1
|
Buguis FL, Boyle PD, Gilroy JB. Understanding the Properties of Donor-Acceptor Substituted Boron Difluoride 3-Cyanoformazanate Dyes. Chemistry 2025:e202500675. [PMID: 40220067 DOI: 10.1002/chem.202500675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/14/2025]
Abstract
π-Conjugated materials offer attractive traits including semiconductivity, low-energy light absorption/photoluminescence, and solution processability that render them ubiquitous within the organic electronics field. Among many strategies for property tuning, the creation of asymmetric electronic structures through the installation of donor and acceptor substituents commonly results in low-energy absorption/photoluminescence bands. Boron difluoride formazanate dyes are readily synthesized, can be asymmetrically substituted with donor and acceptor groups, and have unexpectedly low-energy absorption/photoluminescence bands that extend into the near-infrared. In this study, we prepared a series of donor-acceptor substituted boron difluoride 3-cyanoformazanate dyes and compared their properties to symmetric analogues. Our findings suggest that donor-acceptor derivatives are highly delocalized with properties intermediate of their symmetric counterparts. Furthermore, the data obtained suggest that the N-aryl substituents act as donors to the strongly accepting boron difluoride formazanate core, regardless of the functional groups appended to them. These properties were reproduced computationally, and while the frontier orbitals calculated for donor-acceptor dyes were modestly asymmetric, there was no evidence of charge-transfer character. This work provides significant insight into the unexpected properties of boron difluoride formazanates and reveals that their strongly accepting nature circumvents the predicted augmentation of electronic structure commonly observed for donor-accepter substituted dyes.
Collapse
Affiliation(s)
- Francis L Buguis
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| | - Paul D Boyle
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St. N, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
2
|
Cotterill EL, Jaberi Y, Dhindsa JS, Boyle PD, Gilroy JB. Glaser-Hay-Coupled Random Copolymers Containing Boron Difluoride Formazanate Dyes. Macromol Rapid Commun 2025; 46:e2400786. [PMID: 39462480 PMCID: PMC11841661 DOI: 10.1002/marc.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/11/2024] [Indexed: 10/29/2024]
Abstract
𝜋-Conjugated polymers, including those based on acetylenic repeating units, are an exciting class of materials that offer narrow optical band gaps and tunable frontier orbital energies that lead to their use in organic electronics. This work expands the knowledge of structure-property relationships of acetylenic polymers through the synthesis and characterization of a series of Glaser-Hay-coupled model compounds and random copolymers comprised of BF2 formazanate, fluorene, and/or bis(alkoxy)benzene units. The model compounds and copolymers synthesized exhibit redox activity associated with the reversible reduction of the BF2 formazanate units and the irreversible reduction of the fluorene and bis(alkoxy)benzene units. The copolymers exhibit absorption profiles characteristic or intermediate of their respective models and homopolymers, leading to broad absorption of UV-vis light. The alkyne linkages of the model compounds and copolymers are reacted with [Co2(CO)8] to convert the alkyne functional groups into cobalt carbonyl clusters. This transformation leads to blue-shifted absorption profiles due to a decrease in π-conjugation, demonstrating the ability to tune the properties of these materials through post-polymerization functionalization. The redox activity and broad absorption bands of the polymers reported make them excellent candidates for use in photovoltaics and other light-harvesting applications.
Collapse
Affiliation(s)
- Erin L. Cotterill
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.LondonONN6A 5B7Canada
| | - Yasmeen Jaberi
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.LondonONN6A 5B7Canada
| | - Jasveer S. Dhindsa
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.LondonONN6A 5B7Canada
| | - Paul D. Boyle
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.LondonONN6A 5B7Canada
| | - Joe B. Gilroy
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.LondonONN6A 5B7Canada
| |
Collapse
|
3
|
Ortiz RJ, Garcia‐Torres E, Brothwood PL, Williams JAG, Herbert DE. Site-Selective Ligand Functionalization Reverses Hypsochromic Luminescence Shifts in Platinum(II) Complexes of Benzannulated NCN-Coordinating Ligands. Chemistry 2025; 31:e202403766. [PMID: 39642273 PMCID: PMC11771731 DOI: 10.1002/chem.202403766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/08/2024]
Abstract
Ligands containing phenanthridine (benzo[c]quinoline) have presented notable exceptions to the conventional logic that increasing ligand benzannulation leads to bathochromic (red) shifts in the absorption and emission of their coordination complexes. The counterintuitive blue shifts have been attributed to the peculiar structure of phenanthridines, whose ground states are dominated by imine-bridged biphenyl resonance contributors. These serve to isolate the C=N unit electronically from the rest of the ligand framework and allow the C=N moiety to act as a 'shock-absorber', buffering against larger molecular distortions in a molecule's excited state, and reducing the observed pseudo-Stokes' shift. Here, we provide experimental evidence for this assertion in the form of a counterfactual that reverses this trend: substitution at the phenanthridine 6-position (i. e., at the C=N sub-unit) breaks the phenanthridine's tendency to cause hypsochromic luminescence shifts. The synthesis, full characterization, and comparison of 2-quinolinyl and 6-phenanthridinyl exemplars is provided, supported by a detailed theoretical treatment.
Collapse
Affiliation(s)
- Robert J. Ortiz
- Department of Chemistry and the Manitoba Institute for MaterialsUniversity of Manitoba144 Dysart RoadWinnipegManitobaR3T 2N2Canada
| | - Esteban Garcia‐Torres
- Department of Chemistry and the Manitoba Institute for MaterialsUniversity of Manitoba144 Dysart RoadWinnipegManitobaR3T 2N2Canada
| | | | | | - David E. Herbert
- Department of Chemistry and the Manitoba Institute for MaterialsUniversity of Manitoba144 Dysart RoadWinnipegManitobaR3T 2N2Canada
| |
Collapse
|
4
|
Cotterill EL, Gomes TC, Teare ACP, Jaberi Y, Dhindsa JS, Boyle PD, Rondeau‐Gagné S, Gilroy JB. Platinum-Centered Oligoynes Capped by Boron Difluoride Formazanate Dyes and Their Thin-Film Properties. Chemistry 2024; 30:e202403458. [PMID: 39331760 PMCID: PMC11639650 DOI: 10.1002/chem.202403458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 09/29/2024]
Abstract
Since the Nobel prize winning discovery that polyacetylene could act as a semiconductor, there has been tremendous efforts dedicated to understanding and harnessing the unusual properties of π-conjugated polymers. Much of this research has focused on the preparation of oligoynes and polyynes with well-defined numbers of repeating alkyne units as models for carbyne. These studies are usually hampered by a structure-property relationship where the stability of the resulting materials decrease with the incorporation of additional alkyne units. Here, we describe a series of oligoynes, with up to 12 alkyne units, where electron-rich [Pt(PBu3)2]2+ units are incorporated at the center of the oligoyne backbones which are capped by electron-poor BF2 formazanate dyes. These compounds exhibit excellent stability and solubility, panchromatic absorption, and redox activity characteristic of their structural components. These traits facilitated thin-film studies of extended oligoyne materials, where it is shown that incorporating [Pt(PBu3)2]2+ units leads to smoother films, decreased conductivity on the microscale, and increased conductivity on the nanoscale when compared to metal-free analogs. Remarkably, our oligoynes have superior conductivity compared to the ubiquitous poly(3-hexylthiophene) semiconductor.
