for developing novel synthetic methodologies. Particularly, red light photocatalysis has attracted more attention due to its intrinsic advantages of low energy, few health risks, few side reactions, and high penetration depth through various media. Impressive progress has been made in this field. In this review, we outline the applications of different photoredox catalysts in a wide range of red light-mediated reactions including direct red light photoredox catalysis, red light photoredox catalysis through upconversion, and dual red light photoredox catalysis. Due to the similarities between near-infrared (NIR) and red light, an overview of NIR-induced reactions is also presented. Lastly, current evidence showing the advantages of red light and NIR photoredox catalysis is also described.
Collapse
Affiliation(s)
- Alexander H Schade
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| | - Liangyong Mei
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| |
Collapse
|
9
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
10
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
11
|
Sellet N, Sebbat M, Elhabiri M, Cormier M, Goddard JP. Squaraines as near-infrared photocatalysts for organic reactions. Chem Commun (Camb) 2022; 58:13759-13762. [PMID: 36416727 DOI: 10.1039/d2cc04707a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herein, unprecedented uses of squaraine derivatives as new organic near-infrared photocatalysts are reported. These efficient molecular tools are able to promote oxidation and reduction for organic transformations through photocatalytic conditions. A mechanistic investigation is performed to distinguish between competitive Single Electron Transfer and Energy Transfer pathways.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Malik Sebbat
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Mourad Elhabiri
- Université de Strasbourg-CNRS-UHA UMR7042, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, Strasbourg F-67087, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| |
Collapse
|
12
|
Brown EE. Minireview: recent efforts toward upgrading lignin-derived phenols in continuous flow. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
14
|
Rybicka-Jasińska K, Wdowik T, Łuczak K, Wierzba AJ, Drapała O, Gryko D. Porphyrins as Promising Photocatalysts for Red-Light-Induced Functionalizations of Biomolecules. ACS ORGANIC & INORGANIC AU 2022; 2:422-426. [PMID: 36855670 PMCID: PMC9955257 DOI: 10.1021/acsorginorgau.2c00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 06/18/2023]
Abstract
Red-light enables deeper material penetration, which is important for biological applications and has consequences for chemical synthesis. Therefore, the search for new photocatalysts that absorb in this region is crucial. Despite the undeniable utility of porphyrins in blue- and green-light-induced energy- and electron-transfer processes, they are also perfectly suited for red-light applications. Herein, we describe free-base porphyrins as photoredox catalysts for red-light-induced organic transformations. They can act as both photooxidants and photoreductants and can accomplish the synthesis of biaryls once merged with Pd-catalysis. The developed methodology holds promise for broader applications, as the heme-based protoporphyrin is used as a photocatalyst and reactions can be realized in aqueous conditions.
Collapse
Affiliation(s)
| | - Tomasz Wdowik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Klaudia Łuczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Aleksandra J. Wierzba
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Olga Drapała
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|