1
|
Ueberham L, Schädlich J, Schramke K, Braun S, Selg C, Laube M, Lönnecke P, Pietzsch J, Hey-Hawkins E. Carborane-Based Analogs of Celecoxib and Flurbiprofen, their COX Inhibition Potential, and COX Selectivity Index. ChemMedChem 2025:e2500166. [PMID: 40128115 DOI: 10.1002/cmdc.202500166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
The cylcooxygenase isoforms COX-1 and COX-2 are involved in the production of prostaglandins in physiological and pathological processes. The overexpression of COX-2 under inflammatory conditions, its role in cancer and neurodegenerative diseases necessitates the need to develop and improve nonsteroidal anti-inflammatory drugs. These mainly unselective COX inhibitors, e.g. aspirin, are used to reduce the symptoms of inflammation. To reduce unwanted side effects connected with unselective inhibition, the development of novel COX-2 selective inhibitors is a major goal. Herein, the synthesis, characterization and in vitro biological evaluation of eight flurbiprofen- and celecoxib-based carborane analogs are described. Carboranes as hydrophobic surrogates are suitable substituents that can contribute to a selectivity increase toward COX-2 due to size exclusion. The inhibitory efficacy for COX-1 and COX-2 of the four ortho- and four nido-carborane derivatives has been tested. The nido compounds are much more potent than their closo-carborane analogs. The celecoxib-based nido-carborane compound 10 shows an IC50(COX-2) value in the sub-μM range and slight selectivity for COX-2. This is in contrast to its ortho-carborane counterpart 9, which shows an inhibition preference for COX-1. While none of these carborane derivatives outperforms their organic analogs, the flurbiprofen-based nido-carborane derivatives 14a and 14b surpass the known carborane-based flurbiprofen analogs.
Collapse
Affiliation(s)
- Lea Ueberham
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Jonas Schädlich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Kim Schramke
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Sebastian Braun
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Christoph Selg
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Peter Lönnecke
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Centre for Biotechnology and Biomedicine (BBZ), Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
- Faculty of Chemistry and Chemical Engineering Department of Chemistry, Babeş-Bolyai University, Str. Arany Janos Nr. 11, RO-400028, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Mahboubi-Rabbani M, Abdolghaffari AH, Ghesmati M, Amini A, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2018-2023). Expert Opin Ther Pat 2024; 34:733-757. [PMID: 38958471 DOI: 10.1080/13543776.2024.2373771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Ghesmati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
4
|
1-(4-Fluorobenzoyl)-9H-carbazole. MOLBANK 2022. [DOI: 10.3390/m1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
1-(4-Fluorobenzoyl)-9H-carbazole (1) was synthesized, starting from 9H-carbazole and 4-fluorobenzonitrile, by Friedel–Crafts acylation, using boron trichloride to direct the substitution in 1-position. Single-crystal X-ray diffraction analysis unambiguously revealed the molecular structure of 1.
Collapse
|
5
|
Kaur J, Bhardwaj A, Wuest F. Fluorine-18 Labelled Radioligands for PET Imaging of Cyclooxygenase-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123722. [PMID: 35744851 PMCID: PMC9227202 DOI: 10.3390/molecules27123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Molecular imaging probes enable the early and accurate detection of disease-specific biomarkers and facilitate personalized treatment of many chronic diseases, including cancer. Among current clinically used functional imaging modalities, positron emission tomography (PET) plays a significant role in cancer detection and in monitoring the response to therapeutic interventions. Several preclinical and clinical studies have demonstrated the crucial involvement of cyclooxygenase-2 (COX-2) isozyme in cancer development and progression, making COX-2 a promising cancer biomarker. A variety of COX-2-targeting PET radioligands has been developed based on anti-inflammatory drugs and selective COX-2 inhibitors. However, many of those suffer from non-specific binding and insufficient metabolic stability. This article highlights examples of COX-2-targeting PET radioligands labelled with the short-lived positron emitter 18F, including radiosynthesis and PET imaging studies published in the last decade (2012–2021).
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Correspondence: (J.K.); (F.W.)