Collapse
Affiliation(s)
- Erin L. Cotterill
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Tiago C. Gomes
- Department of Chemistry and BiochemistryUniversity of Windsor401 Sunset Ave.Windsor, ONN9B 3P4Canada
| | - Amélie C. P. Teare
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Yasmeen Jaberi
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Jasveer S. Dhindsa
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Paul D. Boyle
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| | - Simon Rondeau‐Gagné
- Department of Chemistry and BiochemistryUniversity of Windsor401 Sunset Ave.Windsor, ONN9B 3P4Canada
| | - Joe B. Gilroy
- Department of ChemistryThe University of Western Ontario1151 Richmond St. N.London, ONN6A 3K7Canada
| |
Collapse
|
5
|
Birara S, Saini S, Majumder M, Tiwari SP, Metre RK. A solution-processable benzothiazole-substituted formazanate zinc(II) complex designed for a robust resistive memory device. Dalton Trans 2024; 53:15338-15349. [PMID: 39225166 DOI: 10.1039/d4dt01640h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel mononuclear bis(formazanate)zinc complex (1) based on a redox-active 1-(benzothiazol-2-yl)-5-(2-benzoyl-4-chlorophenyl)-3-phenyl formazan ligand has been synthesized and characterized. Complex 1 was prepared by reacting one equivalent of Zn(OCOCH3)·2H2O with two equivalents of the corresponding formazan derivative. X-ray crystallography was employed to ascertain the solid-state structure of compound 1, and the analysis revealed a distorted octahedral geometry for the complex where the symmetrical ligands exhibit a preference for coordinating with the zinc center in the 'open' form, generating five-membered chelate rings. Moreover, cyclic voltammetry analysis reveals that complex 1 exhibits the capacity for electrochemical reduction as well as oxidation, resulting in the formation of radical anionic (L2Zn-) and dianionic (L2Zn2-) states as well as the oxidation state of 1. Additionally, the developed solution-processable complex 1 was employed as the fundamental building material for resistive switching memory applications. The [FTO/ZnIIL2(1)]/Ag RRAM device demonstrates exceptional resistive memory switching properties, with a substantial ION/IOFF ratio (103), low operational VSET and VRESET (0.9 V and -0.75 V) voltages, excellent endurance stability (100 cycles), and decent retention time (more than 2000 seconds). The findings presented in this study underscore the importance of redox-active formazanate metal complexes for creating promising memory storage devices.
Collapse
Affiliation(s)
- Sunita Birara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Shalu Saini
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Moumita Majumder
- Department of Chemistry, School of Science and Environmental Studies, Dr Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Shree Prakash Tiwari
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
6
|
Yang S, Lu K, Xiao H. Advancements in boron difluoride formazanate dyes for biological imaging. Curr Opin Chem Biol 2024; 81:102473. [PMID: 38986292 PMCID: PMC11323184 DOI: 10.1016/j.cbpa.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/12/2024]
Abstract
In the past decade, boron difluoride formazanate dyes have gained considerable attention due to their redox activity, high absorption and emission intensities, chemical stability across a broad range of conditions, and the ease to fine-tune their optical and electronic characteristics. Over the past five years, boron difluoride formazanate dyes have demonstrated their extended emission wavelengths in the near-infrared region, suggesting their potential applications in the field of biological imaging. This review provides an overview of the evolution of boron difluoride formazanate dyes, encompassing the structural variations and corresponding optical properties, while also highlighting their current applications in biological imaging fields.
Collapse
Affiliation(s)
- Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Kang Lu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA; SynthX Center, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|
7
|
Ojha M, Banerjee M, Mandal M, Singha T, Ray S, Datta PK, Mandal M, Anoop A, Singh NDP. Two-Photon-Responsive "TICT + AIE" Active Naphthyridine-BF 2 Photoremovable Protecting Group: Application for Specific Staining and Killing of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21486-21497. [PMID: 38640485 DOI: 10.1021/acsami.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The combined effects of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) phenomena have demonstrated a significant influence on excited-state chemistry. These combined TICT and AIE features have been extensively utilized to enhance photodynamic and photothermal therapy. Herein, we demonstrated the synergistic capabilities of TICT and AIE phenomena in the design of the photoremovable protecting group (PRPG), namely, NMe2-Napy-BF2. This innovative PRPG incorporates TICT and AIE characteristics, resulting in four remarkable properties: (i) red-shifted absorption wavelength, (ii) strong near-infrared (NIR) emission, (iii) viscosity-sensitive emission property, and (iv) accelerated photorelease rate. Inspired by these intriguing attributes, we developed a nanodrug delivery system (nano-DDS) using our PRPG for cancer treatment. In vitro studies showed that our nano-DDS manifested effective cellular internalization, specific staining of cancer cells, high-resolution confocal imaging of cancerous cells in the NIR region, and controlled release of the anticancer drug chlorambucil upon exposure to light, leading to cancer cell eradication. Most notably, our nano-DDS exhibited a substantially increased two-photon (TP) absorption cross section (435 GM), exhibiting its potential for in vivo applications. This development holds promise for significant advancements in cancer treatment strategies.
