1
|
Zhang Y, Han B, Gu X, Wang K, Liang S. Mn(OAc) 3-Promoted Sulfonation- ipso-Cyclization Cascade via the SO 3- Radical: The Synthesis of Spirocyclic Sulfonates. J Org Chem 2023; 88:14140-14155. [PMID: 37718492 DOI: 10.1021/acs.joc.3c01684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A radical sulfonation-ipso-cyclization cascade promoted by Mn(OAc)3·2H2O using functionalized alkynes or alkenes and potassium metabisulfite (K2S2O5) is reported. A total of 30 spirocyclic sulfonates were synthesized under mild conditions. We also demonstrate a modular synthesis approach in multiple steps for the preparation of various azaspiro[4,5]-trienone-based sulfonamides and sulfonate esters.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Bingxu Han
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Xin Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaixuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| |
Collapse
|
2
|
Zhang S, Yuan J, Huang G, Ma C, Yang J, Yang L, Xiao Y, Qu L. Visible-Light-Induced Intramolecular Tandem Cyclization of Unactivated Indoloalkynes for the Synthesis of Sulfonylated and Selenylated Indolo[1,2- a]quinolines. J Org Chem 2023; 88:11712-11727. [PMID: 37530760 DOI: 10.1021/acs.joc.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A convenient and efficient visible-light-induced method has been developed for the construction of sulfonated and selenylated indolo[1,2-a]quinolines through sulfonyl or selenyl radical-initiated tandem cyclization of unactivated alkynes with sodium sulfinates or diaryl diselenides under mild conditions. This protocol, which simply utilizes visible light as the safe and eco-friendly energy source and an inexpensive and nontoxic organic dye as a photocatalyst without the aid of an external photocatalyst, provides various sulfonyl- and selenyl-containing indolo[1,2-a]quinolines in moderate to good yields.
Collapse
Affiliation(s)
- Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Guangchao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Chengjia Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jingjing Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
3
|
Zhi S, Yao H, Zhang W. Difunctionalization of Dienes, Enynes and Related Compounds via Sequential Radical Addition and Cyclization Reactions. Molecules 2023; 28:1145. [PMID: 36770814 PMCID: PMC9919800 DOI: 10.3390/molecules28031145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Radical reactions are powerful in creating carbon-carbon and carbon-heteroatom bonds. Designing one-pot radical reactions with cascade transformations to assemble the cyclic skeletons with two new functional groups is both synthetically and operationally efficient. Summarized in this paper is the recent development of reactions involving radical addition and cyclization of dienes, diynes, enynes, as well as arene-bridged and arene-terminated compounds for the preparation of difunctionalization cyclic compounds. Reactions carried out with radical initiators, transition metal-catalysis, photoredox, and electrochemical conditions are included.
Collapse
Affiliation(s)
- Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Hongjun Yao
- College of Biological Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
4
|
Tao LM, Yu LM, Xu JL, Kuang J, Wang LB, Li C. Iron‐Catalyzed Oxidative Hydroxyamination of Alkenes of Unsaturated Keto Oximes with TBHP as the Hydroxy Source. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Li-Mei Yu
- XiangNan University Hunan Provincials Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications School of Chemistry and Environmental Science 423000 Chenzhou CHINA
| | - Jia-Li Xu
- XiangNan University Hunan Provincials Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications School of Chemistry and Environmental Science 423000 Chenzhou CHINA
| | - Jie Kuang
- XiangNan University Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications School of Chemistry and Environmental Science 423000 Chenzhou CHINA
| | - Lu-Bao Wang
- XiangNan University Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications School of Chemistry and Environmental Science 423000 Chenzhou CHINA
| | - Chuanhua Li
- XiangNan University Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications School of Chemistry and Environmental Science 423000 Chenzhou CHINA
| |
Collapse
|
5
|
A HCl-Mediated, Metal- and Oxidant-Free Photocatalytic Strategy for C3 Arylation of Quinoxalin(on)es with Arylhydrazine. Catalysts 2022. [DOI: 10.3390/catal12060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel and simple HCl-mediated, photocatalytic method for quinoxaline(on)es C3-H arylation with arylhydrazine under transition metal catalyst- and oxidant-free conditions is presented. Various quinoxaline(on)es underwent this transformation smoothly, demonstrating a broad substrate tolerance and providing the corresponding aryl products in moderate to excellent yields. Mechanistic studies indicated that a radical pathway may be involved in this transformation.
