1
|
Wei B, Qin Z, Miao H, Wang C, Huang M, Liu C, Bai C, Chen Z. Alkyl zinc complexes derived from formylfluorenimide ligands: synthesis, characterization and catalysis for hydroboration of aldehydes and ketones. Dalton Trans 2025; 54:3427-3436. [PMID: 39838930 DOI: 10.1039/d4dt03395g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Five new alkyl zinc complexes supported by different formylfluorenimide ligands were prepared and characterized. Complex 1 was obtained by the reaction of 9-[N(CH3)2-Cy-NCH]Fl (Cy = 2-cyclohexyl) (Fl = fluorenyl) (L1) with diethylzinc (ZnEt2) in tetrahydrofuran. Reacting 9-[2-pyridyl-CH-NCH]Fl (L2) with ZnEt2 in tetrahydrofuran yielded complex 2. Under analogous conditions, complexes 3 and 4 were obtained through the reaction of 9-[2-pyridyl-CH(CH3)-NCH]Fl (L3) and 9-[8-quinoline-CH-NCH]Fl (L4) with ZnEt2 in tetrahydrofuran, respectively. The above ligands formed a tridentate four-coordinate structure with the introduction of a THF molecule along with the elimination of one ethyl group during its coordination with zinc. Notably, the formylfluorenimide ligand 9-[2-phenoxy-Ph-NCH]Fl (Ph = phenyl) (L5) bearing a phenoxy group exhibited unique reactivity compared to the other ligands and formed a bidentate three-coordinated structure when reacting with ZnEt2 in THF. All complexes were characterized via1H NMR, 13C NMR spectroscopy, and elemental analysis, with structural determination confirmed through single-crystal X-ray diffraction. Furthermore, the catalytic properties of these complexes were investigated. All these complexes exhibited excellent catalytic activities for the hydroboration of benzaldehyde, among which complex 5 demonstrated excellent catalytic performance (up to 99% yield) with a versatile substrate scope and high tolerance to functional groups (27 substrates) at a low catalyst loading (0.8 mol%) under mild reaction conditions.
Collapse
Affiliation(s)
- Biao Wei
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Zhibiao Qin
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Hui Miao
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Chaoqun Wang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Mengna Huang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Chenxu Liu
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Cuibing Bai
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
2
|
Derese AT, Menkir MG, Wolie MK, Yemam DA. Computational study on catalyst-free BCl 3-promoted chloroboration of carbonyl compounds. RSC Adv 2025; 15:2862-2873. [PMID: 39877698 PMCID: PMC11774190 DOI: 10.1039/d4ra06893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
DFT calculations were performed to investigate the possible reaction mechanisms underlying catalyst-free chloroboration reactions of carbonyl compounds with BCl3. The interaction between BCl3 and the C[double bond, length as m-dash]O moiety of carbonyl compounds is a two-step reaction. In the first step, B of BCl3 forms a bond with the O of the C[double bond, length as m-dash]O moiety, followed by the 1,3-Cl migration process from BCl3 to the C of the carbonyl group. To indicate the versatility of our synthetic methodology, a catalyst-free chloroboration of a variety of aldehydes and ketones with a broad range of electron-donating and electron-withdrawing groups with BCl3 was checked. According to DFT results, BCl3-induced chloroboration of aldehydes and ketones progressed under a kinetically favorable condition with <20 kcal mol-1 of activation free energy.
Collapse
|
3
|
Lewandowski D, Hreczycho G. Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction. Int J Mol Sci 2024; 25:7894. [PMID: 39063136 PMCID: PMC11487440 DOI: 10.3390/ijms25147894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
A method for the reduction of aldehydes with pinacolborane catalyzed by pincer cobalt complexes based on a triazine backbone is developed in this paper. The presented methodology allows for the transformation of several aldehydes bearing a wide range of electron-withdrawing and electron-donating groups under mild conditions. The presented procedure allows for the direct one-step hydrolysis of the obtained intermediates to the corresponding primary alcohols. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznan, Poland;
| |
Collapse
|
4
|
Kainat SF, Hawsawi MB, Mughal EU, Naeem N, Almohyawi AM, Altass HM, Hussein EM, Sadiq A, Moussa Z, Abd-El-Aziz AS, Ahmed SA. Recent developments in the synthesis and applications of terpyridine-based metal complexes: a systematic review. RSC Adv 2024; 14:21464-21537. [PMID: 38979466 PMCID: PMC11228761 DOI: 10.1039/d4ra04119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Terpyridine-based metal complexes have emerged as versatile and indispensable building blocks in the realm of modern chemistry, offering a plethora of applications spanning from materials science to catalysis and beyond. This comprehensive review article delves into the multifaceted world of terpyridine complexes, presenting an overview of their synthesis, structural diversity, and coordination chemistry principles. Focusing on their diverse functionalities, we explore their pivotal roles in catalysis, supramolecular chemistry, luminescent materials, and nanoscience. Furthermore, we highlight the burgeoning applications of terpyridine complexes in sustainable energy technologies, biomimetic systems, and medicinal chemistry, underscoring their remarkable adaptability to address pressing challenges in these fields. By elucidating the pivotal role of terpyridine complexes as versatile building blocks, this review provides valuable insights into their current state-of-the-art applications and future potential, thus inspiring continued innovation and exploration in this exciting area of research.