Collapse
Affiliation(s)
- Mamata Ojha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Ray
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta K Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Khrootkaew T, Wangngae S, Chansaenpak K, Rueantong K, Wattanathana W, Pinyou P, Panajapo P, Promarak V, Sagarik K, Kamkaew A. Heavy Atom Effect on the Intersystem Crossing of a Boron Difluoride Formazanate Complex-Based Photosensitizer: Experimental and Theoretical Studies. Chem Asian J 2024; 19:e202300808. [PMID: 37926693 DOI: 10.1002/asia.202300808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/07/2023]
Abstract
Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves using light to activate photosensitizers (PSs). Attractively, PDT is one of the alternative cancer treatments due to its noninvasive technique. By utilizing the heavy atom effect, this work modified a class of formazan dyes to improve intersystem crossing (ISC) to improve reactive oxygen species (ROS) generation for PDT treatment. Two methods were used to observe the ROS generation enhanced by ISC of the synthesized complexes including, (1) recording DPBF decomposition caused by the ROS, and (2) calculating the potential energy curves for photophysical mechanisms of BF2 -formazanate dyes using the DFT and nudged elastic band (NEB) methods. The photophysical properties of the dyes were studied using spectroscopic techniques and X-ray crystallography, as well as DFT calculations. The experimental and theoretical results and in vitro cellular assays confirmed the potential use of the newly synthesized iodinated BF2 -formazanate dyes in PDT.
Collapse
Affiliation(s)
- Tunyawat Khrootkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Sirilak Wangngae
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Kasin Rueantong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Piyanut Pinyou
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Pannipa Panajapo
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Kritsana Sagarik
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
9
|
Buguis FL, Hsu NSY, Sirohey SA, Adam MC, Goncharova LV, Gilroy JB. Dyads and Triads of Boron Difluoride Formazanate and Boron Difluoride Dipyrromethene Dyes. Chemistry 2023; 29:e202302548. [PMID: 37725661 DOI: 10.1002/chem.202302548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Dye-dye conjugates have attracted significant interest for their utility in applications such as bioimaging, theranostics, and light-harvesting. Many classes of organic dyes have been employed in this regard; however, building blocks don't typically extend beyond small chromophores. This can lead to minor changes to the optoelectronic properties of the original dye. The exploration of dye-dye structures is impeded by long synthetic routes, incompatible synthetic conditions, or a mismatch of the desired properties. Here, we present the first-of-their-kind dye-dye conjugates of boron difluoride complexes of formazanate and dipyrromethene ligands. These conjugates exhibit dual photoluminescence bands that reach the near-infrared spectral region and implicate anti-Kasha processes. Cyclic voltammetry experiments revealed the generation of polyanionic species that can reversibly tolerate the uptake of up to 6 electrons. Ultimately, we demonstrate that BF2 formazanates can serve as a synthetically accessible platform to build upon new classes of dye-dye conjugates.
Collapse
Affiliation(s)
- Francis L Buguis
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Nathan Sung Y Hsu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Sofia A Sirohey
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Matheus C Adam
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Lyudmila V Goncharova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| |
Collapse
|
10
|
Birara S, Saini S, Majumder M, Lama P, Tiwari SP, Metre RK. Design and synthesis of a solution-processed redox-active bis(formazanate) zinc complex for resistive switching applications. Dalton Trans 2023. [PMID: 38009276 DOI: 10.1039/d3dt02809g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
In this paper, we report the synthesis and characterization of a mononuclear zinc complex (1) containing a redox-active bis(4-antipyrinyl) derivative of the 3-cyanoformazanate ligand. Complex 1 was readily obtained by refluxing zinc acetate with 3-cyano-1,5-(4-antipyrinyl)formazan (LH) in a methanolic solution. Single-crystal X-ray diffraction analysis of complex 1 shows that the formazanate ligands bind to the zinc center in a five-member chelate "open" form via the 1- and 4-positions of the 1,2,4,5-tetraazapentadienyl formazanate backbone leading to the formation of the mononuclear bis(formazanate) zinc complex exhibiting a distorted octahedral geometry. We also report the study of resistive-switching random access memory application of this solution-processable bis(formazanate) Zn(II) complex to facilitate the practical implementation of transition metal complex-based molecular memory devices. The complex demonstrated high conductance switching with a large ON-OFF ratio, good stability, and a long retention time. A trap-controlled space charge limited current mechanism is proposed for the observed resistive switching behavior of the device, wherein the role played by the [ZnIIL2] complex that comprises the extended redox-active conjugated ligand backbone is revealed by corroborating electrochemical studies, spectrochemical experiments, and DFT calculations. In addition to providing significant insights into the molecular design of transition metal complexes for memory applications, this study also presents the utilization of ZnIIL2 towards the realization of non-volatile resistive random access memory (RRAM) devices with inorganic/organic hybrid active layers that are highly cost-effective and sustainable. These devices exhibited multilevel switching and low current operation, both of which are desirable for advanced memory applications.
