1
|
Dimitrova D, Dimitrova S, Kehayova G, Dragomanova S. Meroterpenoids from Terrestrial and Marine Fungi: Promising Agents for Neurodegenerative Disorders-An Updated Review. Curr Issues Mol Biol 2025; 47:96. [PMID: 39996817 PMCID: PMC11854780 DOI: 10.3390/cimb47020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Meroterpenoids represent a remarkably diverse class of natural secondary metabolites, some of which are synthesized via terpenoid biosynthetic pathways. Over the past ten years, these compounds have gained interest because of their wide range of biological activities, such as anti-cholinesterase, COX-2 inhibitory, antibacterial, antiviral, antidiabetic, antioxidant, anti-inflammatory, antineoplastic, and cardioprotective properties. This review aims to consolidate the recognized neuroprotective effects of meroterpenoids from marine and terrestrial fungi. METHODS Data compiled from several databases, including PubMed, Science Direct, Scopus, and Google Scholar, include articles published since 2000 using keywords such as "neuroprotective", "fungi", "mushroom", "marine sponge", "neurodegeneration", and "dementia" in connection with "meroterpenoids". RESULTS Meroterpenoids modulate different cell signaling pathways and exhibit different and often combined mechanisms of action to ameliorate neuronal damage and dysfunction. Reported activities include anti-cholinesterase, antioxidant, BACE1 inhibition, and anti-inflammatory activities, all of which have potential in the treatment of dementia associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. CONCLUSIONS Meroterpenoids have the potential to be developed as effective tools for neuropathological diseases. Ongoing research to elucidate the various neuroprotective pathways remains essential and requires further investigation.
Collapse
Affiliation(s)
- Daniela Dimitrova
- Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria;
| | - Simeonka Dimitrova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Gabriela Kehayova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blv. 83A, 9000 Varna, Bulgaria; (S.D.); (G.K.)
| |
Collapse
|
2
|
Zhang JJ, Qin FY, Cheng YX. Insights into Ganoderma fungi meroterpenoids opening a new era of racemic natural products in mushrooms. Med Res Rev 2024; 44:1221-1266. [PMID: 38204140 DOI: 10.1002/med.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Fu-Ying Qin
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
4
|
Fuloria NK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, Sekar M, Fuloria S. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol 2022; 13:830103. [PMID: 36199687 PMCID: PMC9527340 DOI: 10.3389/fphar.2022.830103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Meroterpenoids are natural products synthesized by unicellular organisms such as bacteria and multicellular organisms such as fungi, plants, and animals, including those of marine origin. Structurally, these compounds exhibit a wide diversity depending upon the origin and the biosynthetic pathway they emerge from. This diversity in structural features imparts a wide spectrum of biological activity to meroterpenoids. Based on the biosynthetic pathway of origin, these compounds are either polyketide-terpenoids or non-polyketide terpenoids. The recent surge of interest in meroterpenoids has led to a systematic screening of these compounds for many biological actions. Different meroterpenoids have been recorded for a broad range of operations, such as anti-cholinesterase, COX-2 inhibitory, anti-leishmanial, anti-diabetic, anti-oxidative, anti-inflammatory, anti-neoplastic, anti-bacterial, antimalarial, anti-viral, anti-obesity, and insecticidal activity. Meroterpenoids also possess inhibitory activity against the expression of nitric oxide, TNF- α, and other inflammatory mediators. These compounds also show renal protective, cardioprotective, and neuroprotective activities. The present review includes literature from 1999 to date and discusses 590 biologically active meroterpenoids, of which 231 are from fungal sources, 212 are from various species of plants, and 147 are from marine sources such as algae and sponges.
