1
|
Park HA, Lee J, Oh DK. Efficient One-Step Production of 7S,17S- and 10S,17S-Dihydroxydocosahexaenoic Acids by a Double-Oxygenating 15S-Lipoxygenase From Chlamydomonas incerta. Biotechnol Bioeng 2025. [PMID: 40235172 DOI: 10.1002/bit.28997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/17/2025]
Abstract
Specialized pro-resolving mediators (SPMs), such as resolvin D5 (7S,17S-dihydroxydocosahexaenoic acid, 7S,17S-DiHDHA; RvD5) and protectin DX (10S,17S-DiHDHA; PDX), are critical in resolving inflammation in humans. In this study, a unique double-oxygenating 15S-lipoxygenase (15S-LOX) from the alga Chlamydomonas incerta was identified and characterized for its ability to simultaneously produce RvD5 and PDX from docosahexaenoic acid (DHA). Recombinant Escherichia coli expressing the C. incerta 15S-LOX demonstrated enhanced RvD5 and PDX production under the following optimized reaction conditions: pH 8.0, 25°C, 0.5 g dry cells/L, 7.0 mM DHA, 2.0% (w/v) PVP, 2.0% (v/v) DMSO, and 200 mM cysteine used as a reductant. This one-step biocatalytic process produced 2.91 mM (1.05 g/L) RvD5 and 2.18 mM (0.78 g/L) PDX in 90 min, with a total of 5.09 mM (1.83 g/L) and a total conversion yield of 79.6% (w/w). Compared to previously reported two-step biocatalytic processes, this one-step process significantly enhanced the production of particular PDX with improved productivity and simplicity. Structural analysis identified residues Phe667, Ile705, and Leu713 as regioselectivity modulators for the second oxygenation step. This study demonstrates the efficiency and industrial potential of the double-oxygenating LOX as a biocatalyst for simultaneously producing RvD5 and PDX.
Collapse
Affiliation(s)
- Hyun-Ah Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Tian Y, Sun J, Jiao D, Zhang W. The potential role of n-3 fatty acids and their lipid mediators on asthmatic airway inflammation. Front Immunol 2024; 15:1488570. [PMID: 39720728 PMCID: PMC11666451 DOI: 10.3389/fimmu.2024.1488570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Asthma, is a common, significant and diverse condition marked by persistent airway inflammation, with a major impact on human health worldwide. The predisposing factors for asthma are complex and widespread. The beneficial effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in asthma have increasingly attracted attention recently. In asthma therapy, n-3 PUFAs may reduce asthma risk by controlling on levels of inflammatory cytokines and regulating recruitment of inflammatory cells in asthma. The specialized pro-resolving mediators (SPMs) derived from n-3 PUFAs, including the E- and D-series resolvins, protectins, and maresins, were discovered in inflammatory exudates and their biosynthesis by lipoxygenase mediated pathways elucidated., SPMs alleviated T-helper (Th)1/Th17 and type 2 cytokine immune imbalance, and regulated macrophage polarization and recruitment of inflammatory cells in asthma via specific receptors such as formyl peptide receptor 2 (ALX/FPR2) and G protein-coupled receptor 32. In conclusion, the further study of n-3 PUFAs and their derived SPMs may lead to novel anti-inflammatory asthma treatments.
Collapse
Affiliation(s)
- Yuan Tian
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - JingMeng Sun
- Department of Pharmacy, First Hospital of Jilin University, Changchun, China
| | - DongMei Jiao
- Analytical Preparation Process Department, Shouyao Holdings (Beijing) Co., Ltd, Beijing, China
| | - WeiYu Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Tezcan G, Yakar N, Hasturk H, Van Dyke TE, Kantarci A. Resolution of chronic inflammation and cancer. Periodontol 2000 2024; 96:229-249. [PMID: 39177291 DOI: 10.1111/prd.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Chronic inflammation poses challenges to effective cancer treatment. Although anti-inflammatory therapies have shown short-term benefits, their long-term implications may be unfavorable because they fail to initiate the necessary inflammatory responses. Recent research underscores the promise of specialized pro-resolving mediators, which play a role in modulating the cancer microenvironment by promoting the resolution of initiated inflammatory processes and restoring tissue hemostasis. This review addresses current insights into how inflammation contributes to cancer pathogenesis and explores recent strategies to resolve inflammation associated with cancer.