Collapse
Affiliation(s)
- Sunita Birara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Shalu Saini
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Moumita Majumder
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Prem Lama
- CSIR-Indian Institute of Petroleum, Haridwar Road, Mokhampur, Dehradun-248005, India
| | - Shree Prakash Tiwari
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
11
|
Lin J, Meng H, Guo X, Tang Z, Yu S. Natural Aldehyde-Chitosan Schiff Base: Fabrication, pH-Responsive Properties, and Vegetable Preservation. Foods 2023; 12:2921. [PMID: 37569191 PMCID: PMC10418757 DOI: 10.3390/foods12152921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of the present work was to fabricate Schiff base compounds between chitosan and aldehydes and use the resultant aldehyde-chitosan Schiff bases for broccoli preservation. Using an element analyzer, the degree of substitution was calculated as 68.27-94.65%. The aldehyde-chitosan Schiff bases showed acidic sensitivity to rapid hydrolysis for releasing aldehyde at a buffer solution of pH 4-6, in which more than 39% of the aldehydes were released within 10 h. The release of aldehydes endows the aldehyde-chitosan Schiff bases with a better antibacterial activity at pH 5 than at pH 7. In a simulated CO2 (5-15%) atmosphere with high humidity (92%), the hydrolysis of imine bonds (C=N) was triggered and continuously released aldehyde, even without direct contact with the aqueous phase. The application of aldehyde-chitosan Schiff bases significantly extended the shelf life of broccoli from 4 d to 5-7 d and decreased the weight loss of broccoli during storage. In summary, the fabrication of aldehyde-chitosan Schiff bases and the strategy of using pH-response imine bond (C=N) hydrolysis (thus releasing aldehyde to kill microorganisms) were feasible for use in developing EO-incorporated intelligent food packages for vegetable preservation.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Hecheng Meng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zhongsheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521011, China
| | - Shujuan Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| |
Collapse
|
12
|
Chaihan K, Semakul N, Promarak V, Bui TT, Kungwan N, Goubard F. Tunable far-red fluorescence utilizing π-extension and substitution on the excited state intramolecular proton transfer (ESIPT) of naphthalene-based Schiff bases: A combined experimental and theoretical study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Nemez DB, Lozada IB, Braun JD, Williams JAG, Herbert DE. Synthesis and Coordination Chemistry of a Benzannulated Bipyridine: 6,6'-Biphenanthridine. Inorg Chem 2022; 61:13386-13398. [PMID: 35972335 DOI: 10.1021/acs.inorgchem.2c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, characterization, and coordination chemistry of a doubly π-extended bipyridine analogue, 6,6'-biphenanthridine (biphe), is presented. The structure of the molecule has been determined in the solid state by X-ray diffraction, showing an angle of 72.6° between the phenanthridine planes. The free, uncoordinated organic molecule displays blue fluorescence in solution. It can be singly protonated with strong acids, and the protonated form displays more intense yellow emission. The effect of acid on the excited states is interpreted with the aid of TDDFT calculations. Two Ru(II) coordination complexes, tris(6,6'-biphenanthridine)ruthenium(II) dichloride, [Ru(biphe)3]Cl2, and bis(2,2'-bipyridine)(6,6'-biphenanthridine)ruthenium(II) tetraphenylborate, [Ru(bpy)2(biphe)](BPh4)2, are also reported and their structures determined in the solid state by X-ray diffraction. Both complexes display emission at 77 K that is strongly bathochromically shifted by almost 200 nm compared to that of the archetypal 3MLCT emitter [Ru(bpy)3]2+. Such a red shift is consistent with the more extended conjugation and lower-energy π* orbitals associated with the biphe ligand, lowering the energy of the 3MLCT excited state, as revealed by TDDFT calculations. The efficient non-radiative decay that is typical of such low-energy emitters renders the phosphorescence extremely weak and short-lived at ambient temperature, and rapid ligand photodissociation also competes with radiative decay, especially in the heteroleptic complex. Electrochemical analysis illustrates the effect of biphe's stabilized vacant π* manifold, with multiple reversible reductions evident at much less negative potentials than those observed for [Ru(bpy)3]2+.
Collapse
Affiliation(s)
- Dion B Nemez
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Issiah B Lozada
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jason D Braun
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | | | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
14
|
Li JL, Xiong X, Luo D, Wei YB, Lu W, Li D. Formaldehyde recognition through aminal formation in a luminescent metal-organic framework. Chem Commun (Camb) 2022; 58:6490-6493. [PMID: 35550653 DOI: 10.1039/d2cc02041f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isostructural pillar-layer MOFs (JNU-105 and JNU-105-(NH2)2) have been successfully synthesized. JNU-105-(NH2)2 exhibits a red-shifted luminescence "turn on" for formaldehyde without the interference from other VOCs and a detection limit of 1.87 ppb. In situ single-crystal transformation studies confirm the aminal formation on the pillar linker, which was attributed to the exclusive luminescence response toward formaldehyde.
Collapse
Affiliation(s)
- Jia-Li Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Xiao Xiong
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Yu-Bai Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
15
|
Cappello D, Buguis FL, Boyle PD, Gilroy JB. Dual Emission, Aggregation, and Redox Properties of Boron Difluoride Hydrazones Functionalized with Triphenylamines. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Cappello
- The University of Western Ontario Department of Chemistry CANADA
| | | | - Paul D. Boyle
- The University of Western Ontario Department of Chemistry CANADA
| | - Joe B. Gilroy
- The University of Western Ontario Department of Chemistry 1151 Richmond St. N. N6A 5B7 London CANADA
| |
Collapse
|
16
|
Protasenko NA, Arsenyev MV, Baranov EV, Starikova AA, Bogomyakov AS, Cherkasov VK. Heteroligand o‐Semiquinonato Cobalt Complexes of 3‐Cyano and 3‐Nitroformazans. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Natalia Alexeevna Protasenko
- Institut metalloorganičeskoj himii imeni G A Razuvaeva Rossijskoj akademii nauk: FGBUN Institut metalloorganiceskoj himii im G A Razuvaeva Rossijskoj akademii nauk Laboratory of metal complexes with redox-active ligands Tropinina, 49 603137 Nizhny Novgorod RUSSIAN FEDERATION
| | - Maxim V Arsenyev
- Institut metalloorganičeskoj himii imeni G A Razuvaeva Rossijskoj akademii nauk: FGBUN Institut metalloorganiceskoj himii im G A Razuvaeva Rossijskoj akademii nauk Photopolymerization and pollymeric materialc laboratory RUSSIAN FEDERATION
| | - Evgeny V Baranov
- Institut metalloorganičeskoj himii imeni G A Razuvaeva Rossijskoj akademii nauk: FGBUN Institut metalloorganiceskoj himii im G A Razuvaeva Rossijskoj akademii nauk X-ray Diffraction Research Sector RUSSIAN FEDERATION
| | - Alyona A Starikova
- Southern Federal University: Uznyj federal'nyj universitet Institute of Physical and Organic Chemistry 194/2 Stachka Avenue 344090 Rostov-on-Don RUSSIAN FEDERATION
| | - Artem S Bogomyakov
- International Tomography Center SB RAS: Mezdunarodnyj tomograficeskij centr SO RAN Laboratory Organic Paramagnetics and Magnetochemistry Institutskaya Street 3a 630090 Novosibirsk RUSSIAN FEDERATION
| | - Vladimir K Cherkasov
- Institut metalloorganičeskoj himii imeni G A Razuvaeva Rossijskoj akademii nauk: FGBUN Institut metalloorganiceskoj himii im G A Razuvaeva Rossijskoj akademii nauk Laboratory of metal complexes with redox-active ligands Tropinina Street 49 603137 Nizhny Novgorod RUSSIAN FEDERATION
| |
Collapse
|
17
|
Near-infrared-emissive π-conjugated polymers based on five-coordinated silicon formazanate complexes. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
2-(4-(Dimethylamino)phenyl)-3,3-difluoro-4,6-diphenyl-3,4-dihydro-1,2,4,5,3-tetrazaborinin-2-ium-3-ide. MOLBANK 2021. [DOI: 10.3390/m1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reaction of 1-(4-(dimethylamino)phenyl)-3,5-diphenylformazane with boron trifluoride diethyl etherate (5 equiv) in the presence of triethylamine (3 equiv) in toluene medium gave “boratetrazine”—2-(4-(dimethylamino)phenyl)-3,3-difluoro-4,6-diphenyl-3,4-dihydro -1,2,4,5,3-tetrazaborinin-2-ium-3-ide in a 58% yield.