Collapse
Affiliation(s)
| | | | - Kaushal H. Shah
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | | |
Collapse
|
5
|
Tomanik M, Qian S, Yu JQ. Pd(II)-Catalyzed Synthesis of Bicyclo[3.2.1] Lactones via Tandem Intramolecular β-C(sp 3)-H Olefination and Lactonization of Free Carboxylic Acids. J Am Chem Soc 2022; 144:11955-11960. [PMID: 35763801 DOI: 10.1021/jacs.2c04195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bicyclo[3.2.1] lactones are chemical scaffolds found in numerous bioactive natural products. Herein, we detail the development of a novel palladium(II)-catalyzed tandem intramolecular β-C(sp3)-H olefination and lactonization reaction that rapidly transforms linear carboxylic acid possessing a tethered olefin into the bicyclo[3.2.1] lactone motif. This transformation features a broad substrate scope, shows excellent functional group compatibility, and can be extended to the preparation of the related seven-membered bicyclo[4.2.1] lactones. Additionally, we demonstrate the synthetic potential of this annulation by constructing the 6,6,5-tricyclic lactone core structure of the meroterpenoid cochlactone A. We anticipate that this compelling reaction may provide a novel synthetic disconnection that can be broadly applied toward the preparation of a variety of bioactive natural products.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Shaoqun Qian
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Maiti P, Sharma P, Nand M, Bhatt ID, Ramakrishnan MA, Mathpal S, Joshi T, Pant R, Mahmud S, Simal-Gandara J, Alshehri S, Ghoneim MM, Alruwaily M, Awadh AAA, Alshahrani MM, Chandra S. Integrated Machine Learning and Chemoinformatics-Based Screening of Mycotic Compounds against Kinesin Spindle ProteinEg5 for Lung Cancer Therapy. Molecules 2022; 27:1639. [PMID: 35268740 PMCID: PMC8911701 DOI: 10.3390/molecules27051639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Among the various types of cancer, lung cancer is the second most-diagnosed cancer worldwide. The kinesin spindle protein, Eg5, is a vital protein behind bipolar mitotic spindle establishment and maintenance during mitosis. Eg5 has been reported to contribute to cancer cell migration and angiogenesis impairment and has no role in resting, non-dividing cells. Thus, it could be considered as a vital target against several cancers, such as renal cancer, lung cancer, urothelial carcinoma, prostate cancer, squamous cell carcinoma, etc. In recent years, fungal secondary metabolites from the Indian Himalayan Region (IHR) have been identified as an important lead source in the drug development pipeline. Therefore, the present study aims to identify potential mycotic secondary metabolites against the Eg5 protein by applying integrated machine learning, chemoinformatics based in silico-screening methods and molecular dynamic simulation targeting lung cancer. Initially, a library of 1830 mycotic secondary metabolites was screened by a predictive machine-learning model developed based on the random forest algorithm with high sensitivity (1) and an ROC area of 0.99. Further, 319 out of 1830 compounds screened with active potential by the model were evaluated for their drug-likeness properties by applying four filters simultaneously, viz., Lipinski's rule, CMC-50 like rule, Veber rule, and Ghose filter. A total of 13 compounds passed from all the above filters were considered for molecular docking, functional group analysis, and cell line cytotoxicity prediction. Finally, four hit mycotic secondary metabolites found in fungi from the IHR were screened viz., (-)-Cochlactone-A, Phelligridin C, Sterenin E, and Cyathusal A. All compounds have efficient binding potential with Eg5, containing functional groups like aromatic rings, rings, carboxylic acid esters, and carbonyl and with cell line cytotoxicity against lung cancer cell lines, namely, MCF-7, NCI-H226, NCI-H522, A549, and NCI H187. Further, the molecular dynamics simulation study confirms the docked complex rigidity and stability by exploring root mean square deviations, root mean square fluctuations, and radius of gyration analysis from 100 ns simulation trajectories. The screened compounds could be used further to develop effective drugs against lung and other types of cancer.
Collapse
Affiliation(s)
- Priyanka Maiti
- Centre for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora 263643, Uttarakhand, India;
| | - Priyanka Sharma
- Department of Botany, DSB Campus, Kumaun University, Nainital 263002, Uttarakhand, India;
| | - Mahesha Nand
- ENVIS Centre on Himalayan Ecology, G.B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora 263643, Uttarakhand, India
| | - Indra D. Bhatt
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment (GBP-NIHE), Kosi-Katarmal, Almora 263643, Uttarakhand, India;
| | | | - Shalini Mathpal
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital 263136, Uttarakhand, India; (S.M.); (T.J.); (R.P.)
| | - Tushar Joshi
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital 263136, Uttarakhand, India; (S.M.); (T.J.); (R.P.)
| | - Ragini Pant
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital 263136, Uttarakhand, India; (S.M.); (T.J.); (R.P.)
