1
|
Tovtik R, Marzin D, Weigel P, Crespi S, Simeth NA. Substituent effects in N-acetylated phenylazopyrazole photoswitches. Beilstein J Org Chem 2025; 21:830-838. [PMID: 40297252 PMCID: PMC12035873 DOI: 10.3762/bjoc.21.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Phenylazopyrazole photoswitches proved to be valuable structural motifs for various applications ranging from materials science to medicine. Despite their potential, their structural diversity is still limited and a larger pool of substitution patterns remains to be systematically investigated. This is paramount as electronic effects play a crucial role in the behavior of photoswitches and a deeper understanding enables their straightforward development for specific applications. In this work, we synthesized novel N-acylpyrazole-based photoswitches and conducted a comparative study with 33 phenylazopyrazoles, comparing their photoswitching properties and the impact of electronic effects. Using UV-vis and NMR spectroscopy, we discovered that simple acylation of the pyrazole moiety leads to increased quantum yields of isomerization, long Z-isomer life-times, good spectral separation, and high photostability.
Collapse
Affiliation(s)
- Radek Tovtik
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
| | - Dennis Marzin
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
| | - Pia Weigel
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
| | - Stefano Crespi
- Department of Chemistry, Ångström laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Nadja A Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August-University, Tammannstraße 2, 37077 Goettingen, Germany
- Department of Chemistry, Ångström laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Singh S, Velloth A, Mahato RR, Grewal S, Maiti S, Venkataramani S. An azothiazole probe as a multianalyte colorimetric chemosensor for urea and biologically significant amines. Org Biomol Chem 2025; 23:3634-3642. [PMID: 40123496 DOI: 10.1039/d5ob00077g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We report an azothiazole-based probe as a chemosensor for urea with a LOD of 45 μM. The underlying sensing principle is an instantaneous color change associated with the complex forming between the probe and ammonia, a hydrolysis product of urea catalyzed by the enzyme urease. In addition, the probe has a broad scope in sensing biologically significant amines such as arginine and lysine across a wide range of pH (4 to 8). Through extensive spectroscopic and computational studies in conjunction with control experiments, the importance of H-bonding in the sensing mechanism has been unraveled, revealing the stoichiometry, binding constant and LOD of these analytes with the probe. Indeed, the two individual amino acids can be distinguished by the spectral changes associated with UV-vis spectroscopy or by contrasting color diffusion under agarose gel conditions. Moreover, the probe shows a broad scope in detecting a range of aliphatic primary and secondary amines, including cyclic amines. The utility of the probe has also been demonstrated by using it for sensing urea in urine samples. These attributes make this probe a cost-effective, reusable and versatile chemosensor with ease of handling for sensing multianalytes by varying the conditions and detection modes.
Collapse
Affiliation(s)
- Sapna Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli - 140 306, Punjab, India.
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli - 140 306, Punjab, India.
| | - Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli - 140 306, Punjab, India.
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli - 140 306, Punjab, India.
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli - 140 306, Punjab, India.
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli - 140 306, Punjab, India.
| |
Collapse
|
3
|
Byadi S, Hashim PK, Sidorov P. Predictive modeling of visible-light azo-photoswitches' properties using structural features. J Cheminform 2025; 17:42. [PMID: 40170050 PMCID: PMC11963326 DOI: 10.1186/s13321-025-00993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
In this manuscript we present the strategy for modeling photoswitch properties (maximum absorption wavelength and thermal half-life of photoisomers) of visible-light azo-photoswitches using structural data. We compile a comprehensive data set from literature sources and perform a rigorous benchmark to select the best feature type and modeling approach. The fragment counts have demonstrated the best performance in the benchmark for both properties. We validate the models in cross-validation and on an external set. The predictions of absorption wavelengths for this set are highly accurate; on the other hand, the model for thermal half-life is less reliable, likely due to the modest size of the data set related to half-life of photoisomers, although consensus modeling approach allows to improve the predictivity. We also provide an interpretation of the modeling results using ColorAtom approach and the insights into the chemical space covered by the data set.Scientific contribution The paper provides a machine learning approach based only on structural features to predict two important photoswitch properties. Unlike previous studies, we do not use any quantum chemical features which accelerates the modeling procedure, while the accuracy of models remains high. Moreover, the fragment counts offer unique approach to model interpretation that is useful for rational design of photoswitches with desired properties.
Collapse
Affiliation(s)
- Said Byadi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Pavel Sidorov
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
4
|
Hu H, Wei S, Zhang C, Gao C, Sun C, Du Y, Hu B. Multiple pyrazolylazoindole/indazole scaffold based visible-light photoswitches with versatile controlled photophysical properties. Mol Divers 2025:10.1007/s11030-025-11161-2. [PMID: 40080342 DOI: 10.1007/s11030-025-11161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Azoheteroarenes-based photoswitches with high bidirectional isomerization and long thermal half-life (t1/2) have attracted widespread attention from researchers. The diversity of molecular scaffolds has a profound impact on photoswitching performance, herein, we incorporated dynamic connection sites and scaffold optimization to construct a series of pyrazolyazoindole/indazoles (PAIs)-based photoswitches with adjustable photoswitching properties and versatile photophysical properties upon the irradiation of special wavelength, among them 4Z-H can be switched between states "lock" and "unlock" by Cu2+ ion and EDTA. Thermal stability of series 3Z and 4Z was more stable than other PAIs photoswitches for their intramolecular forces, while the steric effect weakened the thermal stability of series 5D, these results clarified the relationship between the PAIs scaffolds and their photoswitching properties. More importantly, ionic photoswitches (4D-N+) synthesized by modification of quaternary ammonium salt fragment exhibited excellent reversible photoswitching properties in aqueous solution with alkaline condition and concentrated glutathione (GSH). The assembly of fluorescence group (triphenylamine) endowed the PAIs scaffolds with optically controlled fluorescence properties. This research elucidated the relationship of scaffold-modification-function of PAIs and would inevitably provide a reliable foundation for the development of intelligent organic materials with photoswitching systems.
Collapse
Affiliation(s)
- Haoran Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Siyi Wei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Chong Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Chao Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Yang Du
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
| | - Bingcheng Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| |
Collapse
|
5
|
Hashim PK, Shaji AT, Amrutha AS, Ahmad S. Conceptual expansion of photomedicine for spatiotemporal treatment methods. RSC Med Chem 2025:d4md01005a. [PMID: 40177642 PMCID: PMC11959407 DOI: 10.1039/d4md01005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Photomedicine has evolved from basic phototherapy to a broad range of light-based technologies to achieve precise and minimally invasive therapeutic outcomes. Recent advances in light sources, photochemical reactions, and photoswitches have facilitated the development of light-activated methodologies for modulating biological processes. This review discusses the history of light therapy that leads to the emergence of a new field known as photopharmacology, mode of actions in photopharmacology such as photodynamic, photo-uncaging and photoswitchable methods, a few representative examples in photopharmacology, and a brief overview of its associated challenges. The current developments in photopharmacology hold great promise for the treatment of diseases such as cancer, with enhanced therapeutic precision, and minimal side effects. We foresee further expansion of photomedicine for novel approaches in precision medicine and healthcare, and unprecedented treatment methods.
