1
|
Murelli RP, Berkowitz AJ, Zuschlag DW. Carbocycloaddition Strategies for Troponoid Synthesis. Tetrahedron 2023; 130:133175. [PMID: 36777111 PMCID: PMC9910567 DOI: 10.1016/j.tet.2022.133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Tropone is the prototypical aromatic 7-membered ring, and can be found in virtually any undergraduate textbook as a key example of non-benzenoid aromaticity. Aside from this important historical role, tropone is also of high interest as a uniquely reactive synthon in complex chemical synthesis as well as a valuable chemotype in drug design. More recently, there has been growing interest in the utility of tropones for catalysis and material science. Thus, synthetic strategies capable of synthesizing functional tropones are key to fully exploiting the potential of this aromatic ring system. Cycloaddition reactions are particularly powerful methods for constructing carbocycles, and these strategies in turn have proven to be powerful for generating troponoids. The following review article provides an overview of strategies for troponoids wherein the 7-membered carbocycle is generated through a cycloaddition reaction. Representative examples of each strategy are also provided.
Collapse
Affiliation(s)
- Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| | - Daniel W Zuschlag
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| |
Collapse
|
2
|
Berkowitz AJ, Murelli RP. Synthesis of α-Tropolones through Autoxidation of Dioxole-Fused Cycloheptatrienes. J Org Chem 2022; 87:4499-4507. [PMID: 35007070 PMCID: PMC9002940 DOI: 10.1021/acs.joc.1c02713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we describe the formation of tropolones through the autoxidation of Büchner reaction-derived cycloheptatrienes. The reaction is exceptionally simple procedurally, as it involves blowing a stream of compressed air over the cycloheptatriene, and the products can be obtained without any need for chromatography. The chemistry works specifically on dioxolane-fused systems or close variants, and substitution patterns are also important. A radical-based mechanistic hypothesis is put forward to explain these results. Finally, we demonstrate the utility of the overall process in the synthesis of amide-appended tropolones and an isomer of stipitatic acid.
Collapse
Affiliation(s)
- Alex J Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States.,Ph.D. Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Schiavone DV, Kapkayeva DM, Murelli RP. Investigations into a Stoichiometrically Equivalent Intermolecular Oxidopyrylium [5 + 2] Cycloaddition Reaction Leveraging 3-Hydroxy-4-pyrone-Based Oxidopyrylium Dimers. J Org Chem 2021; 86:3826-3835. [PMID: 33586990 PMCID: PMC8061303 DOI: 10.1021/acs.joc.0c02655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidopyrylium [5 + 2] cycloaddition reactions are powerful strategies for constructing complex bicyclic architectures. However, intermolecular cycloadditions of oxidopyrylium ylides are limited due to competing dimerization processes; consequently, high equivalents of dipolarophiles are often used to help intercept the ylide prior to dimerization. Recent studies by our lab have revealed that oxidopyrylium dimers derived from 3-hydroxy-4-pyrones are capable of reverting back to ylides in situ and as a result can be used as clean oxidopyrylium ylide sources. The following manuscript investigates intermolecular cycloaddition reactions between 3-hydroxy-4-pyrone-derived oxidopyrylium dimers and stoichiometrically equivalent ratios of alkyne dipolarophiles under thermal conditions. With certain reactive alkynes, pure cycloadducts can be obtained following a simple evaporation of the solvent, which is a benefit of the completely atom-economical reaction conditions. However, when less reactive alkynes are used the yields suffer due to a competing dimer rearrangement. Finally, when reactive-yet-volatile alkynes are used, such as methyl propiolate, competing 2:1 ylide/alkyne cycloadducts are observed. Intriguingly, these complex cycloadducts, which can be obtained in good yields from the pure cycloadducts, form with high regio- and stereoselectivities; however, both the regio-and stereoselectivities differ remarkably based on the source of the oxidopyrylium ylide.
Collapse
Affiliation(s)
- Daniel V. Schiavone
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Diana M. Kapkayeva
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, USA
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
4
|
Bak E, Miller JT, Noronha A, Tavis J, Gallicchio E, Murelli RP, Le Grice SFJ. 3,7-Dihydroxytropolones Inhibit Initiation of Hepatitis B Virus Minus-Strand DNA Synthesis. Molecules 2020; 25:molecules25194434. [PMID: 32992516 PMCID: PMC7583054 DOI: 10.3390/molecules25194434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023] Open
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs).
Collapse
Affiliation(s)
- Ellen Bak
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - Jennifer T. Miller
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - Andrea Noronha
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - John Tavis
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO 63104, USA;
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY 11210, USA; (E.G.); (R.P.M.)
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY 11210, USA; (E.G.); (R.P.M.)