Collapse
|
6
|
Ruan S, Zhou C, Li L, Wang L, Liu J, Li P. Microwave-accelerated and benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with cyclic alkanes under metal-free conditions. Org Biomol Chem 2022; 20:3817-3822. [PMID: 35467683 DOI: 10.1039/d2ob00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel and efficient method for preparing exocyclic indan derivatives, with this method involving benzoyl peroxide (BPO)-initiated cyclization of 1,5-enynes having cyano groups with simple cyclic alkanes under microwave irradiation, has been developed. The presented approach showed advantages of simple conditions, an environmentally friendly protocol, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Shuchen Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Laiqiang Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.
| | - Jie Liu
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China. .,Anhui Laboratory of Clean Catalytic Engineering and College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China.
| |
Collapse
|
7
|
Song S, Shi X, Zhu Y, Ren Q, Zhou P, Zhou J, Li J. Electrochemical Oxidative C-H Arylation of Quinoxalin(on)es with Arylhydrazine Hydrochlorides under Mild Conditions. J Org Chem 2022; 87:4764-4776. [PMID: 35319891 DOI: 10.1021/acs.joc.2c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical and scalable protocol for electrochemical arylation of quinoxalin(on)es with arylhydrazine hydrochlorides under mild conditions has been developed. This method exhibits high efficiency, easy scalability, and broad functional group tolerance. Various quinoxalin(on)es and arylhydrazines underwent this transformation smoothly in an undivided cell, providing the corresponding aryl-substituted quinoxalin(on)es in moderate to good yields. A radical mechanism is involved in this arylation reaction.
Collapse
Affiliation(s)
- Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangjun Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunsheng Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Quanlei Ren
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Peng Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
8
|
Inprung N, Ho HE, Rossi-Ashton JA, Epton RG, Whitwood AC, Lynam JM, Taylor RJK, James MJ, Unsworth WP. Indole-ynones as Privileged Substrates for Radical Dearomatizing Spirocyclization Cascades. Org Lett 2022; 24:668-674. [PMID: 34985297 DOI: 10.1021/acs.orglett.1c04098] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Indole-ynones have been established as general substrates for radical dearomatizing spirocyclization cascade reactions. Five distinct and varied synthetic protocols have been developed─cyanomethylation, sulfonylation, trifluoromethylation, stannylation and borylation─using a variety of radical generation modes, ranging from photoredox catalysis to traditional AIBN methods. The simple and easily prepared indole-ynones can be used to rapidly generate diverse, densely functionalized spirocycles and have the potential to become routinely used to explore radical reactivity. Experimental and computational investigations support the proposed radical cascade mechanism and suggest that other new methods are now primed for development.
Collapse
Affiliation(s)
- Nantachai Inprung
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Hon Eong Ho
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | | | - Ryan G Epton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Adrian C Whitwood
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Jason M Lynam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Richard J K Taylor
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Michael J James
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
9
|
Yuan JW, Chen Q, Wu WT, Zhao JJ, Yang LR, Xiao YM, Mao P, Qu LB. Selectfluor-mediated construction of 3-arylselenenyl and 3,4-bisarylselenenyl spiro[4.5]trienones via cascade annulation of N-phenylpropiolamides with diselenides. NEW J CHEM 2022. [DOI: 10.1039/d2nj00869f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A cascade annulation of N-phenylpropiolamides with diselenides leading to the construction of 3-arylselenenyl spiro[4.5]trienones was realized under mild conditions with Selectfluor as the sole oxidant.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qian Chen
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wen-Tao Wu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jian-Jun Zhao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Fang Y, Ren S, He C, Han H, Liao F, Liu JB, Yang M. Selective halocyclization and iodosulfonylation of N-benzothiazol2-yl alkynamides under mild conditions. Org Biomol Chem 2022; 20:6550-6553. [DOI: 10.1039/d2ob01165d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective synthetic entry to pyrimidobenzothiazoles via 6-endo-dig halocyclization of N-benzothiazol-2-yl alkynamides was developed under mild conditions with a broad substrate scope. Several multisubstituted α,β-enones were synthesized by using the...
