1
|
Rao RN, Das S, Jacob K, Alam MM, Balamurali MM, Chanda K. Synthetic access to diverse thiazetidines via a one-pot microwave assisted telescopic approach and their interaction with biomolecules. Org Biomol Chem 2024; 22:3249-3261. [PMID: 38568016 DOI: 10.1039/d4ob00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A one-pot microwave assisted telescopic approach is reported for the chemo-selective synthesis of substituted 1,3-thiazetidines using readily available 2-aminopyridines/pyrazines/pyrimidine, substituted isothiocyanates and 1,2-dihalomethanes. The procedure involves thiourea formation from 2-aminopyridines/pyrazines/pyrimidine with the substituted isothiocyanates followed by a base catalysed nucleophilic attack of the CS bond on the 1,2-dihalomethane. Subsequently, a cyclization reaction occurs to yield substituted 1,3-thiazetidines. These four membered strained ring systems are reported to possess broad substrate scope with high functional group tolerance. The above synthetic sequence for the formation of four membered heterocycles is proven to be a modular and straightforward approach. Further the mechanistic pathway for the formation of 1,3-thiazetidines was supported by computational evaluations and X-ray crystallography analyses. The relevance of these thiazetidines in biological applications is evaluated by studying their ability to bind bio-macromolecules like proteins and nucleic acids.
Collapse
Affiliation(s)
- Ramdas Nishanth Rao
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| | - Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| | - Kezia Jacob
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, 600027, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
- Department of Chemistry, Rabindranath Tagore University, Hojai 782435, Assam, India
| |
Collapse
|
2
|
Murthy S, Nizi MG, Maksimainen MM, Massari S, Alaviuhkola J, Lippok BE, Vagaggini C, Sowa ST, Galera-Prat A, Ashok Y, Venkannagari H, Prunskaite-Hyyryläinen R, Dreassi E, Lüscher B, Korn P, Tabarrini O, Lehtiö L. [1,2,4]Triazolo[3,4- b]benzothiazole Scaffold as Versatile Nicotinamide Mimic Allowing Nanomolar Inhibition of Different PARP Enzymes. J Med Chem 2023; 66:1301-1320. [PMID: 36598465 PMCID: PMC9884089 DOI: 10.1021/acs.jmedchem.2c01460] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.
Collapse
Affiliation(s)
- Sudarshan Murthy
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Maria Giulia Nizi
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Mirko M. Maksimainen
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Serena Massari
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy
| | - Juho Alaviuhkola
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Barbara E. Lippok
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Chiara Vagaggini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Sven T. Sowa
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Albert Galera-Prat
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Yashwanth Ashok
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | - Harikanth Venkannagari
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland
| | | | - Elena Dreassi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, SienaI-53100, Italy
| | - Bernhard Lüscher
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Patricia Korn
- Institute
of Biochemistry and Molecular Biology, RWTH
Aachen University, Aachen52074, Germany
| | - Oriana Tabarrini
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia06123, Italy,
| | - Lari Lehtiö
- Faculty
of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu90220, Finland,
| |
Collapse
|
3
|
Dasmahapatra U, Rajasekhar S, Neelima G, Maiti B, Karuppasamy R, Murali P, Mm B, Chanda K. In Silico Design and Investigation of Novel Thiazetidine Derivatives as Potent Inhibitors of PrpR in Mycobacterium tuberculosis. Chem Biodivers 2023; 20:e202200925. [PMID: 36519809 DOI: 10.1002/cbdv.202200925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Tuberculosis is one of the most life-threatening acute infectious diseases diagnosed in humans. In the present investigation, a series of 16 new disubstituted 1,3-thiazetidines derivatives is designed, and investigated via various in silico methods for their potential as anti-tubercular agent by evaluating their ability to block the active site of PrpR transcription factor protein of Mycobacterium tuberculosis. The efficacy of the molecules was initially assessed with the help of AutoDock Vina algorithm. Further Glide module is used to redock the previously docked complexes. The binding energies and other physiochemical properties of the designed molecules were evaluated using the Prime-MM/GBSA and the QikProp module, respectively. The results of docking revealed the nature, site of interaction and the binding affinity between the proposed candidates and the active site of PrpR. Further the inhibitory effect of the scaffolds was predicted and evaluated employing a machine learning-based algorithm and was used accordingly. Further, the molecular dynamics simulation studies ascertained the binding characteristics of the unique 13, when analysed across a time frame of 100 ns with GROMACS software. The results show that the proposed 1,3-thiazetidine derivatives such as 10, 11, 13 and 14 could be potent and selective anti-tubercular agents as compared to the standard drug Pyrazinamide. Finally, this study concludes that designed thiazetidines can be employed as anti-tubercular agents. Undeniably, the results may guide the experimental biologists to develop safe and non-toxic drugs against tuberculosis by demanding further in vivo and in vitro analyses.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Sreerama Rajasekhar
- Department of Pharmaceutical Chemistry, Sri Venkateswara College of Pharmacy, Chittoor, Andhra Pradesh, India, 517127
| | - Grandhe Neelima
- Department of Pharmaceutical Chemistry, Sri Venkateswara College of Pharmacy, Chittoor, Andhra Pradesh, India, 517127
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Poornima Murali
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Balamurali Mm
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India, 600027
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| |
Collapse
|
4
|
Schriver MJ, George T, Masuda JD. Synthesis and crystal structure of 3-phenyl-1,4,2-di-thia-zole-5-thione. Acta Crystallogr E Crystallogr Commun 2022; 78:1006-1009. [PMID: 36250115 PMCID: PMC9535819 DOI: 10.1107/s205698902200888x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
In the title compound, C8H5NS3, the dihedral angle between the heterocyclic ring and the phenyl ring is 2.62 (5)°. In the extended structure, aromatic π-π stacking between the 1,4,2-di-thia-zole-5-thione moiety and the phenyl ring is observed [centroid-centroid distances = 3.717 (6) and 3.712 (6) Å]. The almost planar mol-ecules arrange themselves in parallel chains of head-to-tail mol-ecules oriented by a network of weak C-H⋯S contacts close to the sum of their van der Waals radii within the chains. All the hydrogen atoms participate in hydrogen-bonding inter-actions with the sulfur and nitro-gen atoms of adjacent mol-ecules. C=S⋯S contacts between the chains that are significantly shorter than the sum of their van der Waals radii also impact the overall packing.