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Correspondence: (J.K.); (F.W.)
| |
Collapse
|
6
|
Parodi A, Righetti G, Pesce E, Salis A, Tomati V, Pastorino C, Tasso B, Benvenuti M, Damonte G, Pedemonte N, Cichero E, Millo E. Journey on VX-809-Based Hybrid Derivatives towards Drug-like F508del-CFTR Correctors: From Molecular Modeling to Chemical Synthesis and Biological Assays. Pharmaceuticals (Basel) 2022; 15:ph15030274. [PMID: 35337072 PMCID: PMC8955485 DOI: 10.3390/ph15030274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride’s mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure–activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.
Collapse
Affiliation(s)
- Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Giada Righetti
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Cristina Pastorino
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DI-NOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
| | - Mirko Benvenuti
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (E.P.); (V.T.); (N.P.)
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.R.); (B.T.)
- Correspondence: (E.C.); (E.M.)
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV, 1, 16132 Genoa, Italy; (A.P.); (A.S.); (M.B.); (G.D.)
- Correspondence: (E.C.); (E.M.)
| |
Collapse
|
7
|
Yao H, Guo Q, Wang M, Wang R, Xu Z. Discovery of pyrazole N-aryl sulfonate: A novel and highly potent cyclooxygenase-2 (COX-2) selective inhibitors. Bioorg Med Chem 2021; 46:116344. [PMID: 34438337 DOI: 10.1016/j.bmc.2021.116344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022]
Abstract
Based on a new pyrazole sulfonate synthetic method, a novel class of molecules with a basic structure of pyrazole N-aryl sulfonate have been designed and synthesized. The interest in conducting intensive research stems from quite evident anti-inflammatory effects exhibited by the compounds in preliminary animal experiments. A series of compounds were synthesized by different substitutions of the R1, R2, and R3 groups. Within the series, 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and phenyl 5-methyl-3-(4-(trifluoromethyl) phenyl)-1H-pyrazole-1-sulfonate exhibited excellent anti-inflammatory activity (% inhibition of auricular edemas = 27.0 and 35.9, respectively); the in vivo analgesic activity of phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate was confirmed to be effective (inhibition ratio of writhing = 50.7% and 48.5% separately), and compounds phenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate , 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate were identified as selective COX-2 inhibitors (SI = 455, 10,497 and >189 severally). In Acute Oral Toxicity assays conducted in vivo, the lethal dose 50 (LD50) of 4-iodophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate and 2-chlorophenyl 5-methyl-3-(p-tolyl)-1H-pyrazole-1-sulfonate to mice was >2000 mg/kg BW.
Collapse
Affiliation(s)
- Haiyan Yao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| | - Quanping Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| | - Mengran Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China..
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China..
| |
Collapse
|
8
|
Mohsin NUA, Irfan M. Selective cyclooxygenase-2 inhibitors: A review of recent chemical scaffolds with promising anti-inflammatory and COX-2 inhibitory activities. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02528-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
10
|
Neuber C, Schulze S, Förster Y, Hofheinz F, Wodke J, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Rammelt S, Pietzsch J. Biomaterials in repairing rat femoral defects: In vivo insights from small animal positron emission tomography/computed tomography (PET/CT) studies. Clin Hemorheol Microcirc 2019; 73:177-194. [DOI: 10.3233/ch-199208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
| | - Yvonne Förster
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Positron Emission Tomography, Dresden, Germany
| | - Johanna Wodke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | | | | | - Vera Hintze
- Technische Universität Dresden, Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden, Germany
| | - Dieter Scharnweber
- Technische Universität Dresden, Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden, Germany
- Center of Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
- Center of Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
11
|
Laube M, Gassner C, Kniess T, Pietzsch J. Synthesis and Cyclooxygenase Inhibition of Sulfonamide-Substituted (Dihydro)Pyrrolo[3,2,1- hi]indoles and Their Potential Prodrugs. Molecules 2019; 24:molecules24203807. [PMID: 31652609 PMCID: PMC6832141 DOI: 10.3390/molecules24203807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/03/2023] Open
Abstract
Non-invasive imaging of cyclooxygenase-2 (COX-2) by radiolabeled ligands is attractive for the diagnosis of cancer, and novel highly affine leads with optimized pharmacokinetic profile are of great interest for future developments. Recent findings have shown that methylsulfonyl-substituted (dihydro)pyrrolo[3,2,1-hi]indoles represent highly potent and selective COX-2 inhibitors but possess unsuitable pharmacokinetic properties for radiotracer applications. Based on these results, we herein present the development and evaluation of a second series of sulfonamide-substituted (dihydro)pyrrolo[3,2,1-hi]indoles and their conversion into the respective more hydrophilic N-propionamide-substituted analogs. In comparison to the methylsulfonyl-substituted leads, COX inhibition potency and selectivity was retained in the sulfonamide-substituted compounds; however, the high lipophilicity might hinder their future use. The N-propionamide-substituted analogs showed a significantly decreased lipophilicity and, as expected, lower or no COX-inhibition potency. Hence, the N-(sulfonyl)propionamides can be regarded as potential prodrugs, which represents a potential approach for more sophisticated radiotracer developments.