Collapse
|
11
|
Prince, Kumar S, Lalji RSK, Gupta M, Kumar P, Kumar R, Singh BK. Sustainable C–H activation approach for palladium-catalyzed, regioselective functionalization of 1-methyl-3-phenyl quinoxaline-2(1 H)-ones in water. Org Biomol Chem 2022; 20:8944-8951. [DOI: 10.1039/d2ob01451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An environment-friendly approach for regioselective acylation of 1-methyl-3-phenyl quinoxaline-2(1H)-ones was developed using water as a solvent. The protocol exhibits a wide substrate scope and employs commercially available, non-toxic acyl surrogates.
Collapse
Affiliation(s)
- Prince
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, Nanak Chand Anglo Sanskrit College, Meerut, Uttar Pradesh-250001, India
| | - Sandeep Kumar
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ram Sunil Kumar Lalji
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, Kirori-Mal College, Delhi University, Delhi-110007, India
| | - Mohit Gupta
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, L.N.M.S. College, Birpur, Supaul, Bihar-854340, India
| | - Prashant Kumar
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Department of Chemistry, SRM University, Delhi-NCR Sonepat, Haryana-131029, India
| | - Ravindra Kumar
- CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh-226031, India
| | - Brajendra K. Singh
- Bio-organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
12
|
Gong X, Shen Z, Wang G, Qu L, Zhu C. Heterogeneous copper-catalyzed synthesis of diaryl sulfones. Org Biomol Chem 2021; 19:10662-10668. [PMID: 34850802 DOI: 10.1039/d1ob01830b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A carbon-supported copper nanoparticle (Cu-NP) with high catalytic activity for the synthesis of diaryl sulfones is reported. For the first time, this Cu-NP is proved to be able to effectively promote the reaction of arylboronic acids and arylsulfonyl hydrazides to generate diaryl sulfones at room temperature. The reaction shows excellent substrate universality, and substrates with different substituents can undergo the reaction smoothly, leading to the desired products in good yields. The Cu-NP is found to be made of low valence Cu based on XRD. Hence, the reaction catalyzed by the Cu-NP is believed to involve a Cu-mediated organometallic cycle.
Collapse
Affiliation(s)
- Xinchi Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhengqi Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ganghu Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lingling Qu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Chunyin Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
13
|
Yuan JW, Mou CX, Zhang Y, Hu WY, Yang LR, Xiao YM, Mao P, Zhang SR, Qu LB. Transition-metal catalyzed oxidative spirocyclization of N-aryl alkynamides with methylarenes under microwave irradiation. Org Biomol Chem 2021; 19:10348-10358. [PMID: 34812461 DOI: 10.1039/d1ob01970h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical synthetic route to construct a variety of 3-benzyl spiro[4,5]trienones was developed via transition-metal Cu/Ag-catalyzed oxidative ipso-annulation of activated alkynes with unactivated toluenes using TBPB as an oxidant under microwave irradiation. This method allows the formation of two carbon-carbon bonds and one carbon-oxygen bond in a single reaction through a sequence of C-H oxidative coupling, ipso-carbocyclization and dearomatization. The advantages of this protocol are its operational simplicity and broad substrate scope, and the ability to afford the desired products in moderate to good yields.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Chen-Xu Mou
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Yang Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Wen-Yu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Chalcogenative spirocyclization of N-aryl propiolamides with diselenides/disulfides promoted by Selectfluor. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A practical and efficient synthetic route to construct a variety of 3-arylselenenyl/3-arylthio spiro[4.5]trienones was developed using Selectfluor reagent as a mild oxidant. This reaction proceeds via a sequence of electrophilic cation addition, spirocyclization and dearomatization, then offers an approach to introduce Se/S-centered cation into the C–C triple bonds. The utility of this protocol were justified by the excellent compatibility of a wide range of functional groups, good yields and scalability under mild reaction conditions.
Collapse
|
15
|
Peng CC, Wu LJ, Pi SF. Palladium-catalyzed difunctionalization/dearomatization of N-benzylacrylamides with α-carbonyl alkyl bromides: facile access to azaspirocyclohexadienones. Org Biomol Chem 2021; 19:7602-7606. [PMID: 34524329 DOI: 10.1039/d1ob01405f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient palladium-catalyzed difunctionalization/dearomatization of N-benzylacrylamides with α-carbonyl alkyl bromides as alkyl radical precursors has been described. Various α-carbonyl alkyl bromides, including α-bromoalkyl esters and ketones, reacted smoothly to provide important azaspirocyclohexadienones in moderate to excellent yields. In addition, mechanistic studies suggested that the reaction proceeded via a radical pathway.