Collapse
Affiliation(s)
- P K Hashim
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Ashwin T Shaji
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Ammathnadu S Amrutha
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Shifa Ahmad
- Research Institute for Electronic Science, Hokkaido University Kita20, Nishi 10, Kita-ku Sapporo Hokkaido 001-0020 Japan
- Graduate School of Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
6
|
Adak S, Ghosh I, Maity ML, Bandyopadhyay S. Arylazopyrazole Photoconversion Enables Tunable Morphology and Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412482. [PMID: 39901491 DOI: 10.1002/smll.202412482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Indexed: 02/05/2025]
Abstract
A red-light switchable fast, near-quantitative two-way photoswitching of an azoheteroarene, arylazo-N-phenyl-3,5-diphenyl pyrazole (AAP1), with a high thermal half-life of the cis-isomer is reported here. The photochromic molecule switches in the solution phase and even in thin films. The design of AAP1 incorporates structural features that enable cis → trans reversal under red light quantitatively. Solid-state photoswitching in pristine thin films has been demonstrated using AAP1. Various photo patterns on paper with AAP1 as the photochromic ink are generated and their switching displaying the change in color is investigated. Single-crystal XRD structures of the trans-isomer as well as, the more exciting and rarely observed form, the cis-isomer of AAP1 is obtained. The SCXRD analysis reveals that the phenyl groups in the pyrazole ring engage in an intramolecular π-stacking interaction only in the cis-isomer which significantly enhances its thermal stability. The needle-shaped crystals of the thermodynamically stable trans-AAP1 display exceptional elastic mechanical flexibility, whilst the plate-like cis-isomers are brittle. The quantitative difference of the mechanical properties of both the isomers is exhibited by nanoindentation experiments. The trans crystals are significantly softer than the cis ones and a roughly three-fold difference in mechanical characteristics is identified.
Collapse
Affiliation(s)
- Soumen Adak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Ishita Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Manik Lal Maity
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
7
|
Cheruthu NM, Hashim PK, Sahu S, Takahashi K, Nakamura T, Mitomo H, Ijiro K, Tamaoki N. Azophotoswitches containing thiazole, isothiazole, thiadiazole, and isothiadiazole. Org Biomol Chem 2024; 23:207-212. [PMID: 39535220 DOI: 10.1039/d4ob01573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report a novel class of azophotoswitches incorporating various five-membered heteroaryl units such as thiazole, isothiazole, thiadiazole, and isothiadiazole. These azophotoswitches were developed through an initial screening of 24 compounds using DFT calculations to identify those with the wavelength of maximum absorption (λmax) at a long wavelength. Subsequently, eight selected azophotoswitches were synthesized. Compounds containing both thiazole and isothiazole moieties showed relatively long λmax compared to the other synthesized compounds. These azophotoswitches exhibited reversible isomerization under visible light irradiation at 430 nm, 450 nm, 470 nm (trans to cis) and 525 nm (cis to trans). Analysis of the X-ray crystal structures of the cis isomer of phenylazo[1,3,4-thiadiazole] exhibited a unique orthogonal geometry.
Collapse
Affiliation(s)
- Nusaiba Madappuram Cheruthu
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - P K Hashim
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Saugata Sahu
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
| | - Kiyonori Takahashi
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
| | - Takayoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-hiroshima 739-8526, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, Kita20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
8
|
Singh S, Velloth A, Rajani, Goyal M, Kaur N, Singh S, Venkataramani S. Neutral and ionic N-methyl phenylazo-3,5-(di-2-pyridyl)pyrazole photoswitches: probes for reversible pH modulation by light. Chem Commun (Camb) 2024; 60:10776-10779. [PMID: 39252561 DOI: 10.1039/d4cc03455d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We report the design, synthesis, photoswitching and computational studies of N-methyl arylazo-3,5-(di-2-pyridyl)pyrazole and its N-alkyl pyridinium derivatives with an ionic center proximally located to the azo group. Besides achieving excellent photoswitching characteristics, particularly at longer wavelengths, and tuning Z isomer stability due to the effects of counter ions and pH, the utility of neutral and ionic photoswitches for pH modulation by light was achieved.
Collapse
Affiliation(s)
- Sapna Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli-140306, Punjab, India.
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli-140306, Punjab, India.
| | - Rajani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli-140306, Punjab, India.
| | - Manu Goyal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli-140306, Punjab, India.
| | - Navneet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli-140306, Punjab, India.
| | - Sanjay Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli-140306, Punjab, India.
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli-140306, Punjab, India.
| |
Collapse
|
9
|
Sunny AS, Cleven EC, Kumar P, Venkataramani S, Walls JD, Ramamurthy V. Structure, Dynamics, and Reactivity of Encapsulated Molecules in Restricted Spaces: Arylazoisoxazoles within an Octa Acid Capsule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17638-17655. [PMID: 39110852 DOI: 10.1021/acs.langmuir.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this study, a well-defined organic capsule assembled from two octa acid (OA) molecules acting as host and select arylazoisoxazoles (AAIO) acting as guests were employed to demonstrate that confined molecules have restricted freedom that translates into reaction selectivity in both ground and excited states. The behavior of these AAIO guests in confined capsules was found to be different from that found in both crystals, where there is very little freedom, and in isotropic solvents, where there is complete freedom. Through one-dimensional (1D) and two-dimensional (2D) 1H NMR spectroscopic experiments, we have established a relationship between structure, dynamics and reactivity of molecules confined in an OA capsule. Introduction of CF3 and CH3 substitution at the 4-position of the aryl group of AAIO reveals that in addition to space confinement, weak interactions between the guest and the OA capsule control the dynamics and reactivity of guest molecules. 1H NMR studies revealed that there is a temperature-dependence to guest molecules tumbling (180° rotation along the capsular short axis) within an OA capsule. While 1H NMR points to the occurrence of tumbling motion, MD simulations and simulation of the temperature-dependent NMR signals provide an insight into the mechanism of tumbling within OA capsules. Thermal and photochemical isomerization of AAIO were found to occur within an OA capsule just as in organic solvents. The observed selectivity noted during thermal and photo induced isomerization of OA encapsulated AAIOs can be qualitatively understood in terms of the well-known concepts due to Bell-Evans-Polanyi (BEP principle), Hammond and Zimmerman.