Collapse
Affiliation(s)
- Gulcin Tezcan
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Nil Yakar
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas E Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Babar MU, Nassar AF, Nie X, Zhang T, He J, Yeung J, Norris P, Ogura H, Muldoon A, Chen L, Libreros S. Is Lipid Metabolism of Value in Cancer Research and Treatment? Part II: Role of Specialized Pro-Resolving Mediators in Inflammation, Infections, and Cancer. Metabolites 2024; 14:314. [PMID: 38921449 PMCID: PMC11205484 DOI: 10.3390/metabo14060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Acute inflammation is the body's first defense in response to pathogens or injury that is partially governed by a novel genus of endogenous lipid mediators that orchestrate the resolution of inflammation, coined specialized pro-resolving mediators (SPMs). SPMs, derived from omega-3-polyunstaturated fatty acids (PUFAs), include the eicosapentaenoic acid-derived and docosahexaenoic acid-derived Resolvins, Protectins, and Maresins. Herein, we review their biosynthesis, structural characteristics, and therapeutic effectiveness in various diseases such as ischemia, viral infections, periodontitis, neuroinflammatory diseases, cystic fibrosis, lung inflammation, herpes virus, and cancer, especially focusing on therapeutic effectiveness in respiratory inflammation and ischemia-related injuries. Resolvins are sub-nanomolar potent agonists that accelerate the resolution of inflammation by reducing excessive neutrophil infiltration, stimulating macrophage functions including phagocytosis, efferocytosis, and tissue repair. In addition to regulating neutrophils and macrophages, Resolvins control dendritic cell migration and T cell responses, and they also reduce the pro-inflammatory cytokines, proliferation, and metastasis of cancer cells. Importantly, several lines of evidence have demonstrated that Resolvins reduce tumor progression in melanoma, oral squamous cell carcinoma, lung cancer, and liver cancer. In addition, Resolvins enhance tumor cell debris clearance by macrophages in the tumor's microenvironment. Resolvins, with their unique stereochemical structure, receptors, and biosynthetic pathways, provide a novel therapeutical approach to activating resolution mechanisms during cancer progression.
Collapse
Affiliation(s)
- Muhammad Usman Babar
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ala F. Nassar
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jianwei He
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Paul Norris
- Sciex, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Hideki Ogura
- Department of Microbiology, Hyogo Medical University, Kobe 678-1297, Japan
| | - Anne Muldoon
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Stephania Libreros
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Ervik K, Reinertsen AF, Koenis DS, Dalli J, Hansen TV. Stereoselective Synthesis, Pro-resolution, and Anti-inflammatory Actions of RvD5 n-3 DPA. JOURNAL OF NATURAL PRODUCTS 2023; 86:2546-2553. [PMID: 37879110 PMCID: PMC10683074 DOI: 10.1021/acs.jnatprod.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/27/2023]
Abstract
The methyl ester of resolvin D5n-3 DPA, a lipid mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid, was stereoselectively prepared in 8% yield over 12 steps (longest linear sequence). The key steps for the introduction of the two stereogenic secondary alcohols were an organocatalyzed oxyamination and the Midland Alpine borane reduction. For the assembly of the carbon chain, the Sonogashira cross-coupling reaction and the Takai olefination were utilized. The physical properties, including retention time in liquid chromatography and tandem mass spectra, of the synthetic material were matched against material from human peripheral blood and mouse infectious exudates. Synthetic RvD5n-3 DPA, obtained just prior to biological experiments, displayed potent leukocyte-directed activities, upregulating the ability of neutrophils and macrophages to phagocytose bacteria, known as hallmark bioactions of specialized pro-resolving endogenous mediators.