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
| | - Sultan Alshehri
- Department of Pharamaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Subhash Chandra
- Department of Botany, Soban Singh Jeena University, Almora 263601, Uttarakhand, India
| |
Collapse
|
7
|
Zhang JY, Yang BB, Yang YD, Gao F, Liu WQ, Li L. Correlations between the ECD spectra and absolute configuration of bridged-ring lactones: revisiting Beecham's rule. Org Biomol Chem 2021; 19:9266-9275. [PMID: 34651163 DOI: 10.1039/d1ob01557e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bridged lactones frequently appear as structural fragments in natural products. To elucidate their stereochemistry using electronic circular dichroism (ECD) spectra, Beecham correlated the sign of the Cotton effect (CE) from the n → π* transition of lactones at approximately 220 nm with the skeleton of bridged lactones. By combining experimental and theoretical ECD analyses of various bridged lactones using time-dependent density functional theory calculations and a methodology for extracting core structures, Beecham's rule was revisited and revised to define the scope of application. Both the position of the β-C atom in the larger lactone system and the additive contribution of groups at β-C exerted effects on the sign of the CE. The revised rule provides an alternative way to interpret experimental ECD data in addition to quantum-chemical calculation for various bridged lactones.
Collapse
Affiliation(s)
- Jun-Yao Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Fan Gao
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Wen-Qiang Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
9
|
Wong HNC, Peng XS, Zhong Z, Lyu MY, Ma HR. Pivotal Reactions in the Creation of the Polycyclic Skeleton of Cryptotrione. Synlett 2021. [DOI: 10.1055/a-1472-4594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractThree pivotal reactions, namely, enyne cycloisomerization, polyene cyclization, and quinone methide formation, are applied to synthesize the complex polycyclic skeleton of cryptotrione. This review summarizes the most prominent applications of these three reactions to the total syntheses of natural products, covering results published in the literature between 2011 and 2020.1 Introduction2 Three Pivotal Reactions Applied to Create the Polycyclic Framework of Cryptotrione2.1 Enyne Cycloisomerization2.2 Polyene Cyclization2.3 Quinone Methide Formation3 Conclusion
Collapse
Affiliation(s)
- Henry N. C. Wong
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Xiao-Shui Peng
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Zhuliang Zhong
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Mao-Yun Lyu
- Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong
| | - Hao-Ran Ma
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)
| |
Collapse
|
10
|
Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem 2020; 209:112860. [PMID: 33032085 DOI: 10.1016/j.ejmech.2020.112860] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Meroterpenoids are partially derived from the terpenoids, distributing widely in the plants, animals and fungi. The complex structures and diverse bioactivities of meroterpenoids have attracted more attention for chemists and pharmacologists. Since the first review summarized by Geris in 2009, there are absent of systematic reviews reported about meroterpenoids from the higher and lower fungi up to now. In the past decades, myriads of meroterpenoids were discovered, and it is necessary to summarize these meroterpenoids about their unique structures and promising bioactivities. In this review, we use a new classification method based on the non-terpene precursors, and also highlight the structural features, bioactivity of natural meroterpenoids from the higher and lower fungi covering the period of September 2008 to February 2020. A total of 709 compounds were discussed and cited the 182 references. Meanwhile, we also primarily summarize their occurrence, structural diversity, biological activities, and molecular targets.
Collapse
|
11
|
Lu SY, Shi QQ, Peng XR, Zhou L, Li XN, Qiu MH. Isolation of benzolactones, Ganodumones A-F from Ganoderma lucidum and their antibacterial activities. Bioorg Chem 2020; 98:103723. [PMID: 32171984 DOI: 10.1016/j.bioorg.2020.103723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/01/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
Abstract
Six previously undescribed benzolactone constituents, ganodumones A-F (1-6), a new type of Ganoderma meroterpenoids (GMs) fused with 1,2,3,4,5-pentasubstituted phenyl and 1',2'-dioxy-3'-methyl-pentyl chain were isolated from the fruiting bodies of Ganoderma lucidum. Their structures were determined by spectroscopic analysis, X-ray crystal diffraction, and ECD computational methods. Meanwhile, bioactive evaluation showed that compounds 3 and 5 have antibacterial activities against Microsporum gypseum with MIC90 56.86 ± 3.98 and 18.48 ± 0.47 μg/mL, respectively.