Collapse
|
19
|
Dhindsa JS, Buguis FL, Anghel M, Gilroy JB. Band Gap Engineering in Acceptor-Donor-Acceptor Boron Difluoride Formazanates. J Org Chem 2021; 86:12064-12074. [PMID: 34355898 DOI: 10.1021/acs.joc.1c01416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
π-Conjugated molecules with acceptor-donor-acceptor (A-D-A) electronic structures make up an important class of materials due to their tunable optoelectronic properties and applications in, for example, organic light-emitting diodes, nonlinear optical devices, and organic solar cells. The frontier molecular orbital energies, and thus band gaps, of these materials can be tuned by varying the donor and acceptor traits and π-electron counts of the structural components. Herein, we report the synthesis and characterization of a series of A-D-A compounds consisting of BF2 formazanates as electron acceptors bridged by a variety of π-conjugated donors. The results, which are supported by density functional theory calculations, demonstrate rational control of optoelectronic properties and the ability to tune the corresponding band gaps. The narrowest band gaps (EgOpt = 1.38 eV and EgCV = 1.21 eV) were observed when BF2 formazanates and benzodithiophene units were combined. This study provides significant insight into the band gap engineering of materials derived from BF2 formazanates and will inform their future development as semiconductors for use in organic electronics.
Collapse
Affiliation(s)
- Jasveer S Dhindsa
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Francis L Buguis
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Michael Anghel
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
20
|
Das R, Bej S, Hirani H, Banerjee P. Trace-Level Humidity Sensing from Commercial Organic Solvents and Food Products by an AIE/ESIPT-Triggered Piezochromic Luminogen and ppb-Level "OFF-ON-OFF" Sensing of Cu 2+: A Combined Experimental and Theoretical Outcome. ACS OMEGA 2021; 6:14104-14121. [PMID: 34124433 PMCID: PMC8190783 DOI: 10.1021/acsomega.1c00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Selective and sensitive moisture sensors have attracted immense attention due to their ability to monitor the humidity content in industrial solvents, food products, etc., for regulating industrial safety management. Herein, a hydroxy naphthaldehyde-based piezochromic luminogen, namely, 1-{[(2-hydroxyphenyl)imino]methyl}naphthalen-2-ol (NAP-1), has been synthesized and its photophysical and molecular sensing properties have been investigated by means of various spectroscopic tools. Owing to the synergistic effect of both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) along with the restriction of C=N isomerization, the probe shows bright yellowish-green-colored keto emission with high quantum yield after the interaction with a trace amount of water. This makes NAP-1 a potential sensor for monitoring water content in the industrial solvents with very low detection limits of 0.033, 0.032, 0.034, and 0.033% (v/v) from tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), and methanol, respectively. The probe could be used in the food industry to detect trace moisture in the raw food samples. The reversible switching behavior of NAP-1 makes it suitable for designing an INHIBIT logic gate with an additional application in inkless writing. In addition, an Internet of Things-(IoT) based prototype device has been proposed for on-site monitoring of the moisture content by a smartphone via Bluetooth or Wi-Fi. The aggregated probe also has the ability to recognize Cu2+ from a purely aqueous medium via the chelation-enhanced quenching (CHEQ) mechanism, leading to ∼84% fluorescence quenching with a Stern-Volmer quenching constant of 1.46 × 104 M-1 and with an appreciably low detection threshold of 57.2 ppb, far below than recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (U.S. EPA). The spectroscopic and theoretical calculations (density functional theory (DFT), time-dependent DFT (TD-DFT), and natural bond orbital (NBO) analysis) further empower the understanding of the mechanistic course of the interaction of the host-guest recognition event.
Collapse
Affiliation(s)
- Riyanka Das
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Sourav Bej
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Harish Hirani
- CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India
- Mechanical
Engineering Department, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Priyabrata Banerjee
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
21
|
Maar RR, Katzman BD, Boyle PD, Staroverov VN, Gilroy JB. Cationic Boron Formazanate Dyes**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Benjamin D. Katzman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Paul D. Boyle
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
22
|
Kawano Y, Ito Y, Ito S, Tanaka K, Chujo Y. π-Conjugated Copolymers Composed of Boron Formazanate and Their Application for a Wavelength Converter to Near-Infrared Light. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yuki Kawano
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshinori Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Maar RR, Katzman BD, Boyle PD, Staroverov VN, Gilroy JB. Cationic Boron Formazanate Dyes*. Angew Chem Int Ed Engl 2021; 60:5152-5156. [PMID: 33217138 DOI: 10.1002/anie.202015036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Incorporation of cationic boron atoms into molecular frameworks is an established strategy for creating chemical species with unusual bonding and reactivity but is rarely thought of as a way of enhancing molecular optoelectronic properties. Using boron formazanate dyes as examples, we demonstrate that the wavelengths, intensities, and type of the first electronic transitions in BN heterocycles can be modulated by varying the charge, coordination number, and supporting ligands at the cationic boron atom. UV-vis absorption spectroscopy measurements and density-functional (DFT) calculations show that these modulations are caused by changes in the geometry and extent of π-conjugation of the boron formazanate ring. These findings suggest a new strategy for designing optoelectronic materials based on π-conjugated heterocycles containing boron and other main-group elements.
Collapse
Affiliation(s)
- Ryan R Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Benjamin D Katzman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Paul D Boyle
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond Street North, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
24
|
Buguis FL, Maar RR, Staroverov VN, Gilroy JB. Near‐Infrared Boron Difluoride Formazanate Dyes. Chemistry 2021; 27:2854-2860. [DOI: 10.1002/chem.202004793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Francis L. Buguis
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
25
|
Mondal R, Braun JD, Lozada IB, Nickel R, van Lierop J, Herbert DE. Group VIII coordination complexes of bidentate P^N ligands bearing π-extended quinoline or phenanthridine N-heterocycles. NEW J CHEM 2021. [DOI: 10.1039/d1nj00254f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Group 8 complexes of π-extended N-heterocyclic ligands present some unexpected results. Benzannulation shifts the lowest energy excitation to the blue by impacting the character of the transition rather than affecting frontier orbital energies.