Collapse
Affiliation(s)
- Melbourne J. Schriver
- Department of Chemistry, Crandall University, PO Box 6004, Moncton, New Brunswick, E1C 9L7, Canada
| | - Tanner George
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Jason D. Masuda
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
5
|
One-pot Hantzsch synthesis of unsymmetrical substituted pyridines via condensation of 1, 3-dicarbonyl compounds with DMF and 1, 1-dichloro-2-nitroethene. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Yang H, Xiong D, Peng Y, Shao X, Xu X, Li Z. Iron (
III
)‐catalyzed one‐pot synthesis of fused
4
H
‐pyran derivatives via
Knoevenagel‐Michael
‐cyclization reaction. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongchen Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Dongdong Xiong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Yanqing Peng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai China
| |
Collapse
|
7
|
An Z, Wang T, Liu Y, Ren Y, Yan R. A catalyst-free method for the synthesis of 1,4,2-dithiazoles from isothiocyanates and hydroxylamine triflic acid salts. Org Biomol Chem 2021; 19:6206-6209. [PMID: 34195750 DOI: 10.1039/d1ob00938a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free method for the preparation of 1,4,2-dithiazoles is developed by reactions of isothiocyanates with hydroxylamine triflic acid salts. This reaction achieves C-S, C-N, and S-N bond formation, and a range of products are obtained in moderate to good yields. The obvious feature is using shelf-stable hydroxylamine triflic acid salts as a N source to synthesize heterocycles under mild conditions.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ting Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yafeng Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan 750000, China
| | - Yi Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Patle R, Shinde S, Patel S, Maheshwari R, Jariyal H, Srivastava A, Chauhan N, Globisch C, Jain A, Tekade RK, Shard A. Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. Bioorg Med Chem Lett 2021; 42:128062. [PMID: 33901643 DOI: 10.1016/j.bmcl.2021.128062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Several studies have established that cancer cells explicitly over-express the less active isoform of pyruvate kinase M2 (PKM2) is critical for tumorigenesis. The activation of PKM2 towards tetramer formation may increase affinity towards phosphoenolpyruvate (PEP) and avoidance of the Warburg effect. Herein, we describe the design, synthesis, and development of boronic acid-based molecules as activators of PKM2. The designed molecules were inspired by existing anticancer scaffolds and several fragments were assembled in the derivatives. 6a-6d were synthesized using a multi-step synthetic strategy in 55-70% yields, starting from cheap and readily available materials. The compounds were selectively cytotoxic to kill the cancerous cells at 80 nM, while they were non-toxic to the normal cells. The kinetic studies established the compounds as novel activators of PKM2 and (E/Z)-(4-(3-(2-((4-chlorophenyl)amino)-4-(dimethylamino)thiazol-5-yl)-2-(ethoxycarbonyl)-3-oxoprop-1-en-1-yl) phenyl)boronic acid (6c) emerged as the most potent derivative. 6c was further evaluated using various in silico tools to understand the molecular mechanism of tetramer formation. Docking studies revealed that 6c binds to the PKM2 dimer at the dimeric interface. Further to ascertain the binding site and mechanism of action, rigorous MD (molecular dynamics) simulations were undertaken, which led to the conclusion that 6c stabilizes the center of the dimeric interface that possibly promotes tetramer formation. We further planned to make a tablet of the developed molecule for oral delivery, but it was seriously impeded owing to poor aqueous solubility of 6c. To improve aqueous solubility and retain 6c at the lower gastrointestinal tract, thiolated chitosan-based nanoparticles (TCNPs) were prepared and further developed as tablet dosage form to retain anticancer potency in the excised goat colon. Our findings may provide a valuable pharmacological mechanism for understanding metabolic underpinnings that may aid in the clinical development of new anticancer agents targeting PKM2.
Collapse
Affiliation(s)
- Rajkumar Patle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Shital Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rahul Maheshwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Akshay Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Neelam Chauhan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | | | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, India
| | - Rakesh K Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, India.
| |
Collapse
|
9
|
Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur J Med Chem 2019; 180:486-508. [PMID: 31330449 DOI: 10.1016/j.ejmech.2019.07.043] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
From many decades, S-heterocycles have maintained their status as an important part and core of FDA approved drugs and medicinally active compounds. With exhaustive exploration of nitrogen heterocycles in medicinal chemistry, researchers have shifted their interest towards other heterocycles, especially, S-heterocycles. Thus several attempts have been made to synthesize a variety of new sulphur containing compounds with high medicinal value and low toxicity profile, in comparison to previous N-heterocycles. Till today, S-heterocycle containing compounds have been largely reported as anticancer, antidiabetic, antimicrobial, antihypertension, antivral, antinflammatory etc. In this review, the authors have tried to provide a critical analysis of synthesis and medicinal attributes of sulphur containing heterocycles such as thiirane, thiophene, thiazole, thiopyran, thiazolidine etc reported within last five years to emphasize the significance and usefulness of these S-heterocycles in the drug discovery process.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India; Research Scholar, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Raj Kumar Narang
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India
| | - Ravindra K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, 133207, Haryana, India.
| |
Collapse
|