Collapse
Affiliation(s)
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Abdulaziz M Almohyawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Hatem M Altass
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Essam M Hussein
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Alaa S Abd-El-Aziz
- Qingdao Innovation and Development Centre, Harbin Engineering University Qingdao 266400 China
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| |
Collapse
|
5
|
Krupa B, Szyling J, Walkowiak J. Pt(PPh 3) 4 and Pt(PPh 3) 4@IL catalyzed hydroboration of ketones. Sci Rep 2023; 13:20237. [PMID: 37981660 PMCID: PMC10658173 DOI: 10.1038/s41598-023-47518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
An efficient method for the reduction of various ketones via [Pt(PPh3)4]-catalyzed hydroboration with HBpin has been successfully developed for the first time. The protocol is suitable for symmetrical and unsymmetrical derivatives possessing electron donating or withdrawing functional groups. O-borylated products were easily converted to 2° alcohols via hydrolysis with high isolated yields. According to the low-temperature NMR spectroscopy, a reaction mechanism was proposed. Additionally, effective immobilization of the catalyst in the ionic liquid [BMIM][NTf2] was applied to increase the productivity of the process by carrying out reactions under the repetitive batch mode, obtaining higher TON values and limiting the amount of expensive Pt used. The catalyst stability and almost neglectable leaching were confirmed by ICP-MS analysis of the extracted mixture. A simple separation method via extraction with n-heptane, efficient catalyst immobilization, and the commercial availability of the Pt complex, make this protocol an attractive method for the hydroboration of ketones.
Collapse
Affiliation(s)
- Barbara Krupa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
6
|
Kumar S, Kumar M, Bhalla V. Cobalt-Centered Supramolecular Nanoensemble for Regulated Aerobic Oxidation of Alcohols and "One-Pot" Synthesis of Quinazolin-4(3 H)-ones. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49246-49258. [PMID: 37844300 DOI: 10.1021/acsami.3c11244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The supramolecular assemblies of the donor-acceptor (D-A) system Im-Tpy, having phenanthro[9,10-d]imidazole as the donor and terpyridyl group as the acceptor unit, have been developed, which serve as supramolecular host to stabilize Co(II) in its nanoform. The as-prepared supramolecular nanoensemble Im-Tpy@Co in DMSO:water (7:3) shows high thermal stability and photostability. Even in the case of solvent mismatch, i.e., on dilution with cosolvent THF/DMSO, insignificant changes were observed in the size/morphology of the nanoensemble. The as-prepared Im-Tpy@Co nanoensemble in low catalytic loading (0.1 mol % of Co) catalyzes the oxidation of a wide variety of alcohols to aromatic aldehydes/ketones using visible light radiations as the source of energy without the need of any additive at room temperature. In comparison to already reported systems, the Im-Tpy@Co nanoensemble exhibits high turnover numbers (TONs) and turnover frequencies (TOFs). The practical application of the catalytic system has also been demonstrated in the gram-scale synthesis of 4-chlorobenzaldehyde. The Im-Tpy@Co nanoensemble exhibits recyclability up to four catalytic cycles with insignificant leaching and morphological changes. The present study also demonstrates the catalytic activity of the Im-Tpy@Co nanoensemble in "one-pot" synthesis of quinazolin-4(3H)-ones from 2-aminobenzamide and primary alcohols with better efficiency in comparison to other transition-metal-based catalytic systems.