Collapse
Affiliation(s)
- Chuan-Chong Peng
- Institute of Applied Chemistry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Li-Jun Wu
- Institute of Applied Chemistry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Shao-Feng Pi
- School of Materials and Chemical Engineering, Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan, 411104, China.
| |
Collapse
|
16
|
Wang X, Zhang Y, Sun K, Meng J, Zhang B. Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Alves AJS, Alves NG, Soares MIL, Pinho e Melo TMVD. Strategies and methodologies for the construction of spiro-γ-lactams: an update. Org Chem Front 2021. [DOI: 10.1039/d0qo01564d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an insight into the most recent synthetic methodologies towards spiro-γ-lactams, a class of compounds that are present in a wide range of synthetic bioactive and naturally occurring molecules.
Collapse
Affiliation(s)
- Américo J. S. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Nuno G. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Maria I. L. Soares
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
18
|
Liu Q, Lv Y, Liu R, Zhao X, Wang J, Wei W. Catalyst- and additive-free selective sulfonylation/cyclization of 1,6-enynes with arylazo sulfones leading to sulfonylated γ-butyrolactams. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Zeng FL, Chen XL, Sun K, Zhu HL, Yuan XY, Liu Y, Qu LB, Zhao YF, Yu B. Visible-light-induced metal-free cascade cyclization of N-arylpropiolamides to 3-phosphorylated, trifluoromethylated and thiocyanated azaspiro[4.5]trienones. Org Chem Front 2021. [DOI: 10.1039/d0qo01410a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photocatalytic strategies for the preparation of 3-functionalized azaspiro[4.5]trienones via a radical-initiated cascade annulation reaction was developed.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Kai Sun
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Hu-Lin Zhu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Ya Yuan
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan Liu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ling-Bo Qu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yu-Fen Zhao
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
20
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
21
|
Yang W, Zhang M, Feng J. Recent Advances in the Construction of Spiro Compounds
via
Radical Dearomatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000636] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Chao Yang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Guangling College Yangzhou University Yangzhou 225009 P. R. China
| | - Ming‐Ming Zhang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Jian‐Guo Feng
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
22
|
Neto JSS, Zeni G. Transition Metal‐Catalyzed and Metal‐Free Cyclization Reactions of Alkynes with Nitrogen‐Containing Substrates: Synthesis of Pyrrole Derivatives. ChemCatChem 2020. [DOI: 10.1002/cctc.201902325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de QuímicaUniversidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNEUniversidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
23
|
Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. Electrochemical Synthesis of Spiro[4.5]trienones through Radical-Initiated Dearomative Spirocyclization. CHEMSUSCHEM 2020; 13:2053-2059. [PMID: 32012457 DOI: 10.1002/cssc.202000098] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
A novel and green route has been developed for the electrochemical synthesis of spiro[4.5]trienones through radical-initiated dearomative spirocyclization of alkynes with diselenides. This metal-free and oxidant-free electrosynthesis reaction was performed in an undivided cell under mild conditions. A variety of selenation spiro[4.5]trienones products were prepared in moderate-to-good yields, showing a broad scope and functional group tolerance. Moreover, the developed continuous-flow system combined with electrosynthesis possesses the potential to achieve scaled-up reactions, overcoming the low efficiency of conventional electrochemical scaled-up reactions.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Jia Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| |
Collapse
|
24
|
Affiliation(s)
- Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
25
|
Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Photo-mediated synthesis of halogenated spiro[4,5]trienones of N-aryl alkynamides with PhI(OCOCF 3) 2 and KBr/KCl. Org Biomol Chem 2020; 18:1933-1939. [PMID: 32101242 DOI: 10.1039/d0ob00057d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel and convenient photo-mediated halogenated spirocyclization of N-(p-methoxyaryl)propiolamides has been developed. The photolysis of phenyliodine bis(trifluoroacetate) (PIFA) as an iodination reagent led to iodinated ipso-cyclization under the irradiation of a xenon lamp, while brominated ipso-cyclization or chlorinated ipso-cyclization was achieved by irradiating a mixture of PIFA and KBr/KCl under a blue LED. The present protocol simply utilizes light as the safe and clean energy source and doesn't require any external photocatalyst providing various 3-halospiro[4,5]trienones in good to excellent yields (up to 93%).