Collapse
Affiliation(s)
- Shuang-Yang Lu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Qiang-Qiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
12
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2018. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1129-1150. [PMID: 31736363 DOI: 10.1080/10286020.2019.1684474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The new natural products reported in 2018 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2018 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Shi Q, Huang Y, Su H, Gao Y, Peng X, Zhou L, Li X, Qiu M. C 28 steroids from the fruiting bodies of Ganoderma resinaceum with potential anti-inflammatory activity. PHYTOCHEMISTRY 2019; 168:112109. [PMID: 31494344 DOI: 10.1016/j.phytochem.2019.112109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/04/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Eight undescribed ergostane-type steroids, (22E,24R)-ergosta-7,22-dien-3β,5α-diol- 6,5-olide, (22E,24R)-ergosta-7,9(11),22-trien-3β,5β,6β-triol, (22E,24R)-6β-methoxy ergosta-7,9(11),22-trien-3β,5α,14β-triol, (22E,24R)-9α,15α-dihydroxyergosta-4,6,8 (14),22-tetraen-3-one, (22E,24R)-ergosta-5,8,22-trien-3β,11α-dihydroxyl-7-one, (22E,24R)-ergosta-4,7,22-trien-3β,9α,14β-trihydroxyl-6-one, (22E,24R)-ergosta-7,22- dien-3β,9α,14β-trihydroxyl-6-one, and (22E,24R)-6β-methoxyergosta-7,22-dien-3β, 5α,9α,14β-tetraol, and twenty-one known analogues were isolated from the fruiting bodies of Ganoderma resinaceum Boud. Their chemical structures were determined on the basis of comprehensive spectroscopic analysis and X-ray crystal diffraction, as well as empirical pyridine-induced deshielding effects. Furthermore, selected compounds were evaluated for their inhibitory effects on macrophage activation using an inhibition of nitric oxide production assay. Finally, (22E,24R)-ergosta-5,8,22- trien-3β,11α-dihydroxyl-7-one, (22E,24R)-ergosta-4,7,22-trien-3β,9α,14β-tri hydroxyl-6-one, (22E,24R)-6β-methoxyergosta-7,22-dien-3β,5α,9α,14β-tetraol, (22E,24R)-ergosta-6,9,22-trien-3β,5α,8α-triol,ergost-6,22-dien-3β,5α,8α-triol, 5α,6α-epoxy-(22E,24R)-ergosta-8,22-diene-3β,7α-diol, 5α,6α-epoxy-(22E,24R)- ergosta-8(14),22-diene-3β,7α-diol, 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β, 7β-diol, and 22E-7α-methoxy-5α,6α-epoxyergosta-8(14),22-dien-3β-ol showed inhibitory effects on NO production with IC50 values ranging from 3.24 ± 0.02 to 35.19 ± 0.41 μM compared with L-NMMA (IC50 49.86 ± 2.13 μM), indicating that they have potential anti-inflammatory activity.
Collapse
Affiliation(s)
- Qiangqiang Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Yanjie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Haiguo Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Xiaonian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Yunnan Key Laboratory of Natural Medicinal Chemistry Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
14
|
Parsons DE, Frontier AJ. Noncanonical Cation-π Cyclizations of Alkylidene β-Ketoesters: Synthesis of Spiro-fused and Bridged Bicyclic Ring Systems. Org Lett 2019; 21:2008-2012. [PMID: 30869901 DOI: 10.1021/acs.orglett.9b00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three cation-π cyclization cascades initiated at alkylidene β-ketoesters bearing pendent alkenes are described. Depending upon the alkene substitution pattern and the reaction conditions employed, it is possible to achieve selective synthesis of the three different types of products, including 1-halo-3-carbomethoxycyclohexanes, spiro-fused tricyclic systems, and [4.3.1] bridged bicyclic ring systems. All three reactions begin with 6- endo addition of an olefin to the alkylidene β-ketoester electrophile, followed by one of three different cation capture events.
Collapse
Affiliation(s)
- Dylan E Parsons
- Department of Chemistry , University of Rochester , 414 Huchison Hall, 100 Trustee Road , Rochester , New York 14611 , United States
| | - Alison J Frontier
- Department of Chemistry , University of Rochester , 414 Huchison Hall, 100 Trustee Road , Rochester , New York 14611 , United States
| |
Collapse
|
15
|
Gong T, Yan R, Kang J, Chen R. Chemical Components of Ganoderma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:59-106. [DOI: 10.1007/978-981-13-9867-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|