Collapse
Affiliation(s)
- Amal Sam Sunny
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Elliott C Cleven
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | |
Collapse
|
10
|
Grewal S, Srivastava A, Singh S, Venkataramani S. Structure-property relationship in functionalized azobenzene photoswitches and their supramolecular behavior. Photochem Photobiol 2024; 100:1100-1115. [PMID: 38561925 DOI: 10.1111/php.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
Herein, we report the design, synthesis, and supramolecular behavior of 30 structurally diverse photoresponsive azobenzene molecular systems. To establish structure-property relationships, azobenzenes appended with N-picolinyl and/or N-benzyl groups tethered directly through carboxamides or via triazolylmethyl carboxamide linkages were explored. We have evaluated the photoswitching characteristics and thermal stability of the Z isomers through systematic studies. All the targets were also screened for their aggregation behavior and supramolecular aspects. Among all the derivatives, a few carboxamide-based systems formed microcrystals upon aggregation, showing light responsiveness. In contrast, the derivatives tethered via triazolylmethyl carboxamide linkage exhibited hydrogel formation with excellent water-absorbing capacity. All supramolecular aspects of the morphology of the microcrystal and hydrogel states and their stimuli-responsiveness have been studied using spectroscopy and various microscopic techniques.
Collapse
Affiliation(s)
- Surbhi Grewal
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Anjali Srivastava
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Sapna Singh
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Punjab, India
| |
Collapse
|
11
|
Kumar H, Parthiban G, Velloth A, Saini J, De R, Pal SK, Hazra KS, Venkataramani S. Arylazo-3,5-diphenylpyrazole Derivatives: Molecular Probes Exhibiting Reversible Light-induced Phase Transitions for Energy Storage and Direct Photolithographic Patterning. Chemistry 2024:e202401836. [PMID: 38818932 DOI: 10.1002/chem.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
We report azopyrazole photoswitches decorated with variable N-alkyl and alkoxy chains (for hydrophobic interactions) and phenyl substituents on the pyrazoles (enabling π-π stacking), showing efficient bidirectional photoswitching and reversible light-induced phase transition (LIPT). Extensive spectroscopic, microscopic, and diffraction studies and computations confirmed the manifestation of molecular-level interactions and photoisomerization into macroscopic changes leading to the LIPT phenomena. Using differential scanning calorimetric (DSC) studies, the energetics associated with those accompanying processes were estimated. The long half-lives of Z isomers, high energy contents for isomerization and phase transitions, and the stability of phases over an extended temperature range (-60 to 80 °C) make them excellent candidates for energy storage and release applications. Remarkably, the difference in the solubility of the distinct phases in one of the derivatives allowed us to utilize it as a photoresist in photolithography applications on diverse substrates.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Gayathri Parthiban
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Jyoti Saini
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Kiran Shankar Hazra
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| |
Collapse
|
12
|
Kumar Gaur A, Gupta D, Narayanan Nampoothiry D, Velloth A, Kaur R, Kaur N, Venkataramani S. Azopyridinium Ionic Photoswitches: Tuning Half-Lives of Z Isomers from Seconds to Days in Water. Chemistry 2024:e202401239. [PMID: 38818941 DOI: 10.1002/chem.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Herein, we describe water-soluble heteroaryl azopyridinium ionic photoswitches (HAPIPs). We aim to combine variations in five-membered heterocycles, their substitutions, N-alkyl groups at pyridinium nitrogen, the position of pyridinium center relative to azo group, counterions, and solvents, in achieving better photoswitching. Through these studies, we successfully tuned the half-life of Z isomers of the resultant HAPIPs between seconds to days in water. Extensive spectroscopic studies and density functional theory (DFT) computations unravelled the factors responsible for thermal relaxation behavior. Considering the versatility of these photoswitches, the tunability of half-lives and photoswitching in aqueous medium allows the scope of applications in several fields.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Dhanyaj Narayanan Nampoothiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ramanpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Navneet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|
13
|
Gallardo-Rosas D, Guevara-Vela JM, Rocha-Rinza T, Toscano RA, López-Cortés JG, Ortega-Alfaro MC. Structure and isomerization behavior relationships of new push-pull azo-pyrrole photoswitches. Org Biomol Chem 2024; 22:4123-4134. [PMID: 38700442 DOI: 10.1039/d4ob00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A family of stilbenyl-azopyrroles compounds 2a-d and 3a-d was efficiently obtained via a Mizoroki-Heck C-C-type coupling reaction between 2-(4'-iodophenyl-azo)-N-methyl pyrrole (1a) and different vinyl precursors. The influence of the π-conjugated backbone and the effect of the pyrrole moiety were correlated with their optical properties. Studies via UV-Visible spectrophotometry revealed that the inclusion of EWG or EDG favors a red-shift of the main absorption band in these azo compounds compared with their non-substituted analogues. Furthermore, there is a clear influence between the half-life of the Z isomer formed by irradiation with white light and the push-pull behavior of the molecules. In several cases, the stilbenyl-azopyrroles led to the formation of J-type aggregates in binary MeOH : H2O solvents, which are of interest for water compatible applications.