Collapse
Affiliation(s)
- Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Cemena Gassner
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.
| |
Collapse
|
12
|
Kise N, Kinameri S, Sakurai T. Reductive coupling of aliphatic cyclic imides and ω-amidoesters with benzophenones by low-valent titanium: Synthesis of 5-diarylmethylene-1,5-dihydropyrrol-2-ones, 6-diarylmethyl-2-pyridones, and ω-(diarylmethylene)lactams. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background. Cancers (Basel) 2019; 11:cancers11060743. [PMID: 31142060 PMCID: PMC6627450 DOI: 10.3390/cancers11060743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023] Open
Abstract
Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel–Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.
Collapse
|
14
|
Reductive coupling of hydantoins with benzophenones by low-valent titanium: Synthesis of 4-substituted 1H-imidazol-2(3H)-ones and unusual two-to-two coupled products. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Roscales S, Bechmann N, Weiss DH, Köckerling M, Pietzsch J, Kniess T. Novel valdecoxib derivatives by ruthenium(ii)-promoted 1,3-dipolar cycloaddition of nitrile oxides with alkynes - synthesis and COX-2 inhibition activity. MEDCHEMCOMM 2018; 9:534-544. [PMID: 30108944 DOI: 10.1039/c7md00575j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/12/2018] [Indexed: 12/30/2022]
Abstract
Novel valdecoxib-based cyclooxygenase-2 inhibitors were synthesized in one step via 1,3-dipolar cycloaddition of nitrile oxides with a series of eleven aryl alkynes, six of them described for the first time. Application of Ru(ii)-catalysis leads preferably to the formation of the 3,4-diaryl-substituted isoxazoles, while under thermal heating with base the 3,5-diaryl substitution pattern is favoured. The new the 3,4-diaryl-substituted isoxazoles possessing a small substituent (H and Me) displayed high COX-2 inhibition affinity (IC50 = 0.042-0.073 μM) and excellent selectivity (COX-2 SI > 2000). In contrast, the 3,5-diaryl substituted compounds displayed almost no COX activity. The introduction of a 4-fluorophenyl substituent resulted in retained high COX-2 affinity, making these compounds together with the feasible one step reaction promising candidates for the development of fluorine-18 labelled radiotracers.
Collapse
Affiliation(s)
- Silvia Roscales
- Department of Radiopharmaceutical and Chemical Biology , Helmholtz-Zentrum Dresden-Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , 01328 Dresden , Germany .
| | - Nicole Bechmann
- Department of Radiopharmaceutical and Chemical Biology , Helmholtz-Zentrum Dresden-Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , 01328 Dresden , Germany .
| | - Daniel Holger Weiss
- Department of Inorganic Solid State Chemistry , Institute of Chemistry , University of Rostock , Albert Einstein Straße 3a , 18059 Rostock , Germany
| | - Martin Köckerling
- Department of Inorganic Solid State Chemistry , Institute of Chemistry , University of Rostock , Albert Einstein Straße 3a , 18059 Rostock , Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology , Helmholtz-Zentrum Dresden-Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , 01328 Dresden , Germany . .,Department of Chemistry and Food Chemistry , Technische Universität Dresden , Bergstraße 66 , 01062 Dresden , Germany
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology , Helmholtz-Zentrum Dresden-Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , 01328 Dresden , Germany .