Collapse
Affiliation(s)
- Karina Ervik
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Amalie F. Reinertsen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Duco S. Koenis
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Jesmond Dalli
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Trond V. Hansen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|
6
|
Lee J, Park HA, Shin KC, Park JB, Oh DK. Efficient biotransformation of docosahexaenoic acid-rich oils into the lipid mediator resolvin D5 by cells expressing 15S-lipoxygenase using a bioreactor. BIORESOURCE TECHNOLOGY 2023; 388:129750. [PMID: 37717704 DOI: 10.1016/j.biortech.2023.129750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Resolvin D5 (RvD5), 7S,17S-dihydroxy-4Z,8E,10Z,13Z,15E,19Z-docosahexaenoic acid (DHA) is a specialized pro-resolving mediator (SPM) generated in human macrophages. It is implicated in the resolution of inflammation and synthesized using an inefficient chemical process. Here, DHA-enriched oil hydrolysate was prepared from oils by lipase with resin treatment and solvent extraction. The reaction factors on the biotransformation of oil hydrolysate into RvD5 were optimized using Escherichia coli expressing arachidonate double-oxygenating 15S-lipoxygenase. After optimization, the cells converted 5.0 mM (1.64 g/L) DHA in oil hydrolysate into 4.0 mM (1.44 g/L) RvD5 in a bioreactor for 3.0 h, which was 15-fold higher than that in a flask before optimization, and RvD5 with a purity of > 97% was prepared from reaction solution by treatments of resins. This is the first trial for the production of C22-dihydroxy fatty acid using a bioreactor. This study will contribute to the large-scale production of SPMs from oils.
Collapse
Affiliation(s)
- Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Hyun-Ah Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea; Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Moens de Hase E, Petitfils C, Alhouayek M, Depommier C, Le Faouder P, Delzenne NM, Van Hul M, Muccioli GG, Cenac N, Cani PD. Dysosmobacter welbionis effects on glucose, lipid, and energy metabolism are associated with specific bioactive lipids. J Lipid Res 2023; 64:100437. [PMID: 37648213 PMCID: PMC10542644 DOI: 10.1016/j.jlr.2023.100437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
The newly identified bacterium Dysosmobacter welbionis J115T improves host metabolism in high-fat diet (HFD)-fed mice. To investigate mechanisms, we used targeted lipidomics to identify and quantify bioactive lipids produced by the bacterium in the culture medium, the colon, the brown adipose tissue (BAT), and the blood of mice. In vitro, we compared the bioactive lipids produced by D. welbionis J115T versus the probiotic strain Escherichia coli Nissle 1917. D. welbionis J115T administration reduced body weight, fat mass gain, and improved glucose tolerance and insulin resistance in HFD-fed mice. In vitro, 19 bioactive lipids were highly produced by D. welbionis J115T as compared to Escherichia coli Nissle 1917. In the plasma, 13 lipids were significantly changed by the bacteria. C18-3OH was highly present at the level of the bacteria, but decreased by HFD treatment in the plasma and normalized in D. welbionis J115T-treated mice. The metabolic effects were associated with a lower whitening of the BAT. In the BAT, HFD decreased the 15-deoxy-Δ12,14-prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR-γ) agonist increased by 700% in treated mice as compared to HFD-fed mice. Several genes controlled by PPAR-γ were upregulated in the BAT. In the colon, HFD-fed mice had a 60% decrease of resolvin D5, whereas D. welbionis J115T-treated mice exhibited a 660% increase as compared to HFD-fed mice. In a preliminary experiment, we found that D. welbionis J115T improves colitis. In conclusion, D. welbionis J115T influences host metabolism together with several bioactive lipids known as PPAR-γ agonists.