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Yaming Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Linlin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Jiaao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Kun Jin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| |
Collapse
|
26
|
Dong W, Qi L, Song JY, Chen JM, Guo JX, Shen S, Li LJ, Li W, Wang LJ. Direct Synthesis of Sulfonylated Spiro[indole-3,3'-pyrrolidines] by Silver-Mediated Sulfonylation of Acrylamides Coupled with Indole Dearomatization. Org Lett 2020; 22:1830-1835. [PMID: 32073279 DOI: 10.1021/acs.orglett.0c00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A dearomative tandem spiro-cyclization reaction of N-[(1H-indol-3-yl)methyl]methacrylamide derivatives with sulfinate sodium in the presence of AgNO3 and K2CO3 is reported, which produced sulfonylated spiro[indole-3,3'-pyrrolidines] in medium to excellent yields. The characteristics of this transformation contain good functional group tolerance and ease of operation.
Collapse
Affiliation(s)
- Wei Dong
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Lin Qi
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Jin-Yan Song
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Jia-Min Chen
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Jia-Xin Guo
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Song Shen
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Li-Jun Li
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Wei Li
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| | - Li-Jing Wang
- College of Chemistry & Environmental Science, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry, and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, 180 Wusi Donglu, Baoding 071002, People's Republic of China
| |
Collapse
|
27
|
Mahanty K, Maiti D, De Sarkar S. Regioselective C–H Sulfonylation of 2H-Indazoles by Electrosynthesis. J Org Chem 2020; 85:3699-3708. [PMID: 32003566 DOI: 10.1021/acs.joc.9b03330] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kingshuk Mahanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
28
|
Peng X, Liu RX, Xiao XY, Yang L. Fe-catalyzed Decarbonylative Alkylative Spirocyclization of N-Arylcinnamamides: Access to Alkylated 1-Azaspirocyclohexadienones. Molecules 2020; 25:E432. [PMID: 31972970 PMCID: PMC7037460 DOI: 10.3390/molecules25030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
For the convenient introduction of simple linear/branched alkyl groups into biologically important azaspirocyclohexadienones, a practical Fe-catalyzed decarbonylative cascade spiro-cyclization of N-aryl cinnamamides with aliphatic aldehydes to provide alkylated 1-azaspiro-cyclohexadienones was developed. Aliphatic aldehydes were oxidative decarbonylated into primary, secondary and tertiary alkyl radicals conveniently and allows for the subsequent cascade construction of dual C(sp3)-C(sp3) and C=O bonds via radical addition, spirocyclization and oxidation sequence.
Collapse
Affiliation(s)
| | | | | | - Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, China; (X.P.); (R.-X.L.); (X.-Y.X.)
| |
Collapse
|
29
|
Nair AM, Shinde AH, Kumar S, Volla CMR. Metal-free spirocyclization of N-arylpropiolamides with glyoxylic acids: access to complex azaspiro-fused tricycles. Chem Commun (Camb) 2020; 56:12367-12370. [DOI: 10.1039/d0cc04800c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient K2S2O8-mediated oxidative cascade spirocyclization of N-arylpropiolamides with aryl glyoxylic acids was demonstrated for constructing azaspiro[4,5]-trienones and complex azaspiro-fused architectures.
Collapse
Affiliation(s)
- Akshay M. Nair
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | - Anand H. Shinde
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | - Shreemoyee Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | | |
Collapse
|
30
|
Aziz J, Hamze A. An update on the use of sulfinate derivatives as versatile coupling partners in organic chemistry. Org Biomol Chem 2020; 18:9136-9159. [PMID: 33006352 DOI: 10.1039/d0ob01718c] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of sulfinic acids and their salts continues to be extensively developed in organic chemistry. This is attributable to their dual capacity for acting as nucleophilic or electrophilic reagents, as well as their ease of preparation and stability on storage. This report highlights the research accomplished since 2015 on this topic, updating a previous review published by our team in 2014.
Collapse
Affiliation(s)
- Jessy Aziz
- Almac Group, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, UK.
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
31
|
Visible-light-promoted aerobic oxidative synthesis of β-ketosulfones under photocatalyst-free conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Wagh GD, Autade SB, Kulkarni RV, Akamanchi KG. Sulfated tungstate/dioxygen: a new catalytic system for oxysulfonylation of styrenes to form β-keto sulfones. NEW J CHEM 2020. [DOI: 10.1039/d0nj01763a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new green cat./O2 oxidation system is mild, safe, heterogeneous, simple to make, stable, noncorrosive, produces N2 as by product, and has an easy to recover–reuse catalyst and wide substrate scope.