Collapse
Affiliation(s)
| | - Jason D. Braun
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
| | | | - Rachel Nickel
- Department of Physics and Astronomy
- University of Manitoba
- Winnipeg
- Canada
| | - Johan van Lierop
- Department of Physics and Astronomy
- University of Manitoba
- Winnipeg
- Canada
- Manitoba Institute for Materials
| | - David E. Herbert
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
- Manitoba Institute for Materials
| |
Collapse
|
26
|
Tikhonov SA, Sidorin AE, Samoilov IS, Borisenko AV, Vovna VI. Photoelectron spectra and electronic structure of boron diacetate formazanates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118441. [PMID: 32403076 DOI: 10.1016/j.saa.2020.118441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The electronic structure and cationic states of two 1,5-diphenylformazanes and two boron diacetate (B(OAc)2) formazanates were modeled using the outer valence Green's function (OVGF) and density functional theory (DFT) methods. Comparison of data of the OVGF and ultraviolet photoelectron spectroscopy (UPS) methods made it possible to determine an effect of functional groups and complexing agents on energies of cationic states. Addition of NO2-group at the γ-position of the chelate cycle causes stabilization of levels the five upper occupied molecular orbitals (MO) and destabilization of the bonding orbital π3Ph + π3 level. The levels of MOs π3Ph-π3 and n- are stabilized due to influence of the complexing agent B(OAc)2, with a difference in the shift of 0.67 eV. The ionization energies (In) changes for the π-orbitals of benzene rings are within the error of the OVGF method. Under methylation of phenyl groups, the differences between the calculated In, corresponding to the π-orbitals of aromatic substituents, are in good agreement with the experimental In shifts at transition from benzene to toluene. According to the OVGF method, in all the studied complexes the lowest unoccupied molecular orbital (LUMO) is localized mainly on the chelate cycle and has a strong acceptor character, which should contribute the low-lying charge-transfer electronic excitations. Moreover, an application of the DFT analog of the Koopmans' theorem with the BHHLYP and B2PLYP functionals made it possible to determine qualitatively a sequence of cationic states and energy intervals between them in the spectral range up to 10 eV. The DFT/wB97x/cc-pVTZ method data on the energy gap between the highest occupied molecular orbital (HOMO) and LUMO levels correlate with the OVGF/cc-pVTZ calculation results.
Collapse
Affiliation(s)
- Sergey A Tikhonov
- Far Eastern Federal University, School of Natural Sciences, Vladivostok 690950, Russian Federation.
| | - Andrey E Sidorin
- Far Eastern Federal University, School of Natural Sciences, Vladivostok 690950, Russian Federation
| | - Ilya S Samoilov
- Saint Petersburg State University, Department of Photonics, St. Petersburg 199034, Russian Federation
| | - Aleksandr V Borisenko
- Vladivostok Branch of Russian Customs Academy, Vladivostok 690034, Russian Federation
| | - Vitaliy I Vovna
- Far Eastern Federal University, School of Natural Sciences, Vladivostok 690950, Russian Federation
| |
Collapse
|
27
|
Chakraborty S, Joseph MM, Varughese S, Ghosh S, Maiti KK, Samanta A, Ajayaghosh A. A new pentacyclic pyrylium fluorescent probe that responds to pH imbalance during apoptosis. Chem Sci 2020; 11:12695-12700. [PMID: 34094464 PMCID: PMC8162809 DOI: 10.1039/d0sc02623a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient fluorophores with easy synthetic routes and fast responses are of great importance in clinical diagnostics. Herein, we report a new, rigid pentacyclic pyrylium fluorophore, PS-OMe, synthesised in a single step by a modified Vilsmeier-Haack reaction. Insights into the reaction mechanism facilitated a new reaction protocol for the efficient synthesis of PS-OMe which upon demethylation resulted in a "turn-on" pH sensor, PS-OH. This new fluorescent probe has been successfully used to monitor intracellular acidification at physiological pH. From the fluorescence image analysis, we were able to quantify the intracellular dynamic pH change during apoptosis. This new pH probe is a potential chemical tool for screening, drug discovery and dose determination in cancer therapy.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Samrat Ghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Animesh Samanta
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Department of Chemistry, Shiv Nadar University NH91, Dadri, Gautam Buddh Nagar 201314 India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| |
Collapse
|
28
|
Cappello D, Maar RR, Staroverov VN, Gilroy JB. Optoelectronic Properties of Carbon‐Bound Boron Difluoride Hydrazone Dimers. Chemistry 2020; 26:5522-5529. [DOI: 10.1002/chem.202000533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Daniela Cappello
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Ryan R. Maar
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry, and Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
29
|
Li G, Zhao M, Xie J, Yao Y, Mou L, Zhang X, Guo X, Sun W, Wang Z, Xu J, Xue J, Hu T, Zhang M, Li M, Hong L. Efficient synthesis of cyclic amidine-based fluorophores via 6π-electrocyclic ring closure. Chem Sci 2020; 11:3586-3591. [PMID: 34094046 PMCID: PMC8152618 DOI: 10.1039/d0sc00798f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Novel 10π-electron cyclic amidines with excellent fluorescence properties were synthesized by a general and efficient 6π-electrocyclic ring closure of ketenimine and imine starting from N-sulfonyl triazoles and arylamines. The photophysical properties of cyclic amidine fluorophores have been studied in detail and have shown good properties of a large Stokes shift, pH insensitivity, low cytotoxicity and higher photostability, which have great potential for biological imaging. Furthermore, this novel fluorophore was successfully applied to the localization of the NK-1 receptor in living systems. Novel 10π-electron cyclic amidines with excellent fluorescence properties were synthesized by a general and efficient 6π-electrocyclic ring closure of ketenimine and imine starting from N-sulfonyl triazoles and arylamines.![]()
Collapse
Affiliation(s)
- Guofeng Li
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Man Zhao
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Ying Yao
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Xiaowei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Zheng Wang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiecheng Xu
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Jianzhong Xue
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Tao Hu
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Ming Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
30
|
Muller FM, von Eschwege KG, Conradie J. Conformational preference of nitroformazans: A computational study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Gilroy JB, Otten E. Formazanate coordination compounds: synthesis, reactivity, and applications. Chem Soc Rev 2020; 49:85-113. [DOI: 10.1039/c9cs00676a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorganic complexes of an emerging class of chelating N-donor ligands, formazanates, offer a unique combination of structurally tunable coordination modes, redox activity, and optoelectronic properties.