Collapse
Affiliation(s)
- D Gallardo-Rosas
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - J M Guevara-Vela
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - T Rocha-Rinza
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - R A Toscano
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - J G López-Cortés
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - M C Ortega-Alfaro
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Bhunia S, Jana SK, Sarkar S, Das A, Mandal S, Samanta S. Direct Growth Control of Antibiotic-Resistant Bacteria Using Visible-Light-Responsive Novel Photoswitchable Antibiotics. Chemistry 2024; 30:e202303685. [PMID: 38217466 DOI: 10.1002/chem.202303685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
In addition to the discovery of new (modified) potent antibiotics to combat antibiotic resistance, there is a critical need to develop novel strategies that would restrict their off-target effects and unnecessary exposure to bacteria in our body and environment. We report a set of new photoswitchable arylazopyrazole-modified norfloxacin antibiotics that present a high degree of bidirectional photoisomerization, impressive fatigue resistance and reasonably high cis half-lives. The irradiated isomers of most compounds were found to exhibit nearly equal or higher antibacterial activity than norfloxacin against Gram-positive bacteria. Notably, against norfloxacin-resistant S. aureus bacteria, the visible-light-responsive p-SMe-substituted derivative showed remarkably high antimicrobial potency (MIC of 0.25 μg/mL) in the irradiated state, while the potency was reduced by 24-fold in case of its non-irradiated state. The activity was estimated to be retained for more than 7 hours. This is the first report to demonstrate direct photochemical control of the growth of antibiotic-resistant bacteria and to show the highest activity difference between irradiated and non-irradiated states of a photoswitchable antibiotic. Additionally, both isomers were found to be non-harmful to human cells. Molecular modellings were performed to identify the underlying reason behind the high-affinity binding of the irradiated isomer to topoisomerase IV enzyme.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Soumik Sarkar
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
15
|
Xu X, Feng J, Li WY, Wang G, Feng W, Yu H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog Polym Sci 2024; 149:101782. [DOI: 10.1016/j.progpolymsci.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Bhunia S, Das A, Jana SK, Mandal S, Samanta S. Photoswitchable Antibiotic Hybrids: Spacer Length-Dependent Photochemical Control of Antibacterial Activity. Bioconjug Chem 2024; 35:92-98. [PMID: 38111208 DOI: 10.1021/acs.bioconjchem.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Photopharmacology holds huge potential for the permanent (long-term) eradication of antibiotic resistance by the application of photoswitchable antibiotics. To construct such antibiotics, various methods have been employed to modify known antibiotics with photoswitches, such that the irradiated state shows activity comparable to or higher than that of the parent antibiotic and that a large activity difference between irradiated and nonirradiated states is achieved. However, most of those methods are ineffective when dealing with more than one drug with dissimilar structures. Here, we have demonstrated a new approach, in which two pharmacophores, one being a photoswitch, are covalently linked via a spacer of variable lengths, leading to a set of azopyrazole-norfloxacin antibiotic hybrids. All compounds showed a high degree of bidirectional photoisomerization, long thermal cis half-lives, and excellent photoresistance. Notably, the hybrid with an optimal four-carbon spacer length enabled the irradiated state to become 12-fold more potent than its nonirradiated state without losing much antimicrobial activity of norfloxacin. Only Gram-positive bacteria were found to be sensitive to this hybrid, and the full antibacterial potency of its irradiated state was found to be retained for nearly 24 h.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Arpan Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Santosh Kumar Jana
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35-Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
17
|
Trân HQ, Kawano S, Thielemann RE, Tanaka K, Ravoo BJ. Calamitic Liquid Crystals for Reversible Light-Modulated Phase Regulation Based on Arylazopyrazole Photoswitches. Chemistry 2024; 30:e202302958. [PMID: 37944022 DOI: 10.1002/chem.202302958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The design of responsive liquid crystals enables a diversity of technological applications. Especially photochromic liquid crystals gained a lot of interest in recent years due to the excellent spatiotemporal control of their phase transitions. In this work we present calamitic light responsive mesogens based on a library of arylazopyrazole photoswitches. These compounds show liquid-crystalline behavior as shown by differential scanning calorimetry, grazing incidence X-ray diffraction and polarized optical microscopy. UV-vis spectroscopy and NMR analysis confirmed the excellent photophysical properties in solution and thin film. Additionally, polarized optical microscopy studies of the pristine compounds show reversible phase transition upon irradiation with light. Moreover, as a dopant in the commercially available liquid crystal 4-cyano-4'-pentylbiphenyl (5CB), the temperature range was reduced to ambient temperatures while preserving the photophysical properties. Remarkably, this co-assembled system shows reversible liquid-crystalline to isotropic phase transition upon irradiation with light of different wavelengths. The spatiotemporal control of the phase transition of the liquid crystals offers opportunities in the development of optical devices.
Collapse
Affiliation(s)
- Hoàn Quân Trân
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Shinichiro Kawano
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Rebecca E Thielemann
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Kentaro Tanaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience, Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
18
|
Golovina GV, Egorov AE, Khodot EN, Kostyukov AA, Timokhina EN, Astakhova TY, Nekipelova TD. The effect of substituent position and solvent on thermal Z‒E isomerization of dihydroquinolylazotetrazole dyes: kinetic, thermodynamic, and spectral approaches. Photochem Photobiol Sci 2024; 23:177-187. [PMID: 38071235 DOI: 10.1007/s43630-023-00511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/12/2023] [Indexed: 02/02/2024]
Abstract
Kinetic and thermodynamic parameters have been investigated for the thermal Z‒E isomerization of dihydroquinolylazotetrazole dyes with alkyl substituents (Me, t-Bu, and Adm) at positions 1 (dyes 2) and 2 (dyes 3) of the tetrazole moiety in two solvents of different polarity, acetonitrile (MeCN) and toluene. The experimental results show crucial dependence of these parameters on a substituent position in the tetrazole moiety and on a solvent. For dyes 2, Eact and ΔH‡ are lower in MeCN than in toluene that results in a high increase in the lifetimes of the Z isomers: from milliseconds in MeCN to minutes in toluene. For dyes 3, the difference in Eact and ΔH‡ in the two solvents is opposite: Eact and ΔH‡ are by more than 20 kJ mol-1 higher in MeCN, nevertheless, the rate constants for 3 in toluene are comparable with those in MeCN at the ambient temperature and the difference in the behavior is determined by the value of negative entropy of activation. Quantum-chemical calculations of the thermal Z‒E isomerization show the possibility of the process to occur via crossing from the S0 to the thermally induced T1 state. The contribution of this path is highest for 3 in toluene. The analysis of the absorption spectra demonstrates that for the E isomers, the n‒π* and π‒π* transitions are within the long-wavelength absorption band and their positions relative each other are opposite in the solvents: the n‒π* transition is blue-shifted relative to the π‒π* transition in MeCN and is red-shifted in toluene.
Collapse
Affiliation(s)
- Galina V Golovina
- Emanuel Institute of Biochemical Physics RAS, Kosygin Str. 4, Moscow, 119334, Russia
| | - Anton E Egorov
- Emanuel Institute of Biochemical Physics RAS, Kosygin Str. 4, Moscow, 119334, Russia
| | - Evgenii N Khodot
- Zelinsky Institute of Organic Chemistry RAS, Leninskii Pr. 47, Moscow, 119991, Russia
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics RAS, Kosygin Str. 4, Moscow, 119334, Russia
| | - Elena N Timokhina
- Emanuel Institute of Biochemical Physics RAS, Kosygin Str. 4, Moscow, 119334, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics RAS, Kosygin Str. 4, Moscow, 119334, Russia
| | - Tatiana D Nekipelova
- Emanuel Institute of Biochemical Physics RAS, Kosygin Str. 4, Moscow, 119334, Russia.
| |
Collapse
|
19
|
Singer N, Schlögl K, Zobel JP, Mihovilovic MD, González L. Singlet and Triplet Pathways Determine the Thermal Z/ E Isomerization of an Arylazopyrazole-Based Photoswitch. J Phys Chem Lett 2023; 14:8956-8961. [PMID: 37772734 PMCID: PMC10577781 DOI: 10.1021/acs.jpclett.3c01785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
Understanding the thermal isomerization mechanism of azobenzene derivatives is essential to designing photoswitches with tunable half-lives. Herein, we employ quantum chemical calculations, nonadiabatic transition state theory, and photosensitized experiments to unravel the thermal Z/E isomerization of a heteroaromatic azoswitch, the phenylazo-1,3,5-trimethylpyrazole. In contrast to the parent azobenzene, we predict two pathways to be operative at room temperature. One is a conventional ground-state reaction occurring via inversion of the aryl group, and the other is a nonadiabatic process involving intersystem crossing to the lowest-lying triplet state and back to the ground state, accompanied by a torsional motion around the azo bond. Our results illustrate that the fastest reaction rate is not controlled by the mechanism involving the lowest activation energy, but the size of the spin-orbit couplings at the crossing between the singlet and the triplet potential energy surfaces is also determinant. It is therefore mandatory to consider all of the multiple reaction pathways in azoswitches in order to predict experimental half-lives.