| |
Collapse
|
16
|
Carullo G, Galligano F, Aiello F. Structure-activity relationships for the synthesis of selective cyclooxygenase 2 inhibitors: an overview (2009-2016). MEDCHEMCOMM 2017; 8:492-500. [PMID: 30108767 PMCID: PMC6072045 DOI: 10.1039/c6md00569a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Most drugs used to treat pain and inflammation act through inhibition of the enzymes prostaglandin G/H synthase, commonly known as cyclooxygenase (COX). Among these, the simultaneous inhibition of cyclooxygenase 1 (COX-1) would explain the unwanted side effects in the gastrointestinal tract and many adverse cardiovascular effects, such as high blood pressure, myocardial infarction and thrombosis. These side effects led in time to the development of NSAIDs that behave as selective COX-2 inhibitors. This manuscript highlights the structure-activity relationships which characterize the chemical scaffolds endowed with selective COX-2 inhibition. Additionally, the role of COX-2 inhibitors in the pain phenomenon and cancer is discussed.
Collapse
Affiliation(s)
- G Carullo
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Galligano
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| | - F Aiello
- Department of Pharmacy, Health and Nutritional Sciences , University of Calabria , 87036 Rende , Italy .
| |
Collapse
|
17
|
Gassner C, Neuber C, Laube M, Bergmann R, Kniess T, Pietzsch J. Development of a18F-labeled Diaryl-Substituted Dihydropyrrolo[3,2,1-hi]indole as Potential Probe for Functional Imaging of Cyclooxygenase-2 with PET. ChemistrySelect 2016. [DOI: 10.1002/slct.201601618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cemena Gassner
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
18
|
Yamauchi T, Shibahara F, Murai T. Pd/phenanthroline-catalyzed arylative cyclization of o-(1-alkynyl)thioanisoles: synthesis of 3-arylated benzo[b]thiophenes. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Nagaraju K, Chegondi R, Chandrasekhar S. Expanding Diversity without Protecting Groups: (+)-Sclareolide to Indolosesquiterpene Alkaloid Mycoleptodiscin A and Analogues. Org Lett 2016; 18:2684-7. [PMID: 27181938 DOI: 10.1021/acs.orglett.6b01145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Short and scalable synthesis of the complex pentacyclic indolosesquiterpene natural product mycoleptodiscin A has been achieved from commercially available diterpenoid (+)-sclareolide in 19% overall yield. This approach allows one to prepare various analogues of mycoleptodiscin using McMurry cyclization as a key reaction with just three chromatographic purifications.
Collapse
Affiliation(s)
- Karre Nagaraju
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Rambabu Chegondi
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Srivari Chandrasekhar
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| |
Collapse
|
20
|
Laube M, Kniess T, Pietzsch J. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy-A Hypothesis-Driven Review. Antioxidants (Basel) 2016; 5:antiox5020014. [PMID: 27104573 PMCID: PMC4931535 DOI: 10.3390/antiox5020014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents.
Collapse
Affiliation(s)
- Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
| | - Torsten Kniess
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, Dresden D-01328, Germany.
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden D-01062, Germany.
| |
Collapse
|
21
|
Catalytic asymmetric transfer hydrogenation/dynamic kinetic resolution: an efficient synthesis of florfenicol. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Devaraj K, Sollert C, Juds C, Gates PJ, Pilarski LT. Ru-catalysed C–H silylation of unprotected gramines, tryptamines and their congeners. Chem Commun (Camb) 2016; 52:5868-71. [DOI: 10.1039/c6cc00803h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Directed and undirected Ru-catalysed C–H silylation of unprotected heteroarenes is presented which requires no protecting groups.
Collapse
Affiliation(s)
- K. Devaraj
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | - C. Sollert
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | - C. Juds
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| | - P. J. Gates
- School of Chemistry
- University of Bristol
- Cantock's Close
- Bristol
- UK
| | - L. T. Pilarski
- Department of Chemistry – BMC
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
23
|
Kilic H, Aydin O, Bayindir S, Saracoglu N. Condensation of Indoline with Some 1,2- and 1,3-Diketones. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haydar Kilic
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| | - Omer Aydin
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| | - Sinan Bayindir
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
- Department of Chemistry, Faculty of Sciences and Arts; Bingöl University; Bingöl 12000 Turkey
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
| |
Collapse
|