Collapse
Affiliation(s)
- Ganesh D. Wagh
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | - Snehalata B. Autade
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Mumbai 400019
- India
| | | | - Krishnacharya G. Akamanchi
- Department of Allied Health Sciences
- Shri B. M. Patil Medical College
- Hospital and Research Centre
- BLDE Deemed to be University
- Vijayapur
| |
Collapse
|
33
|
Wang JY, Hao WJ, Tu SJ, Jiang B. Recent developments in 1,6-addition reactions of para-quinone methides (p-QMs). Org Chem Front 2020. [DOI: 10.1039/d0qo00387e] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we provide a comprehensive overview of recent progress in this rapidly growing field by summarizing the 1,6-conjugate addition and annulation reactions of p-QMs with consideration of their mechanisms and applications.
Collapse
Affiliation(s)
- Jia-Yin Wang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
34
|
Wang L, Zhang M, Zhang Y, Liu Q, Zhao X, Li JS, Luo Z, Wei W. Metal-free visible-light-induced oxidative cyclization reaction of 1,6-enynes and arylsulfinic acids leading to sulfonylated benzofurans. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
He TJ, Zhong WQ, Huang JM. The synthesis of sulfonated 4H-3,1-benzoxazines via an electro-chemical radical cascade cyclization. Chem Commun (Camb) 2020; 56:2735-2738. [DOI: 10.1039/c9cc09551a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We achieved sulfonated 4H-3,1-benzoxazines under ambient conditions without any metals and external chemical oxidants via electrochemical radical cascade cyclizations.
Collapse
Affiliation(s)
- Tian-Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
36
|
Ho HE, Pagano A, Rossi-Ashton JA, Donald JR, Epton RG, Churchill JC, James MJ, O'Brien P, Taylor RJK, Unsworth WP. Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. Chem Sci 2019; 11:1353-1360. [PMID: 34123259 PMCID: PMC8148050 DOI: 10.1039/c9sc05311e] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Indole-tethered ynones form an intramolecular electron donor–acceptor complex that can undergo visible-light-induced charge transfer to promote thiyl radical generation from thiols. This initiates a novel radical chain sequence, based on dearomatising spirocyclisation with concomitant C–S bond formation. Sulfur-containing spirocycles are formed in high yields using this simple and mild synthetic protocol, in which neither transition metal catalysts nor photocatalysts are required. The proposed mechanism is supported by various mechanistic studies, and the unusual radical initiation mode represents only the second report of the use of an intramolecular electron donor–acceptor complex in synthesis. Indole-tethered ynones form an intramolecular electron donor–acceptor complex that can undergo visible-light-induced charge transfer to promote thiyl radical generation from thiols.![]()
Collapse
Affiliation(s)
- Hon Eong Ho
- Department of Chemistry, University of York York YO10 5DD UK
| | - Angela Pagano
- Department of Chemistry and Industrial Chemistry, University of Genova via Dodecaneso, 31 16146 Genova Italy
| | | | - James R Donald
- Department of Chemistry, University of York York YO10 5DD UK
| | - Ryan G Epton
- Department of Chemistry, University of York York YO10 5DD UK
| | | | - Michael J James
- Department of Chemistry, University of York York YO10 5DD UK
| | - Peter O'Brien
- Department of Chemistry, University of York York YO10 5DD UK
| | | | | |
Collapse
|
37
|
Zaman M, Hasan M, Peshkov AA, Van Hecke K, Van der Eycken EV, Pereshivko OP, Peshkov VA. Silver(I) Triflate‐Catalyzed Protocol for the Post‐Ugi Synthesis of Spiroindolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Manzoor Zaman
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Muhammad Hasan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Anatoly A. Peshkov
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Kristof Van Hecke
- XStruct, Department of ChemistryGhent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Erik V. Van der Eycken
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryUniversity of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 Moscow 117198 Russia
| | - Olga P. Pereshivko
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
- The Environment and Resource Efficiency Cluster (EREC)Nazarbayev University Nur-Sultan Republic of Kazakhstan
| |
Collapse
|
38
|
Nair AM, Halder I, Khan S, Volla CMR. Metal Free Sulfonylative Spirocyclization of Alkenyl and Alkynyl Amides
via
Insertion of Sulfur Dioxide. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901321] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Akshay M. Nair