Collapse
Affiliation(s)
- Emilie Moens de Hase
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Camille Petitfils
- IRSD, INSERM, INRA, INP-ENVT, Toulouse University 3 Paul Sabatier, Toulouse, France
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Clara Depommier
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Nathalie M Delzenne
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Cenac
- IRSD, INSERM, INRA, INP-ENVT, Toulouse University 3 Paul Sabatier, Toulouse, France
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Wavre, Belgium; Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Sorokin AV, Arnardottir H, Svirydava M, Ng Q, Baumer Y, Berg A, Pantoja CJ, Florida E, Teague HL, Yang ZH, Dagur PK, Powell-Wiley TM, Yu ZX, Playford MP, Remaley AT, Mehta NN. Comparison of the dietary omega-3 fatty acids impact on murine psoriasis-like skin inflammation and associated lipid dysfunction. J Nutr Biochem 2023; 117:109348. [PMID: 37044136 DOI: 10.1016/j.jnutbio.2023.109348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Persistent skin inflammation and impaired resolution are the main contributors to psoriasis and associated cardiometabolic complications. Omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to exert beneficial effects on inflammatory response and lipid function. However, a specific role of omega-3 PUFAs in psoriasis and accompanied pathologies are still a matter of debate. Here, we carried out a direct comparison between EPA and DHA 12 weeks diet intervention treatment of psoriasis-like skin inflammation in the K14-Rac1V12 mouse model. By utilizing sensitive techniques, we targeted EPA- and DHA-derived specialized pro-resolving lipid mediators and identified tightly connected signaling pathways by RNA sequencing. Treatment with experimental diets significantly decreased circulating pro-inflammatory cytokines and bioactive lipid mediators, altered psoriasis macrophage phenotypes and genes of lipid oxidation. The superficial role of these changes was related to DHA treatment and included increased levels of resolvin D5, protectin DX and maresin 2 in the skin. EPA treated mice had less pronounced effects but demonstrated a decreased skin accumulation of prostaglandin E2 and thromboxane B2. These results indicate that modulating psoriasis skin inflammation with the omega-3 PUFAs may have clinical significance and DHA treatment might be considered over EPA in this specific disease.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hildur Arnardottir
- Division of Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institute, Sweden
| | - Maryia Svirydava
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qimin Ng
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Berg
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carla J Pantoja
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Florida
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Liu C, Fan D, Lei Q, Lu A, He X. Roles of Resolvins in Chronic Inflammatory Response. Int J Mol Sci 2022; 23:ijms232314883. [PMID: 36499209 PMCID: PMC9738788 DOI: 10.3390/ijms232314883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
An inflammatory response is beneficial to the organism, while an excessive uncontrolled inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting the resolution of inflammation is an important mechanism for protecting an organism suffering from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis, regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution, resolvins play an irreplaceable role throughout the pathological process of some joint inflammation, neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of experiments have been conducted to study different subtypes of resolvins in different directions, the differences in the action targets between the different subtypes are rarely compared. Hence, this paper reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chang Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
- Correspondence: (A.L.); (X.H.)
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (A.L.); (X.H.)
| |
Collapse
|
10
|
Ogawa N, Katagiri K, Haimoto Y, Kobayashi Y. Total synthesis of resolvin D3. Org Biomol Chem 2022; 20:4338-4341. [PMID: 35551327 DOI: 10.1039/d2ob00750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resolvin D3 was synthesized by the Suzuki-Miyaura cross-coupling reaction of C1-C8 borane with C9-C22 iodoolefin as the key reaction. The latter intermediate was obtained by the sequential Wittig reactions of C9-C13 phosphonium salt with C14-C19 aldehyde and then C9-C19 aldehyde with propyltriphenylphosphonium bromide. The stereogenic centers at C4, C11, and C17 were constructed by the ruthenium-catalyzed asymmetric transfer hydrogenation with high stereoselectivity.
Collapse
Affiliation(s)
- Narihito Ogawa
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Kyosuke Katagiri
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Yosuke Haimoto
- Department of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Yuichi Kobayashi
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
11
|
Ferreira I, Falcato F, Bandarra N, Rauter AP. Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Molecules 2022; 27:1677. [PMID: 35268778 PMCID: PMC8912121 DOI: 10.3390/molecules27051677] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022] Open
Abstract
Marine organisms are an important source of natural products with unique and diverse chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new targets for drug design. The availability of these SPMs from natural resources is very low, but the evaluation of their pharmacological properties requires their access in larger amounts, as achieved by synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins, protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving mediators play a key role in the treatment of COVID-19. In this work we also review the current evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid mediators of disease resolution.