Collapse
Affiliation(s)
- Nadja
K. Singer
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Katharina Schlögl
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Marko D. Mihovilovic
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
20
|
Adrion DM, Lopez SA. Design rules for optimization of photophysical and kinetic properties of azoarene photoswitches. Org Biomol Chem 2023; 21:7351-7357. [PMID: 37646103 DOI: 10.1039/d3ob01298k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Azoarenes are an important class of molecular photoswitches that often undergo E → Z isomerization with ultraviolet light and have short Z-isomer lifetimes. Azobenzene has been a widely studied photoswitch for decades but can be poorly suited for photopharmacological applications due to its UV-light absorption and short-lived Z-isomer half-life (t1/2). Recently, diazo photoswitches with one or more thiophene rings in place of a phenyl ring have emerged as promising candidates, as they exhibit a stable photostationary state (98% E → Z conversion) and E-isomer absorption (λmax) in the visible light range (405 nm). In this work, we performed density functional theory calculations [PBE0-D3BJ/6-31+G(d,p)] on 26 hemi-azothiophenes, substituted with one phenyl ring and one thiophene ring on the diazo bond. We calculated the E-isomer absorption (λmax) and Z-isomer t1/2 for a set of 26 hemi-azothiophenes. We compared their properties to thiophene-based photoswitches that have been studied previously. We separated the 26 proposed photoswitches into four quadrants based on their λmax and t1/2 relative to past generations of hemi-azothiophene photoswitches. We note 8 hemi-azothiophenes with redshifted λmax and longer t1/2 than previous systems. Our top candidate has λmax and a t1/2 approaching 360 nm and 279 years, respectively. The results here present a pathway towards leveraging and optimizing two properties of photoswitches previously thought to be inversely related.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
21
|
Janosko C, Shade O, Courtney TM, Horst TJ, Liu M, Khare SD, Deiters A. Genetic Encoding of Arylazopyrazole Phenylalanine for Optical Control of Translation. ACS OMEGA 2023; 8:26590-26596. [PMID: 37521667 PMCID: PMC10373180 DOI: 10.1021/acsomega.3c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
An arylazopyrazole was explored for its use as an enhanced photoswitchable amino acid in genetic code expansion. This new unnatural amino acid was successfully incorporated into proteins in both bacterial and mammalian cells. While photocontrol of translation required pulsed irradiations, complete selectivity for the trans-configuration by the pyrrolysyl tRNA synthetase was observed, demonstrating expression of a gene of interest selectively controlled via light exposure.
Collapse
Affiliation(s)
- Chasity
P. Janosko
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taylor M. Courtney
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Trevor J. Horst
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Melinda Liu
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Sagar D. Khare
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
22
|
Gaur AK, Gupta D, Mahadevan A, Kumar P, Kumar H, Nampoothiry DN, Kaur N, Thakur SK, Singh S, Slanina T, Venkataramani S. Bistable Aryl Azopyrazolium Ionic Photoswitches in Water. J Am Chem Soc 2023; 145:10584-10594. [PMID: 37133353 DOI: 10.1021/jacs.2c13733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a new class of arylazopyrazolium-based ionic photoswitches (AAPIPs). These AAPIPs with different counter ions have been accessed through a modular synthetic approach in high yields. More importantly, the AAPIPs exhibit excellent reversible photoswitching and exceptional thermal stability in water. The effects of solvents, counter ions, substitutions, concentration, pH, and glutathione (GSH) have been evaluated using spectroscopic investigations. The results revealed that the bistability of studied AAPIPs is robust and near quantitative. The thermal half-life of Z isomers is extremely high in water (up to years), and it can be lowered electronically by the electron-withdrawing groups or highly basic pH.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Debapriya Gupta
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Anjali Mahadevan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Himanshu Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Dhanyaj Narayanan Nampoothiry
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Navneet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sandeep Kumar Thakur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sanjay Singh
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague 160 00, Czech Republic
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| |
Collapse
|
23
|
Enache BC, Hanganu A, Tablet C, Anghel CC, Popescu CC, Paun A, Hădade ND, Mădălan AM, Matache M. Exploring Arylazo-3,5-Bis(trifluoromethyl)pyrazole Switches. ACS OMEGA 2022; 7:39122-39135. [PMID: 36340122 PMCID: PMC9631733 DOI: 10.1021/acsomega.2c04984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Arylazopyrazoles stand out among the azoheteroarene photoswitches due to their excellent properties in terms of stability of the least stable isomer and conversion between isomers, leading to their use in several interesting applications. We report herein the synthesis of arylazo-trifluoromethyl-substituted pyrazoles and their switching behavior under light irradiation. UV-vis and NMR experiments showed that arylazo-1H-3,5-bis(trifluoromethyl)pyrazoles displayed very long half-lives in DMSO (days), along with reasonable values of other parameters that characterize a photoswitch. Inclusion of naphthyl moieties as aryl counterparts of the arylazopyrazoles is beneficial only in combination with trifluoromethyl groups, while extending the conjugation by grafting the pyrazole moiety with electron-donating or -withdrawing substituents positively affects the photoswitching behavior, in terms of isomerization yield and half-lives of the least stable isomer. The experimental values were correlated with theoretical calculations indicating the valuable influence of the trifluoromethyl groups onto the photoswitching behavior.