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Stuart F. J. Le Grice
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
- Correspondence:
| |
Collapse
|
5
|
Bejcek LP, Garimallaprabhakaran AK, Suyabatmaz DM, Greer A, Hersh WH, Greer EM, Murelli RP. Maltol- and Allomaltol-Derived Oxidopyrylium Ylides: Methyl Substitution Pattern Kinetically Influences [5 + 3] Dimerization versus [5 + 2] Cycloaddition Reactions. J Org Chem 2019; 84:14670-14678. [PMID: 31603325 PMCID: PMC6982524 DOI: 10.1021/acs.joc.9b02137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidopyrylium ylides are useful intermediates in synthetic organic chemistry because of their capability of forming structurally complex cycloadducts. They can also self-dimerize via [5 + 3] cycloaddition, which is an oft-reported side reaction that can negatively impact [5 + 2] cycloadduct yields and efficiency. In select instances, these dimers can be synthesized and used as the source of oxidopyrylium ylide, although the generality of this process remains unclear. Thus, how the substitution pattern governs both dimerization and cycloaddition reactions is of fundamental interest to probe factors to regulate them. The following manuscript details our findings that maltol-derived oxidopyrylium ylides (i.e., with ortho methyl substitution relative to oxide) can be trapped prior to dimerization more efficiently than the regioisomeric allomaltol-derived ylide (i.e., with a para methyl substitution relative to oxide). Density functional theory studies provide evidence in support of a sterically (kinetically) controlled mechanism, whereby gauche interactions between appendages of the approaching maltol-derived ylides are privileged by higher barriers for dimerization and thus are readily intercepted by dipolarophiles via [5 + 2] cycloadditions.
Collapse
Affiliation(s)
- Lauren P Bejcek
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States
- PhD Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Aswin K Garimallaprabhakaran
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States
| | - Duygu M Suyabatmaz
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States
| | - Alexander Greer
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States
- PhD Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - William H Hersh
- PhD Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
- Department of Chemistry and Biochemistry , Queens College, City University of New York , Queens , New York 11367 , United States
| | - Edyta M Greer
- Department of Natural Sciences , Baruch College, City University of New York , New York , New York 10010 , United States
| | - Ryan P Murelli
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States
- PhD Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| |
Collapse
|
6
|
Crisp AL, Noble B, Schwartz BD, Willis AC, Coote ML, Banwell MG. The Synthesis, Structural Characterisation and Chemical Manipulation of the [6+3] Cycloadduct Derived from α‐Tropolone
O
‐Methyl Ether and Trimethylenemethane. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antony L. Crisp
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra, ACT 2601 Australia
| | - Benjamin Noble
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra, ACT 2601 Australia
- ARC Centre of Excellence for Electromaterials Science Research School of Chemistry The Australian National University Canberra, ACT 2601 Australia
| | - Brett D. Schwartz
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra, ACT 2601 Australia
| | - Anthony C. Willis
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra, ACT 2601 Australia
| | - Michelle L. Coote
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra, ACT 2601 Australia
- ARC Centre of Excellence for Electromaterials Science Research School of Chemistry The Australian National University Canberra, ACT 2601 Australia
| | - Martin G. Banwell
- Research School of Chemistry Institute of Advanced Studies The Australian National University Canberra, ACT 2601 Australia
| |
Collapse
|
7
|
Berkowitz AJ, Abdelmessih RG, Murelli RP. Amidation Strategy for Final-Step α-Hydroxytropolone Diversification. Tetrahedron Lett 2018; 59:3026-3028. [PMID: 30872871 PMCID: PMC6411066 DOI: 10.1016/j.tetlet.2018.06.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
α-Hydroxytropolones (αHTs) are excellent metalloenzyme-inhibiting fragments that have been the basis for the development of potent inhibitors of various therapeutically important enzymes. The following manuscript describes a final-step amidation approach for αHT diversification. The method takes advantage of a scalable, chromatography-free synthesis of a carboxylic acid-appended αHT, and in the present manuscript we describe the synthesis of eight amide-containing αHTs, three of which we envision using as chemical probes. We expect that the general strategy will find widespread usage in both chemical biology and medicinal chemistry studies on αHTs.
Collapse
Affiliation(s)
- Alex J. Berkowitz
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States
| | - Rudolf G. Abdelmessih
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, United States
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, NY, 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, United States
| |
Collapse
|
8
|
Bejcek LP, Murelli RP. Oxidopyrylium [5+2] Cycloaddition Chemistry: Historical Perspective and Recent Advances (2008-2018). Tetrahedron 2018; 74:2501-2521. [PMID: 30455508 PMCID: PMC6238658 DOI: 10.1016/j.tet.2018.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Lauren P Bejcek
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|