Collapse
Affiliation(s)
- Sourav Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
7
|
Han HJ, Park SY, Jeon SE, Kwak JS, Lee JH, Jaladi AK, Hwang H, An DK. Grignard Reagent-Catalyzed Hydroboration of Esters, Nitriles, and Imines. Molecules 2023; 28:7090. [PMID: 37894569 PMCID: PMC10609653 DOI: 10.3390/molecules28207090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The reduction in esters, nitriles, and imines requires harsh conditions (highly reactive reagents, high temperatures, and pressures) or complex metal-ligand catalytic systems. Catalysts comprising earth-abundant and less toxic elements are desirable from the perspective of green chemistry. In this study, we developed a green hydroboration protocol for the reduction in esters, nitriles, and imines at room temperature (25 °C) using pinacolborane as the reducing agent and a commercially available Grignard reagent as the catalyst. Screening of various alkyl magnesium halides revealed MeMgCl as the optimal catalyst for the reduction. The hydroboration and subsequent hydrolysis of various esters yielded corresponding alcohols over a short reaction time (~0.5 h). The hydroboration of nitriles and imines produced various primary and secondary amines in excellent yields. Chemoselective reduction and density functional theory calculations are also performed. The proposed green hydroboration protocol eliminates the requirements for complex ligand systems and elevated temperatures, providing an effective method for the reduction in esters, nitriles, and imines at room temperature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Duk Keun An
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.H.); (S.Y.P.); (S.E.J.); (J.S.K.); (J.H.L.); (A.K.J.); (H.H.)
| |
Collapse
|
8
|
Zhang G, Zeng H, Zadori N, Marino C, Zheng S, Neary MC. Homoleptic octahedral Co II complexes as precatalysts for regioselective hydroboration of alkenes with high turnover frequencies. RSC Adv 2023; 13:28089-28096. [PMID: 37746341 PMCID: PMC10517108 DOI: 10.1039/d3ra06113b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023] Open
Abstract
Homoleptic complexes adopting octahedral coordination modes are usually less active in catalysis due to the saturated coordination around metal centers that prevents substrate activation in a catalytic event. In this work, we demonstrated that a homoleptic octahedral cobalt complex (1) of 4'-pyridyl-2,2';6',2''-terpyridine that experienced monoprotonation at the non-coordinating pyridyl moiety upon crystallization could serve as a highly efficient precatalyst for the hydroboration of styrene derivatives with Markovnikov selectivity. The solid-state structure of this precatalyst along with relevant homoleptic CoII and FeII complexes has been characterized by X-ray crystallography. In the solid state, 1 features one-dimensional hydrogen-bonded chains that are further stacked by interchain π⋯π interactions. The newly synthesized complexes (1-3) along with several known analogues (4-6) were examined as precatalysts for the hydroboration of alkenes. The best-performing system, 1/KOtBu was found to promote Markovnikov hydroboration of substituted styrenes with high turnover frequencies (TOFs) up to ∼47 000 h-1, comparable to the most efficient polymeric catalyst [Co(pytpy)Cl2]n reported to date. Although some limitations in substrate scope as well as functional group tolerance exist, the catalyst shows good promise for several relevant hydrofunctionaliation reactions.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center of the City University of New York New York 10019 NY USA
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center of the City University of New York New York 10019 NY USA
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Nora Zadori
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center of the City University of New York New York 10019 NY USA
| | - Camila Marino
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center of the City University of New York New York 10019 NY USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| |
Collapse
|
9
|
Zhang G, Zeng H, Tang Q, Ates S, Zheng S, Neary MC. Vanadium-catalysed regioselective hydroboration of epoxides for synthesis of secondary alcohols. Dalton Trans 2023; 52:11395-11400. [PMID: 37577840 DOI: 10.1039/d3dt01865b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Regioselective epoxide ring-opening through hydroboration catalysed by a vanadium(III) dialkyl complex supported by a redox-active terpyridine ligand is reported. Secondary alcohols were obtained in high yields via effective Markovnikov hydroboration of terminal epoxides, showcasing a new catalytic application of an earth-abundant vanadium(III) complex.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
- Department of Chemistry, Hunter College, the City University of New York, New York, 10065 NY, USA
| | - Quan Tang
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
| | - Selin Ates
- Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY 10019, USA.