Collapse
Affiliation(s)
- Bogdan C Enache
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
- Department of Research and Development, SC Microsin SRL, 51-63 Pericle Papahagi Street, 032364 Bucharest, Romania
| | - Anamaria Hanganu
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania
| | - Cristina Tablet
- Faculty of Pharmacy, Titu Maiorescu University, Gh. Sincai Bd. 16, 040317 Bucharest, Romania
- Department of Physical Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
| | - Catalin C Anghel
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
- Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Codruta C Popescu
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Anca Paun
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Niculina Daniela Hădade
- Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Augustin M Mădălan
- Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
| | - Mihaela Matache
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| |
Collapse
|
24
|
Gaur AK, Kumar H, Gupta D, Tom IP, Nampoothiry DN, Thakur SK, Mahadevan A, Singh S, Venkataramani S. Structure-Property Relationship for Visible Light Bidirectional Photoswitchable Azoheteroarenes and Thermal Stability of Z-Isomers. J Org Chem 2022; 87:6541-6551. [PMID: 35486716 DOI: 10.1021/acs.joc.2c00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modular approach has been adopted to synthesize a wide range of visible light-driven photoswitchable azoheteroarenes. In this regard, we considered ortho substitution of cyclic amines in the aryl ring and varied substitution patterns. Using detailed spectroscopic studies, we established a relationship between structure and photoswitching ability and also half-lives of the Z-isomers. Through this, we envision tunable and bidirectional longer wavelength photoswitches.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Irin Pottanani Tom
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Dhanyaj Narayanan Nampoothiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Sandeep Kumar Thakur
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Anjali Mahadevan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Sanjay Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli 140306, Punjab, India
| |
Collapse
|
25
|
Bhunia S, Dolai A, Bera S, Samanta S. Near-Complete Bidirectional Photoisomerization of para-Dialkylamino-Substituted Arylazopyrazoles under Violet and Green or Red Lights. J Org Chem 2022; 87:4449-4454. [PMID: 35201776 DOI: 10.1021/acs.joc.1c02898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
para-Dimethylamine- and para-pyrrolidine-substituted arylazopyrazoles display very high to near-quantitative or quantitative bidirectional isomerization under violet and green or red lights in both polar (DMSO and DMSO/aqueous buffer, pH 7.5) and nonpolar solvents. These switches confer a reasonable thermal stability to their cis-states (t1/2 ≈ 4-7 h in DMSO and DMSO/buffer) and also show a high level of resistance to photobleaching and an impressive stability to reduction by glutathione. Using DFT calculations, attempts have been made to decipher the photophysical properties and thermal stabilities of the cis isomers.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
26
|
Shen ZN, Xu YX, Wang CY, Qiao B. Fine‐tuning the Thermal Relaxation Dynamics of Indigo‐based Photoswitches Using Selective Non‐covalent Interactions without Chemical Modification. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhen-Nan Shen
- ShanghaiTech University School of Physical Science and Technology shanghai,pudongShanghai 231567 Shanghai CHINA
| | - Yu-Xuan Xu
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Chen-Yu Wang
- ShanghaiTech University School of Physical Science and Technology CHINA
| | - Bo Qiao
- ShanghaiTech University School of Physical Science and Technology 393 Middle Huaxia Road 201210 Shanghai CHINA
| |
Collapse
|
27
|
Adrion DM, Lopez SA. Cross-conjugation controls the stabilities and photophysical properties of heteroazoarene photoswitches. Org Biomol Chem 2022; 20:5989-5998. [PMID: 35014651 DOI: 10.1039/d1ob02026a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Azoarene photoswitches are versatile molecules that interconvert from their E-isomer to their Z-isomer with light. Azobenzene is a prototypical photoswitch but its derivatives can be poorly suited for in vivo applications such as photopharmacology due to undesired photochemical reactions promoted by ultraviolet light and the relatively short half-life (t1/2) of the Z-isomer (2 days). Experimental and computational studies suggest that these properties (λmax of the E isomer and t1/2 of the Z-isomer) are inversely related. We identified isomeric azobisthiophenes and azobisfurans from a high-throughput screening study of 1540 azoarenes as photoswitch candidates with improved λmax and t1/2 values relative to azobenzene. We used density functional theory to predict the activation free energies and vertical excitation energies of the E- and Z-isomers of 2,2- and 3,3-substituted azobisthiophenes and azobisfurans. The half-lives depend on whether the heterocycles are π-conjugated or cross-conjugated with the diazo π-bond. The 2,2-substituted azoarenes both have t1/2 values on the scale of 1 hour, while the 3,3-analogues have computed half-lives of 40 and 230 years (thiophene and furan, respectively). The 2,2-substituted heteroazoarenes have significantly higher λmax absorptions than their 3,3-substituted analogues: 76 nm for azofuran and 77 nm for azothiophene.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
28
|
Sah C, Mahadevan A, Kumar P, Venkataramani S. The curious case of the photochemistry of 2-hydroxyphenylazo-3,5-dimethylisoxazole: Unravelling the process among tautomer-ization, photoisomerization, and conformational changes. Phys Chem Chem Phys 2022; 24:7848-7855. [DOI: 10.1039/d1cp05344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoswitching in azo compounds is well established. Typically, the planar trans molecule (native) can undergo isomerization to cis isomer and vice versa in solution by light. However, observing such photochemistry...
Collapse
|
29
|
Chu CW, Stares DL, Schalley CA. Light-controlled interconversion between a [ c2]daisy chain and a lasso-type pseudo[1]rotaxane. Chem Commun (Camb) 2021; 57:12317-12320. [PMID: 34734947 DOI: 10.1039/d1cc04419b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A light-responsive self-complementary crown ether/ammonium conjugate bearing an arylazopyrazole photoswitch as a spacer can be switched between a [c2]daisy chain (E-isomer) and a lasso-type pseudo[1]rotaxane (Z-isomer) by light.
Collapse
Affiliation(s)
- Chih-Wei Chu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| | - Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| |
Collapse
|
30
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
31
|
Wannipurage D, Kurup SS, Groysman S. Heterocoupling of Different Aryl Nitrenes to Produce Asymmetric Azoarenes Using Iron–Alkoxide Catalysis and Investigation of the Cis–Trans Isomerism of Selected Bulky Asymmetric Azoarenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Duleeka Wannipurage
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sudheer S. Kurup
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Stanislav Groysman
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
32
|
Simke J, Bösking T, Ravoo BJ. Photoswitching of ortho-Aminated Arylazopyrazoles with Red Light. Org Lett 2021; 23:7635-7639. [PMID: 34533955 DOI: 10.1021/acs.orglett.1c02856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bidirectional photoswitching of arylazopyrazoles with visible light is enabled by substitution with pyrrolidine and piperidine in the ortho-position of the phenyl ring. The absorption maxima were red-shifted and the molar absorption coefficients in the visible range increased significantly, allowing the use of blue light (λ = 465 nm) for the E → Z isomerization and red light (λ = 600 nm) for the Z → E isomerization. N-Methylation of the pyrazole leads to an excellent thermal stability of the Z isomer.