Collapse
Affiliation(s)
- Inês Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal;
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
| | - Filipa Falcato
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
| | - Narcisa Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
12
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
An JU, Kim SE, Oh DK. Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Prog Lipid Res 2021; 83:101110. [PMID: 34144023 DOI: 10.1016/j.plipres.2021.101110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Oxylipins derived mainly from C20- and C22-polyunsaturated fatty acids (PUFAs), termed lipid mediators (LMs), are essential signalling messengers involved in human physiological responses associated with homeostasis and healing process for infection and inflammation. Some LMs involved in the resolution of inflammation and infection are termed specialized pro-resolving mediators (SPMs), which are generated by human M2 macrophages or polymorphonuclear leukocytes and have the potential to protect and treat hosts from bacterial and viral infections by phagocytosis activation. Lipoxygenases (LOXs) biosynthesize regio- and stereoselective LMs. Thus, understanding the regio- and stereoselectivities of LOXs for PUFAs at a molecular level is important for the biocatalytic synthesis of diverse LMs. Here, we elucidate the catalytic mechanisms and discuss regio- and stereoselectivities and their changes of LOXs determined by insertion direction and position of the substrate and oxygen at a molecular level for the biosynthesis of diverse human LMs. Recently, the biocatalytic synthesis of PUFAs to human LMs or analogues has been conducted using microbial LOXs. Such microbial LOXs involved in the biosynthesis of LMs are expected to exert significantly higher activity and stability than human LOXs. Diverse regio- and stereoselective LOXs can be obtained from microorganisms, which represent a wealth of genomic sources. We reconstruct the biosynthetic pathways of LOX-catalyzed LMs in humans and other organisms. Furthermore, we suggest the effective methods of biocatalytic synthesis of diverse human LMs from PUFAs or glucose by using microbial LOXs, increasing the stability and activity of LOXs, combining the reactions of LOXs, and constructing metabolic pathways.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Chun HW, Lee J, Pham TH, Lee J, Yoon JH, Lee J, Oh DK, Oh J, Yoon DY. Resolvin D5, a Lipid Mediator, Inhibits Production of Interleukin-6 and CCL5 Via the ERK-NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated THP-1 Cells. J Microbiol Biotechnol 2020; 30:85-92. [PMID: 31693828 PMCID: PMC9728331 DOI: 10.4014/jmb.1907.07033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the omega-3 essential fatty acids, docosahexaenoic acid (DHA), is a significant constituent of the cell membrane and the precursor of several potent lipid mediators. These mediators are considered to be important in preventing or treating several diseases. Resolvin D5, an oxidized lipid mediator derived from DHA, has been known to exert anti-inflammatory effects. However, the detailed mechanism underlying these effects has not yet been elucidated in human monocytic THP-1 cells. In the present study, we investigated the effects of resolvin D5 on inflammation-related signaling pathways, including the extracellular signal-regulated kinase (ERK)-nuclear factor (NF)-κB signaling pathway. Resolvin D5 downregulated the production of interleukin (IL)-6 and chemokine (C-C motif) ligand 5 (CCL5). Additionally, these inhibitory effects were found to be modulated by mitogen-activated protein kinase (MAPK) and NF-κB in lipopolysaccharide (LPS)-treated THP-1 cells. Resolvin D5 inhibited the LPS-stimulated phosphorylation of ERK and translocation of p65 and p50 into the nucleus, resulting in the inhibition of IL-6 and CCL5 production. These results revealed that resolvin D5 exerts anti-inflammatory effects in LPS-treated THP-1 cells by regulating the phosphorylation of ERK and nuclear translocation of NF-kappaB.
Collapse
Affiliation(s)
- Hyun-Woo Chun
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Jintak Lee
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiyon Lee
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Hwan Yoon
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 0509, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-4119 Fax: +82-2-444-4218; E-mail:
| |
Collapse
|
15
|
Abstract
We studied the synthesis of RvD1, a pro-resolving mediator. The intermediate containing vic-diol and enal functional groups was prepared via the oxidation of the γ,δ-epoxy alcohol followed by the epoxide ring opening in one pot. The C11-aldehyde in the resulting enal was converted to the trans iodo-olefin by reaction with TMSC(N2)Li and subsequent hydrozirconation using in situ generated Cp2Zr(H)Cl followed by iodination. The trans enynyl alcohol was synthesized by the reaction of the TMS-containing epoxy alcohol with lithium TMS-acetylide. Finally, two fragments were joined by the Sonogashira coupling, and the triple bond was reduced to afford RvD1 stereoselectively.