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| | - Indranil Halder
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| | - Salman Khan
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| | - Chandra M. R. Volla
- Department of ChemistryIndian Institute of Technology Bombay, Powai Mumbai – 400076 India
| |
Collapse
|
39
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
40
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
41
|
Zhang J, Bao W, Qin F, Lei K, Li Q, Wei W. Copper‐Catalyzed Sulfonyl Radical‐Enabled Regioselective Cyclization of 1,6‐Enynes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jun‐Yao Zhang
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Wen‐Hui Bao
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Fu‐Hua Qin
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Ke‐Wei Lei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 China
| | - Wen‐Ting Wei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| |
Collapse
|
42
|
Yuan B, Jiang Y, Qi Z, Guan X, Wang T, Yan R. External Oxidant‐Free Oxidative Tandem Cyclization: NaI‐Catalyzed Thiolation for the Synthesis of 3‐Thiosubstituted Pyrroles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bingxiang Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Yong Jiang
- School of Chemistry and Chemical EngineeringYangtze Normal University Chongqing People's Republic of China
| | - Zhenjie Qi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Xin Guan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Ting Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
43
|
Li Q, Yu L, Wei Y, Shi M. Synthesis of Diiodinated All-Carbon 3,3′-Diphenyl-1,1′-spirobiindene Derivatives via Cascade Enyne Cyclization and Electrophilic Aromatic Substitution. J Org Chem 2019; 84:9282-9296. [DOI: 10.1021/acs.joc.9b01418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Quanzhe Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liuzhu Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| |
Collapse
|
44
|
Wang W, Zhu F, Yan Z, He M, Lin S. I2O5 promoted iodosulfenylation of indoles under metal-free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
Wang L, Zhang Y, Zhang M, Bao P, Lv X, Liu HG, Zhao X, Li JS, Luo Z, Wei W. Metal-free I2O5-mediated oxidative synthesis of sulfonylated benzofurans through cyclization reaction of 1,6-enynes and arylsulfonylhydrazides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Zhou B, Yuan Y, Jin H, Liu Y. I2O5-Mediated Iodocyclization Cascade of N-(1-Arylallyl)pyridine-2-amines with Concomitant C═C Bond Cleavage: A Synthesis of 3-Iodoimidazo[1,2-a]pyridines. J Org Chem 2019; 84:5773-5782. [PMID: 30983338 DOI: 10.1021/acs.joc.9b00765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
47
|
Fu R, Li M, Zhou P, Hao W, Tu S, Jiang B. Synthesis of 3,4‐Dihydrobenzo[
f
]phthalazines
via
Iodine/
tert
‐Butyl Hydroperoxide‐Mediated Annulation Cascade of Yne‐Allenones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rong Fu
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Meng‐Fan Li
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Peng Zhou
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Bo Jiang
- School of Chemistry & Materials ScienceJiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 211116 People's Republic of China
| |
Collapse
|
48
|
Lu LH, Zhou SJ, He WB, Xia W, Chen P, Yu X, Xu X, He WM. Metal-free difunctionalization of alkynes leading to alkenyl dithiocyanates and alkenyl diselenocyanates at room temperature. Org Biomol Chem 2019; 16:9064-9068. [PMID: 30456395 DOI: 10.1039/c8ob02368a] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and practical method for the synthesis of alkenyl dithiocyanates and alkenyl diselenocyanates has been developed via stereoselective difunctionalization of alkynes with NaSCN or KSeCN at room temperature. Through this methodology, a series of alkenyl dithiocyanates and alkenyl diselenocyanates could be efficiently and conveniently obtained in moderate to good yields under mild and metal-free conditions by the simple use of oxone and PhI(OAc)2 as the oxidants.
Collapse
Affiliation(s)
- Ling-Hui Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhou L, Xia Y, Wang YZ, Fang JD, Liu XY. Mn(III)-promoted synthesis of spiroannular tricyclic scaffolds via sulfonylation/dearomatization of biaryl ynones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Song T, Li H, Wei F, Tung CH, Xu Z. Gold/photoredox-cocatalyzed atom transfer thiosulfonylation of alkynes: Stereoselective synthesis of vinylsulfones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|