Collapse
Affiliation(s)
- Julian Simke
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
| | - Tom Bösking
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
| |
Collapse
|
33
|
Fang D, Zhang ZY, Shangguan Z, He Y, Yu C, Li T. (Hetero)arylazo-1,2,3-triazoles: "Clicked" Photoswitches for Versatile Functionalization and Electronic Decoupling. J Am Chem Soc 2021; 143:14502-14510. [PMID: 34476949 DOI: 10.1021/jacs.1c08704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of light-responsive chemical systems often relies on the rational design and suitable incorporation of molecular photoswitches such as azobenzenes. Linking a photoswitch core with another π-conjugated molecular entity may give rise to intramolecular electronic coupling, which can dramatically impair the photoswitch function. Decoupling strategies have been developed based on additionally inserting a linker that can disrupt the through-bond electronic communication. Here we show that 1,2,3-triazole-a commonly used decoupling spacer-can be directly merged into the azoswitch core to construct a class of "self-decoupling" azoswitches called (hetero)arylazo-1,2,3-triazoles. Such azotriazole photoswitches are easily accessed and modularly functionalized by click chemistry. Their photoswitch property can be optimized by rational design of the substituent groups or heteroaryl rings, allowing (near-)quantitative E⇆Z photoisomerization yields and tunable Z-isomer thermal half-lives from days to years. Combined experimental and theoretical results demonstrate that the electronic structure of the photoswitch core is not substantially affected by various substituents attached to the 1,2,3-triazole unit, benefiting from its cross-conjugated nature. The combination of clickable synthesis, tunable photoswitch property, and self-decoupling ability makes (hetero)arylazo-1,2,3-triazoles intriguing molecular tools in developing photoresponsive systems with desired performance.
Collapse
Affiliation(s)
- Dong Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Chen H, Chen W, Lin Y, Xie Y, Liu SH, Yin J. Visible and near-infrared light activated azo dyes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
He Y, Shangguan Z, Zhang Z, Xie M, Yu C, Li T. Azobispyrazole Family as Photoswitches Combining (Near‐) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half‐Lives from Hours to Years**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yixin He
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhao‐Yang Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| | - Tao Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
36
|
He Y, Shangguan Z, Zhang ZY, Xie M, Yu C, Li T. Azobispyrazole Family as Photoswitches Combining (Near-) Quantitative Bidirectional Isomerization and Widely Tunable Thermal Half-Lives from Hours to Years*. Angew Chem Int Ed Engl 2021; 60:16539-16546. [PMID: 33852166 DOI: 10.1002/anie.202103705] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Indexed: 11/08/2022]
Abstract
Azobenzenes are classical molecular photoswitches that have been widely used. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatic rings has emerged as a strategy to expand molecular diversity and access improved photoswitching properties. Many mono-heteroaryl azo molecules with unique structures and/or properties have been developed, but the potential of bis-heteroaryl architectures is far from fully exploited. We report a family of azobispyrazoles, which combine (near-)quantitative bidirectional photoconversion and widely tunable Z-isomer thermal half-lives from hours to years. The two five-membered rings remarkably weaken the intramolecular steric hindrance, providing new possibilities for engineering the geometric and electronic structure of azo photoswitches. Azobispyrazoles generally exhibit twisted Z-isomers that facilitate complete Z→E photoisomerization, and their thermal stability can be broadly adjusted regardless of the twisted shape, overcoming the conflict between photoconversion (favored by the twisted shape) and Z-isomer stability (favored by the orthogonal shape) encountered by mono-heteroaryl azo switches.
Collapse
Affiliation(s)
- Yixin He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
37
|
Ji X, Meng L, Xu H, Wang L. Pyridine‐Catalysed Desulfonylative Addition of β‐Diketones to Arylazosulfones via Diaziridine Rearrangement. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin Ji
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
| | - Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei Anhui 235000 People's Republic of China phone
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| |
Collapse
|
38
|
Sheng K, Liu YN, Gupta RK, Kurmoo M, Sun D. Arylazopyrazole-functionalized photoswitchable octanuclear Zn(II)-silsesquioxane nanocage. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9886-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Heindl AH, Wegner HA. Rational Design of Azothiophenes-Substitution Effects on the Switching Properties. Chemistry 2020; 26:13730-13737. [PMID: 32330338 PMCID: PMC7702042 DOI: 10.1002/chem.202001148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/22/2022]
Abstract
A series of substituted azothiophenes was prepared and investigated toward their isomerization behavior. Compared to azobenzene (AB), the presented compounds showed red-shifted absorption and almost quantitative photoisomerization to their (Z) states. Furthermore, it was found that electron-withdrawing substitution on the phenyl moiety increases, while electron-donating substitution decreases the thermal half-lives of the (Z)-isomers due to higher or lower stabilization by a lone pair-π interaction. Additionally, computational analysis of the isomerization revealed that a pure singlet state transition state is unlikely in azothiophenes. A pathway via intersystem crossing to a triplet energy surface of lower energy than the singlet surface provided a better fit with experimental data of the (Z)→(E) isomerization. The insights gained in this study provide the necessary guidelines to design effective thiophenylazo-photoswitches for applications in photopharmacology, material sciences, or solar energy harvesting applications.
Collapse
Affiliation(s)
- Andreas H. Heindl
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
40
|
Kommera R, Balasubramanian S, Raju Bhimapaka C. RuCl
3
Catalyzed Reaction of Chromones with Bestmann‐Ohira Reagent for the Construction of 2‐Hydroxybenzoyl‐1
H
‐pyrazolylphosphonates and Dihydrochromeno[3,2‐
c
]pyrazolylphosphonates. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rajkumar Kommera
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sridhar Balasubramanian
- Department of Analytical & Structural Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - China Raju Bhimapaka
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
41
|
Balam-Villarreal JA, López-Mayorga BJ, Gallardo-Rosas D, Toscano RA, Carreón-Castro MP, Basiuk VA, Cortés-Guzmán F, López-Cortés JG, Ortega-Alfaro MC. π-Extended push-pull azo-pyrrole photoswitches: synthesis, solvatochromism and optical band gaps. Org Biomol Chem 2020; 18:1657-1670. [PMID: 32048680 DOI: 10.1039/c9ob02410g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of push-pull biphenyl-azopyrrole compounds 3b-g and 4b-d was efficiently obtained via a Suzuki cross-coupling reaction between 2-(4'-iodophenyl-azo)-N-methyl pyrrole (1a) or 3-(4'-iodophenyl-azo)-1,2,5-trimethyl pyrrole (2a) and 4'-substituted phenyl boronic acids in excellent yields. The influence of the π-biphenyl backbone and pyrrole pattern substitution was correlated with their optical properties. Solvatochromic studies via UV-visible spectrophotometry revealed that the inclusion of a 4'-nitro-biphenyl fragment favors a red-shift of the main absorption band in these azo compounds compared with their non-substituted analogues. Likewise, optical band-gaps were estimated by means of electronic absorption spectra and correlated with TD-DFT studies. The pyrrole pattern substitution and the π-conjugated backbone exhibit a clear influence on their thermal isomerization kinetics at room temperature. In all cases, biphenylazo-pyrrole compounds lead to the formation of J-type aggregates in binary MeOH : H2O solvents. Under these conditions, compounds 3b-c undergo a water-assisted cis-to-trans isomerization at room temperature.