Collapse
Affiliation(s)
- Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario
- London
- Canada
| | - Edwin Otten
- Stratingh Institute for Chemistry
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| |
Collapse
|
32
|
Kumar C, Agrawal AR, Ghosh NG, Karmakar HS, Das S, Kumar NR, Banewar VW, Zade SS. Boron difluoride formazanates with thiophene and 3,4-ethylenedioxythiophene capping and their electrochemical polymerization. Dalton Trans 2020; 49:13202-13206. [DOI: 10.1039/d0dt02905j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BF2 formazanates with thiophene and 3,4-ethylenedioxythiophene capping, prospective candidates for ambipolar semiconductors, have been synthesized and polymerized electrochemically.
Collapse
Affiliation(s)
- Chandan Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur-741246
- India
| | - Abhijeet R. Agrawal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur-741246
- India
| | - Nani Gopal Ghosh
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur-741246
- India
| | - Himadri S. Karmakar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur-741246
- India
| | - Sarasija Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur-741246
- India
| | - Neha Rani Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur-741246
- India
| | - Vishal W. Banewar
- Department of Chemistry
- Institute of Science
- 15-Madam Cama Road
- Fort-Mumbai, Maharashtra-400032
- India
| | - Sanjio S. Zade
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur-741246
- India
| |
Collapse
|
33
|
Dhindsa JS, Melenbacher A, Barbon SM, Stillman MJ, Gilroy JB. Altering the optoelectronic properties of boron difluoride formazanate dyes via conjugation with platinum(ii)-acetylides. Dalton Trans 2020; 49:16133-16142. [DOI: 10.1039/c9dt03417j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The absorption, emission, and electrochemical properties of conjugates of boron difluoride formazanate dyes and Pt(ii)-acetylides are systematically studied.
Collapse
Affiliation(s)
- Jasveer S. Dhindsa
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| | - Adyn Melenbacher
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Stephanie M. Barbon
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| | | | - Joe B. Gilroy
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)
| |
Collapse
|
34
|
Sharma N, Barbon SM, Lalonde T, Maar RR, Milne M, Gilroy JB, Luyt LG. The development of peptide–boron difluoride formazanate conjugates as fluorescence imaging agents. RSC Adv 2020; 10:18970-18977. [PMID: 35518290 PMCID: PMC9053952 DOI: 10.1039/d0ra02104k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022] Open
Abstract
Two new fluorescence imaging probes have been synthesized by incorporating a versatile alkyne-substituted boron difluoride formazanate precursor with peptides through copper-catalyzed alkyne–azide cycloaddition. The formazanate dye was appended to a C-terminal amino acid of ghrelin for imaging the growth hormone secretagogue receptor (GHSR-1a). To demonstrate versatile bioconjugation chemistry, the formazanate dye was added to the N-terminus of bombesin for targeting the gastrin releasing peptide receptor (GRPR). These are the first examples of using this emerging class of dyes, boron difluoride formazanates, for the labelling of biomolecules. Conjugation of a boron difluoride formazanate dye to receptor targeting peptides provides cancer imaging agents for fluorescence microscopy.![]()
Collapse
Affiliation(s)
- Neha Sharma
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | | | - Tyler Lalonde
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Ryan R. Maar
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Mark Milne
- London Regional Cancer Program
- Lawson Health Research Institute
- London
- Canada
| | - Joe B. Gilroy
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | - Leonard G. Luyt
- Department of Chemistry
- University of Western Ontario
- London
- Canada
- London Regional Cancer Program
| |
Collapse
|
35
|
Melenbacher A, Dhindsa JS, Gilroy JB, Stillman MJ. Unveiling the Hidden, Dark, and Short Life of a Vibronic State in a Boron Difluoride Formazanate Dye. Angew Chem Int Ed Engl 2019; 58:15339-15343. [DOI: 10.1002/anie.201908999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Adyn Melenbacher
- Department of ChemistryThe University of Western Ontario London Ontario N6A 5B7 Canada
| | - Jasveer S. Dhindsa
- Department of ChemistryThe University of Western Ontario London Ontario N6A 5B7 Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of ChemistryThe University of Western Ontario London Ontario N6A 5B7 Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR)The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Martin J. Stillman
- Department of ChemistryThe University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
36
|
Melenbacher A, Dhindsa JS, Gilroy JB, Stillman MJ. Unveiling the Hidden, Dark, and Short Life of a Vibronic State in a Boron Difluoride Formazanate Dye. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Jasveer S. Dhindsa
- Department of Chemistry The University of Western Ontario London Ontario N6A 5B7 Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry The University of Western Ontario London Ontario N6A 5B7 Canada
- The Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Martin J. Stillman
- Department of Chemistry The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
37
|
Kabir E, Mu G, Momtaz DA, Bryce NA, Teets TS. Formazanate Complexes of Bis-Cyclometalated Iridium. Inorg Chem 2019; 58:11672-11683. [DOI: 10.1021/acs.inorgchem.9b01657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Evanta Kabir
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Ge Mu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - David A. Momtaz
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Noah A. Bryce
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
38
|
|
39
|
Maar RR, Hoffman NA, Staroverov VN, Gilroy JB. Oxoborane Formation Turns on Formazanate‐Based Photoluminescence. Chemistry 2019; 25:11015-11019. [DOI: 10.1002/chem.201902419] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| | - Nicholas A. Hoffman
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| | - Viktor N. Staroverov
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London, Ontario N6A 5B7 Canada
| |
Collapse
|
40
|
Mondol R, Otten E. Aluminum Complexes with Redox-Active Formazanate Ligand: Synthesis, Characterization, and Reduction Chemistry. Inorg Chem 2019; 58:6344-6355. [PMID: 30978008 PMCID: PMC6506801 DOI: 10.1021/acs.inorgchem.9b00553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
synthesis of aluminum complexes with redox-active formazanate
ligands is described. Salt metathesis using AlCl3 was shown
to form a five-coordinate complex with two formazanate ligands, whereas
organometallic aluminum starting materials yield tetrahedral mono(formazanate)
aluminum compounds. The aluminum diphenyl derivative was successfully
converted to the iodide complex (formazanate)AlI2, and
a comparison of spectroscopic/structural data for these new complexes
is provided. Characterization by cyclic voltammetry is supplemented
by chemical reduction to demonstrate that ligand-based redox reactions
are accessible in these compounds. The possibility to obtain a formazanate
aluminum(I) carbenoid species by two-electron reduction was examined
by experimental and computational studies, which highlight the potential
impact of the nitrogen-rich formazanate ligand on the electronic structure
of compounds with this ligand. The synthesis of a series
of aluminum complexes with redox-active
formazanate ligands is described and crystallographic, spectroscopic,
and voltammetric characterization data are presented. The reduction
chemistry of these newly synthesized complexes has been explored and
the results are supported by a computational (DFT) study.