Collapse
Affiliation(s)
- Masao Morita
- Department of Biotechnology, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan.
| | | | | |
Collapse
|
16
|
Hong S, Lu Y, Morita M, Saito S, Kobayashi Y, Jun B, Bazan NG, Xu X, Wang Y. Stereoselective Synthesis of Maresin-like Lipid Mediators. Synlett 2019; 30:343-347. [PMID: 31086432 DOI: 10.1055/s-0037-1612011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Maresin-L1 (14S,22-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid) and maresin-L2 (14R,22-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid) were chemically synthesized. They were identical to activated macrophage produced counterparts and their total synthesis was highly Stereoselective, as revealed by chiral LC-UV-MS/MS analysis. The synthesis involved the following steps: (1) kinetic resolution of a racemic allylic alcohol by the asymmetric epoxidation; (2) transformation of the epoxy alcohol to γ-hydroxyenal derivative; and (3) the Wittig reaction to furnish the Z-olefin.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A.,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Masao Morita
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Shun Saito
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A.,Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Xiaoming Xu
- Department of Comprehensive Dentistry & Biomaterials, Louisiana State University Health Sciences Center, School of Dentistry, 1100 Florida Ave., New Orleans, LA 70119, U.S.A
| | - Yapin Wang
- Department of Comprehensive Dentistry & Biomaterials, Louisiana State University Health Sciences Center, School of Dentistry, 1100 Florida Ave., New Orleans, LA 70119, U.S.A
| |
Collapse
|
17
|
Woodcock SR, Wendell SG, Schopfer FJ, Freeman BA. Synthesis of an Electrophilic Keto-Tetraene 15-oxo-Lipoxin A 4 Methyl Ester via a MIDA Boronate. Tetrahedron Lett 2018; 59:3524-3527. [PMID: 31379396 PMCID: PMC6677397 DOI: 10.1016/j.tetlet.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
15-oxo-Lipoxin A4 (15-oxo- LXA4) has been identified as a natural metabolite of the fatty acid signaling mediator Lipoxin A4. Herein, we report a total synthesis of the methyl ester of 15-oxo-LXA4 to be used in investigations of potential electrophilic bioactivity of this metabolite. The methyl ester of 15-oxo-LXA4 was synthesized in a convergent 15 step (9 steps longest linear) sequence starting from 1-octyn-3-ol and 2-deoxy-D-ribose with Sonogashira and Suzuki cross-couplings of a MIDA boronate as key steps.
Collapse
Affiliation(s)
- Steven R. Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA 16260
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA 16260
| | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA 16260
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA 16260
| |
Collapse
|
18
|
Opportunities for Lipid-Based Probes in the Field of Immunology. Curr Top Microbiol Immunol 2018; 420:283-319. [PMID: 30242513 DOI: 10.1007/82_2018_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Lipids perform a wide range of functions inside the cell, ranging from structural building block of membranes and energy storage to cell signaling. The mode of action of many signaling lipids has remained elusive due to their low abundance, high lipophilicity, and inherent instability. Various chemical biology approaches, such as photoaffinity or activity-based protein profiling methods, have been employed to shed light on the biological role of lipids and the lipid-protein interaction profile. In this review, we will summarize the recent developments in the field of chemical probes to study lipid biology, especially in immunology, and indicate potential avenues for future research.