Collapse
Affiliation(s)
- J A Balam-Villarreal
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - B J López-Mayorga
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - D Gallardo-Rosas
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - R A Toscano
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico.
| | - M P Carreón-Castro
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - V A Basiuk
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - F Cortés-Guzmán
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico.
| | - J G López-Cortés
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico.
| | - M C Ortega-Alfaro
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| |
Collapse
|
42
|
Othman Abdulla H, Scaringi S, Amin AA, Mella M, Protti S, Fagnoni M. Aryldiazenyl Radicals from Arylazo Sulfones: Visible Light‐Driven Diazenylation of Enol Silyl Ethers. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Havall Othman Abdulla
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia Viale Taramelli 12 27100 Pavia Italy
- Chemistry Department, College of ScienceSalahaddin University Erbil Iraq
| | - Simone Scaringi
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Ahmed A. Amin
- Chemistry Department, College of ScienceSalahaddin University Erbil Iraq
| | - Mariella Mella
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia Viale Taramelli 12 27100 Pavia Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
43
|
Rustler K, Nitschke P, Zahnbrecher S, Zach J, Crespi S, König B. Photochromic Evaluation of 3(5)-Arylazo-1H-pyrazoles. J Org Chem 2020; 85:4079-4088. [DOI: 10.1021/acs.joc.9b03097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karin Rustler
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Philipp Nitschke
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sophie Zahnbrecher
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Julia Zach
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
44
|
Kennedy ADW, Sandler I, Andréasson J, Ho J, Beves JE. Visible‐Light Photoswitching by Azobenzazoles. Chemistry 2020; 26:1103-1110. [DOI: 10.1002/chem.201904309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Isolde Sandler
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology 412 96 Göteborg Sweden
| | - Junming Ho
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | |
Collapse
|
45
|
Bhunia S, Dolai A, Samanta S. Robust bi-directional photoswitching of thiomethyl substituted arylazopyrazoles under visible light. Chem Commun (Camb) 2020; 56:10247-10250. [DOI: 10.1039/d0cc04098c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mono-ortho- and para-thiomethyl substituted arylazopyrazoles display excellent isomerization in both directions under visible light, and show long cis half-lives. These switches are also resistant to photobleaching and reduction by glutathione.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Anirban Dolai
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| | - Subhas Samanta
- Department of Chemistry
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
46
|
Calbo J, Thawani AR, Gibson RSL, White AJP, Fuchter MJ. A combinatorial approach to improving the performance of azoarene photoswitches. Beilstein J Org Chem 2019; 15:2753-2764. [PMID: 31807208 PMCID: PMC6880842 DOI: 10.3762/bjoc.15.266] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Azoarenes remain privileged photoswitches – molecules that can be interconverted between two states using light – enabling a huge range of light addressable multifunctional systems and materials. Two key innovations to improve the addressability and Z-isomer stability of the azoarenes have been ortho-substitution of the benzene ring(s) or replacement of one of the benzenes for a pyrazole (to give arylazopyrazole switches). Here we study the combination of such high-performance features within a single switch architecture. Through computational analysis and experimental measurements of representative examples, we demonstrate that ortho-benzene substitution of the arylazopyrazoles drastically increases the Z-isomer stability and allows further tuning of their addressability. This includes the discovery of new azopyrazoles with a Z-isomer thermal half-life of ≈46 years. Such results therefore define improved designs for high performance azo switches, which will allow for high precision optically addressable applications using such components.
Collapse
Affiliation(s)
- Joaquin Calbo
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Aditya R Thawani
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| | - Rosina S L Gibson
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, W12 0BZ, United Kingdom
| |
Collapse
|
47
|
Zhang Z, He Y, Zhou Y, Yu C, Han L, Li T. Pyrazolylazophenyl Ether‐Based Photoswitches: Facile Synthesis, (Near‐)Quantitative Photoconversion, Long Thermal Half‐Life, Easy Functionalization, and Versatile Applications in Light‐Responsive Systems. Chemistry 2019; 25:13402-13410. [DOI: 10.1002/chem.201902897] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Zhao‐Yang Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yixin He
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ying Zhou
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chunyang Yu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu Han
- School of Chemical Science and Engineering Tongji University Shanghai 200092 P. R. China
| | - Tao Li
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
48
|
Vela S, Krüger C, Corminboeuf C. Exploring chemical space in the search for improved azoheteroarene-based photoswitches. Phys Chem Chem Phys 2019; 21:20782-20790. [PMID: 31513205 DOI: 10.1039/c9cp03831k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In quest of improved photo switches, azoheteroarenes have emerged as a potential alternative to azobenzenes. However, to date the number and types of these species that have been subjected to study are insufficient to provide an in-depth understanding of the photochemical effects brought about by different substituents. Here, we computationally screen the optical properties and thermal stabilities of 512 azoheteroarenes that consist of eight different N-containing heteroarenes combined with 64 substitution patterns. The most promising compounds are identified and their properties rationalized based on the nature of the azoheteroarene core and the location and type of substitution patterns.
Collapse
Affiliation(s)
- Sergi Vela
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Computational Molecular Design, CH-1015 Lausanne, Switzerland.
| | - Constantin Krüger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Computational Molecular Design, CH-1015 Lausanne, Switzerland.
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Laboratory for Computational Molecular Design, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
49
|
Phapale D, Kushwaha A, Das D. Room Temperature Reversible Z
→ E
Photoisomerization of Azobenzene Appended to Anthraquinone-Benzimidazole Based Photoswitches with Resolved n→π* Absorption Band. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daulat Phapale
- Department of Chemistry; Institute of Chemical Technology; 400019 Matunga, Mumbai India
| | - Archana Kushwaha
- Department of Chemistry; Institute of Chemical Technology; 400019 Matunga, Mumbai India
| | - Dipanwita Das
- Department of Chemistry; Institute of Chemical Technology; 400019 Matunga, Mumbai India
| |
Collapse
|
50
|
Kumar P, Srivastava A, Sah C, Devi S, Venkataramani S. Arylazo‐3,5‐dimethylisoxazoles: Azoheteroarene Photoswitches Exhibiting High
Z
‐Isomer Stability, Solid‐State Photochromism, and Reversible Light‐Induced Phase Transition. Chemistry 2019; 25:11924-11932. [DOI: 10.1002/chem.201902150] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Pravesh Kumar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Anjali Srivastava
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Chitranjan Sah
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sudha Devi
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| | - Sugumar Venkataramani
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Sector 81, SAS Nagar, Knowledge City Manauli 140306 Punjab India
| |
Collapse
|