| | - Shengping Zheng
- Department of Chemistry, Hunter College, the City University of New York, New York, 10065 NY, USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, the City University of New York, New York, 10065 NY, USA
| |
Collapse
|
10
|
Zhang G, Zheng S, Neary MC. An ionic Fe-based metal-organic-framework with 4'-pyridyl-2,2':6',2''-terpyridine for catalytic hydroboration of alkynes. RSC Adv 2023; 13:2225-2232. [PMID: 36741180 PMCID: PMC9834911 DOI: 10.1039/d2ra08040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
An ionic metal-organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4'-pyridyl-2,2':6',2''-terpyridine (pytpy) and a simple iron(ii) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy)2FeII cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl3FeOFeCl3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn-selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans-alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| |
Collapse
|
11
|
Ni C, Pang Z, Qiao Y, Guo P, Ma X, Yang Z. Organoaluminum derived from Schiff bases: Synthesis, characterization and catalytic performance in hydroboration. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ranjan Jena S, Mandal T, Choudhury J. Metal-Terpyridine Assembled Functional Materials for Electrochromic, Catalytic and Environmental Applications. CHEM REC 2022; 22:e202200165. [PMID: 36002341 DOI: 10.1002/tcr.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Molecular assembly induced by metal-terpyridine-based coordinative interactions has become an emergent research topic due to its ease of synthesis and diverse applications. This article highlights recent significant developments in the metal-terpyridine-based supramolecular architectures. At first, the design aspect of the molecular building blocks has been described, followed by elaboration on how the ligand backbone plays an important role for achieving different dimensionalities of the resulting assemblies which exhibit a wide range of potential applications. After that, we discussed different synthetic approaches for constructing these assemblies, and finally, we focused on their significant developments in three specific areas, viz., electrochromic materials, catalysis and a new application in wastewater treatment. In the field of electrochromic materials, these assemblies made important advancements in various aspects like sub-second switching time (<1 s), low switching voltage (<1 V), increased switching stability (>10000 cycles), tuning of multiple colors by using multimetallic systems, fabrication of charge storing electrochromic devices, utilizing and storing solar energy etc. Similarly, the catalysis field witnessed application of the metal-terpyridine assemblies in C-H monohalogenation, heterogeneous Suzuki-Miyaura coupling, photocatalysis, reduction of carbon dioxide, etc. Finally, the environmental application of these coordination assemblies includes capturing Cr(VI) from waste water efficiently with high capture capacity, good recyclability, wide pH independency etc.
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Tanmoy Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| |
Collapse
|
13
|
Zn-Catalyzed Regioselective and Chemoselective Reduction of Aldehydes, Ketones and Imines. Int J Mol Sci 2022; 23:ijms232012679. [PMID: 36293541 PMCID: PMC9604354 DOI: 10.3390/ijms232012679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023] Open
Abstract
An operationally convenient Zn-catalyzed synthesis of alcohols by the reduction of aldehydes, ketones, and α,β-unsaturated aldehydes/ketones is reported. It is a rare example of using mild and sustainable HBpin as a reductant for catalytic reduction of carbonyl compounds in the absence of acid or base as hydrolysis reagent. The reaction is upscalable and proceeds in high selectivity without the formation of boronate ester by-products, and tolerates sensitive functionalities, such as iodo, bromo, chloro, fluoro, nitro, trifluoromethyl, aminomethyl, alkynyl, and amide. The Zn(OAc)2/HBpin combination has been also proved to be chemoselective for the C=N reduction of imine analogs.