Collapse
|
19
|
Capó X, Martorell M, Busquets-Cortés C, Tejada S, Tur JA, Pons A, Sureda A. Resolvins as proresolving inflammatory mediators in cardiovascular disease. Eur J Med Chem 2018; 153:123-130. [DOI: 10.1016/j.ejmech.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/17/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
|
20
|
Abstract
The stereoselective synthesis of resolvin D4 (RvD4) was achieved using the Wittig reaction of the C1-C10 dienal with the known C11-C22 phosphonium salt. The ( S, E)-enantiomer ( S)-10, corresponding to the C1-C8 part, was synthesized in 95% ee by the asymmetric transfer hydrogenation reaction of the corresponding acetylenic ketone followed by Red-Al reduction. Sharpless epoxidation of this alcohol using Ti(O- i-Pr)4/l-(+)-DIPT as a catalyst produced anti epoxy alcohol with >99% ee as the sole product in 82% yield. A subsequent functional group manipulation, including removal of the PMB group, produced the alcohol, which upon Swern oxidation afforded anti 4-hydroxy-5-TBS-oxy enal via epoxide ring opening of the resulting aldehyde. The Horner-Wadsworth-Emmons reaction was used to add the C9-C10 enal part to this aldehyde, and the resulting dienal was subjected to the Wittig reaction with C11-C22 phosphonium salt to furnish the entire structure of RvD4. Conversion of the primary alcohol to the methyl ester and deprotection of the three TBS groups with TBAF afforded 5,17-dihydroxy-γ-lactone, which was hydrolyzed to RvD4. Additionally, anti-4,5-dihydroxydodecanoic acid, a model compound of RvD4, in CD3OD was observed to be stable at room temperature for several weeks, whereas 20% of the acid in CDCl3 was converted into the γ-lactone after 24 h at rt.
Collapse
Affiliation(s)
- Masao Morita
- Department of Bioengineering , Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259 , Midori-ku, Yokohama 226-8501 , Japan
| | - Yuichi Kobayashi
- Department of Bioengineering , Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259 , Midori-ku, Yokohama 226-8501 , Japan
| |
Collapse
|
21
|
Nishimura K, Sakaguchi T, Nanba Y, Suganuma Y, Morita M, Hong S, Lu Y, Jun B, Bazan NG, Arita M, Kobayashi Y. Stereoselective Total Synthesis of Macrophage-Produced Prohealing 14,21-Dihydroxy Docosahexaenoic Acids. J Org Chem 2017; 83:154-166. [PMID: 29224348 DOI: 10.1021/acs.joc.7b02510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthesis of 14S,21R- and 14S,21S-dihydroxy-DHA (diHDHA) among the four possible stereoisomers of 14,21-diHDHA was studied. Methyl (R)-lactate (>97% ee), selected as a C20-C22 fragment (DHA numbering), was converted to the C17-C22 phosphonium salt, which was subjected to a Wittig reaction with racemic C16-aldehyde of the C12-C16 part with the TMS and TBS-oxy groups at C12 and C14, yielding the C12-C22 derivative with 14R/S and 21R chirality. Kinetic resolution using Sharpless asymmetric epoxidation of the TBS-deprotected allylic alcohol with l-(+)-DIPT/Ti(O-i-Pr)4 afforded 14S-epoxy alcohol and 14R-allylic alcohol with >99% diastereomeric excess (de) for both. The CN group was introduced to the epoxy alcohol by reaction with Et2AlCN. The 14R-allylic alcohol was also converted to the nitrile via Mitsunobu inversion. Reduction of the nitrile with DIBAL afforded the key aldehyde corresponding to the C11-C22 moiety. The Wittig reaction of this aldehyde with a phosphonium salt of the remaining C1-C10 part followed by functional group manipulation gave 14S,21R-diHDHA. Similarly, ethyl (S)-lactate (>99% ee) was converted to 14S,21S-diHDHA. The chiral LC-UV-MS/MS analysis demonstrated that each of these two 14,21-diHDHAs synthesized using the presented total organic synthesis was highly stereoselective and identical to the macrophage-produced counterpart.
Collapse
Affiliation(s)
- Keita Nishimura
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Tsuyoshi Sakaguchi
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yutaro Nanba
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Yuta Suganuma
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Masao Morita
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Song Hong
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States.,Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Yan Lu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States.,Department of Ophthalmology, Louisiana State University Health Sciences Center , New Orleans, Louisiana 70112, United States
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences , 1-7-22, Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.,Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy , 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology , Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
22
|
Ogawa N, Kobayashi Y. Synthesis of Unsaturated Lipid Mediators having Anti-inflammatory Actions. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.1002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yuichi Kobayashi
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|