Collapse
Affiliation(s)
- Ranajit Mondol
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
41
|
Han X, Yang J, Liu YY, Xu GH, Ma JF. Metal ion induced single-crystal-to-single-crystal transformation and luminescent sensing properties of resorcin[4]arene-based metal–organic frameworks. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Maar RR, Zhang R, Stephens DG, Ding Z, Gilroy JB. Near‐Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angew Chem Int Ed Engl 2019; 58:1052-1056. [DOI: 10.1002/anie.201811144] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ruizhong Zhang
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - David G. Stephens
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Zhifeng Ding
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
43
|
Vinayakumara DR, Swamynathan K, Kumar S, Adhikari AV. Columnar self-assembly of novel benzylidenehydrazones and their difluoroboron complexes: structure–property correlations. NEW J CHEM 2019. [DOI: 10.1039/c9nj01192g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of prospective columnar liquid crystalline materials derived from novel organoboron complexes has been developed by virtue of their application in organic electronic devices.
Collapse
Affiliation(s)
- D. R. Vinayakumara
- Organic Materials Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka
- Mangalore-575 025
- India
| | | | - Sandeep Kumar
- SCM Group
- Raman Research Institute
- Bangalore-560 080
- India
| | - Airody Vasudeva Adhikari
- Organic Materials Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka
- Mangalore-575 025
- India
| |
Collapse
|
44
|
Maar RR, Zhang R, Stephens DG, Ding Z, Gilroy JB. Near‐Infrared Photoluminescence and Electrochemiluminescence from a Remarkably Simple Boron Difluoride Formazanate Dye. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811144] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ryan R. Maar
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Ruizhong Zhang
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - David G. Stephens
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Zhifeng Ding
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and The Centre for Advanced Materials and Biomaterials ResearchThe University of Western Ontario 1151 Richmond Street North London Ontario N6A 5B7 Canada
| |
Collapse
|
45
|
Van Belois A, Maar RR, Workentin MS, Gilroy JB. Dialkynylborane Complexes of Formazanate Ligands: Synthesis, Electronic Properties, and Reactivity. Inorg Chem 2018; 58:834-843. [DOI: 10.1021/acs.inorgchem.8b02966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alex Van Belois
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ryan R. Maar
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mark S. Workentin
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
46
|
Mondol R, Otten E. Reactivity of Two-Electron-Reduced Boron Formazanate Compounds with Electrophiles: Facile N-H/N-C Bond Homolysis Due to the Formation of Stable Ligand Radicals. Inorg Chem 2018; 57:9720-9727. [PMID: 29446931 PMCID: PMC6106049 DOI: 10.1021/acs.inorgchem.8b00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The reactivity of
a boron complex with a redox-active formazanate ligand, LBPh2 [L = PhNNC(p-tol)NNPh], was studied. Two-electron
reduction of this main-group complex generates the stable, nucleophilic
dianion [LBPh2]2–, which reacts with
the electrophiles BnBr and H2O to form products that derive
from ligand benzylation and protonation, respectively. The resulting
complexes are anionic boron analogues of leucoverdazyls. N–C
and N–H bond homolysis of these compounds was studied by exchange
NMR spectroscopy and kinetic experiments. The weak N–C and
N–H bonds in these systems derive from the stability of the
resulting borataverdazyl radical, in which the unpaired electron is
delocalized over the four N atoms in the ligand backbone. We thus
demonstrate the ability of this system to take up two electrons and
an electrophile (E+ = Bn+, H+) in
a process that takes place on the organic ligand. In addition, we
show that the [2e–/E+] stored on the
ligand can be converted to E• radicals, reactivity
that has implications in energy storage applications such as hydrogen
evolution. A boron complex with a redox-active
formazanate ligand in its two-electron-reduced state is shown to react
with electrophiles (BnBr and H+). The resulting “borataleucoverdazyl”
products have weak N−C and N−H bonds; homolytic cleavage
reactions lead to stable ligand-based radicals. Thus, the accumulation
of [2e−/E+] on the formazanate ligand
and conversion to E• radicals are demonstrated,
and their potential relevance in energy-related electrocatalysis (e.g.,
proton reduction) is discussed.
Collapse
Affiliation(s)
- Ranajit Mondol
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
47
|
Kabir E, Patel D, Clark K, Teets TS. Spectroscopic and Electrochemical Properties of Electronically Modified Cycloplatinated Formazanate Complexes. Inorg Chem 2018; 57:10906-10917. [DOI: 10.1021/acs.inorgchem.8b01543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evanta Kabir
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Dhruti Patel
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Kevin Clark
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
48
|
Milocco F, Demeshko S, Meyer F, Otten E. Ferrate(ii) complexes with redox-active formazanate ligands. Dalton Trans 2018; 47:8817-8823. [PMID: 29922783 DOI: 10.1039/c8dt01597j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of mono(formazanate) iron complexes is described. In the presence of tetrabutylammonium halides, salt metathesis reactions afford the ferrate(ii) complexes [Bu4N][LFeX2] (L = PhNNC(p-tol)NNPh; X = Cl, Br) in good yield, and the products are characterized in detail. The high-spin ferrate(ii) complexes show cyclic voltammograms that are consistent with reversible, ligand-based one-electron reduction. The halides in these ferrate(ii) compounds are labile, and are displaced by 4-methoxyphenyl isocyanide (4 equiv.) as evidenced by formation of the low-spin, cationic octahedral complex [LFe(CNC6H4(p-OMe))4][Br]. Thus, a straightforward route to mono(formazanate) iron(ii) complexes is established.
Collapse
Affiliation(s)
- Francesca Milocco
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Tikhonov SA, Vovna VI. Boron chelate complexes: X-ray and UV photoelectron spectra and electronic structure. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2196-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Lei ZY, Lee GH, Lai CK. Luminescent mesogenic borondifluoride complexes with the Schiff bases containing salicylideneamines and β-enaminoketones core systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|