Collapse
|
14
|
Sarma P, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Saikia S, Bhattacharyya MK. Terephthalato and succinato bridged Mn(II) and Zn(II) coordination polymers involving structure-guiding H-bonded tetrameric assemblies: Antiproliferative evaluation and theoretical studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Zhang G, Li S, Zeng H, Zheng S, Neary MC. Diplumbane-catalysed solvent- and additive-free hydroboration of ketones and aldehydes. RSC Adv 2022; 12:19086-19090. [PMID: 35865571 PMCID: PMC9241624 DOI: 10.1039/d2ra03731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
A new diplumbane, namely [Pb(CH2SiMe3)3]2, was synthesized and structurally characterized. This group 14 element compound was found to catalyse the hydroboration of ketones and aldehydes under mild conditions without the use of additives and solvents, leading to the synthesis of a range of alcohols in high yields after hydrolysis.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
| | - Sihan Li
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Haisu Zeng
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| |
Collapse
|
16
|
Lei S, Pan T, Wang M, Zhang Y. Fe-catalyzed reduction of aldimines with HBpin. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Rezaei Bazkiaei A, Findlater M, Gorden AEV. Applications of catalysis in hydroboration of imines, nitriles, and carbodiimides. Org Biomol Chem 2022; 20:3675-3702. [PMID: 35451449 DOI: 10.1039/d2ob00162d] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic hydroboration of imines, nitriles, and carbodiimides is a powerful method of preparing amines which are key synthetic intermediates in the synthesis of many value-added products. Imine hydroboration has perennially featured in notable reports while nitrile and carbodiimide hydroboration have gained attention recently. Initial developments in catalytic hydroboration of imines and nitriles employed precious metals and typically required harsh reaction conditions. More recent advances have shifted toward the use of base metal and main group element catalysis and milder reaction conditions. In this survey, we review metal and nonmetal catalyzed hydroboration of these unsaturated organic molecules and group them into three distinct categories: precious metals, base metals, and main group catalysts. The TON and TOF of imine hydroboration catalysts are reported and summarized with a brief overview of recent advances in the field. Mechanistic and kinetic studies of some of these protocols are also presented.
Collapse
Affiliation(s)
- Adineh Rezaei Bazkiaei
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Michael Findlater
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA.
| | - Anne E V Gorden
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
18
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Assembly of a 3D Cobalt(II) Supramolecular Framework and Its Applications in Hydrofunctionalization of Ketones and Aldehydes. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A ditopic nitrogen ligand (E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide (L) containing both divergent pyridyl coordination sites and a hydrogen-bonding hydrazide–hydrazone moiety was synthesized. The Co(NCS)2-mediated self-assembly of L has resulted in the synthesis of a novel 3-dimensional (3D) supramolecular framework (1) that features both coordination and hydrogen bonding interactions. X-ray structural analysis reveals the formation and coordination mode of 1 in the solid state. The rational utilization of coordination bonds and hydrogen bonding interactions is confirmed and responsible for constructing the 3D materials. Catalytic studies using 1 in the presence of an activator are performed for the hydroboration and hydrosilylation reactions of ketones and aldehydes, and the results are compared with previously reported cobalt-based polymeric catalysts.
Collapse
|
20
|
Zou W, Gao L, Cao J, Li Z, Li G, Wang G, Li S. Mechanistic Insight into Hydroboration of Imines from Combined Computational and Experimental Studies. Chemistry 2022; 28:e202104004. [PMID: 35018677 DOI: 10.1002/chem.202104004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Boron Lewis acid-catalyzed and catalyst-free hydroboration reactions of imines are attractive due to the mild reaction conditions. In this work, the mechanistic details of the hydroboration reactions of two different kinds of imines with pinacolborane (HBpin) are investigated by combining density functional theory calculations and some experimental studies. For the hydroboration reaction of N-(α-methylbenzylidene)aniline catalyzed by tris[3,5-bis(trifluoromethyl)phenyl]borane (BArF 3 ), our calculations show that the reaction proceeds through a boron Lewis acid-promoted hydride transfer mechanism rather than the classical Lewis acid activation mechanism. For the catalyst- and solvent-free hydroboration reaction of imine, N-benzylideneaniline, our calculations and experimental studies indicate that this reaction is difficult to occur under the reaction conditions reported previously. With a combination of computational and experimental studies, we have established that the commercially available BH3 ⋅ SMe2 can serve as an efficient catalyst for the hydroboration reactions of N-benzylideneaniline and similar imines. The hydroboration reactions catalyzed by BH3 ⋅ SMe2 are most likely to proceed through a hydroboration/B-H/B-N σ-bond metathesis pathway, which is very different from that of the reaction catalyzed by BArF 3 .
Collapse
Affiliation(s)
- Wentian Zou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenxing Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
21
|
Kozdra S, Jacquet M, Kargul J, Hęclik K, Wójcik A, Piotr Michałowski P. Insight into structure-property relationship of organometallic terpyridine wires: Combined theoretical and experimental study. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
23
|
Chang S, Liu H, Shi G, Xia XF, Wang D, Duan ZC. Copper–cobalt coordination polymers and catalytic applications on borrowing hydrogen reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous copper–cobalt polymer was synthesized and achieved applications for the N-alkylation of sulfonamides with alcohols, and carboxamides with alcohols.
Collapse
Affiliation(s)
- Shaoze Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqiang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- China Synchem Technology Co., Ltd., Bengbu, Anhui, 233000, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
24
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Sau S, Pramanik M, Bal A, Mal P. Reported Catalytic Hydrofunctionalizations that Proceed in the Absence of Catalysts: The Importance of Control Experiments. CHEM REC 2021; 22:e202100208. [PMID: 34618401 DOI: 10.1002/tcr.202100208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
The enlarged landscape of catalysis lies in the heart of chemistry. As the journey has set a milestone in organic synthesis, its darker side has not entered into the limelight. Studies disclose that the reported reactions by using catalysts were also attainable in the absence of catalysts in many cases. This article presents a literature collection that includes the significance of control experiments in hydrofunctionalization reactions. Systematic analysis reveals that the catalysts are ambiguous and might be unessential in chemical reactions enlisted here.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Ankita Bal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
26
|
Pradhan S, Thiyagarajan S, Gunanathan C. Ruthenium(ii)-catalysed 1,2-selective hydroboration of aldazines. Org Biomol Chem 2021; 19:7147-7151. [PMID: 34369947 DOI: 10.1039/d1ob01218e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an efficient and simple catalytic method for the selective and partial reduction of aldazines using ruthenium catalyst [Ru(p-cymene)Cl2]2 (1) has been accomplished. Under mild conditions, aldazines undergo the addition of pinacolborane in the presence of a ruthenium catalyst, which delivered N-boryl-N-benzyl hydrazone products. Notably, the reaction is highly selective, and results in exclusive mono-hydroboration and desymmetrization of symmetrical aldazines. Mechanistic studies indicate the involvement of in situ formed intermediate [{(η6-p-cymene)RuCl}2(μ-H-μ-Cl)] (1a) in this selective hydroboration.
Collapse
Affiliation(s)
- Subham Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Khurda-752050, India.
| | | | | |
Collapse
|
27
|
Bazkiaei AR, Wiseman M, Findlater M. Iron-catalysed hydroboration of non-activated imines and nitriles: kinetic and mechanistic studies. RSC Adv 2021; 11:15284-15289. [PMID: 35424078 PMCID: PMC8698235 DOI: 10.1039/d1ra02001c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Iron-catalysed hydroboration of imines and nitriles has been developed under low catalyst loading (1 mol%) in the presence of HBpin. A wide scope of substrate was found to smoothly undergo hydroboration, including electron releasing/withdrawing and halogen substitution patterns and cyclic substrates which all afforded the corresponding amines in good to excellent yields. Dihydroboration of nitriles was achieved conveniently under solvent free and additive free conditions. Promisingly, this catalytic system is also capable of the hydroboration of challenging ketimine substrates. Preliminary kinetic analysis of imine hydroboration reveals a first-order dependence on catalyst concentration. Both HBpin and 4-fluorophenyl-N-phenylmethanimine (1b) appear to exhibit saturation kinetics with first order dependence up to 0.5 mmol HBpin and 0.75 mmol imine, respectively. Temperature-dependent rate experiments for imine hydroboration have also been explored. Activation parameters for the hydroboration of FPhC[double bond, length as m-dash]NPh (1b) were determined from the Eyring and Arrhenius plots with ΔS ≠, ΔH ≠, and E a values of -28.69 (±0.3) e.u., 12.95 (±0.04) kcal mol-1, and 15.22 (±0.09) kcal mol-1, respectively.
Collapse
Affiliation(s)
| | - Michael Wiseman
- Department of Chemistry & Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| | - Michael Findlater
- Department of Chemistry & Biochemistry, Texas Tech University Lubbock Texas 79409 USA
| |
Collapse
|
28
|
Liu J, Fan W, Xiong H, Jiang J, Zhan H. Benzylic Oxidation Catalyzed by Cobalt(II)-Terpyridine Coordination Polymers. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Geier SJ, Binder JF, Vogels CM, Watanabe LK, Macdonald CLB, Westcott SA. The hydroboration of α-diimines. NEW J CHEM 2021. [DOI: 10.1039/d1nj01025e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The uncatalyzed addition of catecholborane to α-diimines has been examined.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Justin F. Binder
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Lara K. Watanabe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Charles L. B. Macdonald
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
30
|
Bhawar R, Patil KS, Bose SK. CeO 2–nanocubes as efficient and selective catalysts for the hydroboration of carbonyl groups. NEW J CHEM 2021. [DOI: 10.1039/d1nj00065a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and reusable CeO2 nanocatalyst has been developed for the selective hydroboration of carbonyl compounds, including aromatic, heteroaromatic, aliphatic, and (hetero)aliphatic aldehydes and ketones.
Collapse
Affiliation(s)
- Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore-562112, India
| | - Kiran S. Patil
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore-562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore-562112, India
| |
Collapse
|
31
|
Beltran F, Bergamaschi E, Funes‐Ardoiz I, Teskey CJ. Photocontrolled Cobalt Catalysis for Selective Hydroboration of α,β‐Unsaturated Ketones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Frédéric Beltran
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Enrico Bergamaschi
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Christopher J. Teskey
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
32
|
Beltran F, Bergamaschi E, Funes‐Ardoiz I, Teskey CJ. Photocontrolled Cobalt Catalysis for Selective Hydroboration of α,β-Unsaturated Ketones. Angew Chem Int Ed Engl 2020; 59:21176-21182. [PMID: 32767728 PMCID: PMC7692884 DOI: 10.1002/anie.202009893] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 11/08/2022]
Abstract
Selectivity between 1,2 and 1,4 addition of a nucleophile to an α,β-unsaturated carbonyl compound has classically been modified by the addition of stoichiometric additives to the substrate or reagent to increase their "hard" or "soft" character. Here, we demonstrate a conceptually distinct approach that instead relies on controlling the coordination sphere of a catalyst with visible light. In this way, we bias the reaction down two divergent pathways, giving contrasting products in the catalytic hydroboration of α,β-unsaturated ketones. This includes direct access to previously elusive cyclic enolborates, via 1,4-selective hydroboration, providing a straightforward and stereoselective route to rare syn-aldol products in one-pot. DFT calculations and mechanistic experiments confirm two different mechanisms are operative, underpinning this unusual photocontrolled selectivity switch.
Collapse
Affiliation(s)
- Frédéric Beltran
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Enrico Bergamaschi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Ignacio Funes‐Ardoiz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | |
Collapse
|
33
|
Maier TM, Gawron M, Coburger P, Bodensteiner M, Wolf R, van Leest NP, de Bruin B, Demeshko S, Meyer F. Low-Valence Anionic α-Diimine Iron Complexes: Synthesis, Characterization, and Catalytic Hydroboration Studies. Inorg Chem 2020; 59:16035-16052. [PMID: 33078926 DOI: 10.1021/acs.inorgchem.0c02606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis of rare anionic heteroleptic and homoleptic α-diimine iron complexes is described. Heteroleptic BIAN (bis(aryl)iminoacenaphthene) complexes 1-[K([18]c-6)(thf)0.5] and 2-[K([18]c-6)(thf)2] were synthesized by reduction of the [(BIAN)FeBr2] precursor complex using stoichiometric amounts of potassium graphite in the presence of the corresponding olefin. The electronic structure of these paramagnetic species was investigated by numerous spectroscopic analyses (NMR, EPR, 57Fe Mössbauer, UV-vis), magnetic measurements (Evans NMR method, SQUID), and theoretical techniques (DFT, CASSCF). Whereas anion 1 is a low-spin complex, anion 2 consists of an intermediate-spin Fe(III) center. Both complexes are efficient precatalysts for the hydroboration of carbonyl compounds under mild reaction conditions. The reaction of bis(anthracene) ferrate(1-) gave the homoleptic BIAN complex 3-[K([18]c-6)(thf)], which is less catalytically active. The electronic structure was elucidated with the same techniques as described for complexes 1-[K([18]c-6)(thf)0.5] and 2-[K([18]c-6)(thf)2] and revealed an Fe(II) species in a quartet ground state.
Collapse
Affiliation(s)
- Thomas M Maier
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Martin Gawron
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Peter Coburger
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nicolaas P van Leest
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Tammannstrasse 6, Göttingen 37077, Germany
| |
Collapse
|
34
|
Kim H, Shin HL, Yi J, Choi HS, Lee JH, Hwang H, An DK. Lithium Bromide/
HBpin
: A Mild and Effective Catalytic System for the Selective Hydroboration of Aldehydes and Ketones. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hanbi Kim
- Department of Chemistry Kangwon National University, and Institute for Molecular Science and Fusion Technology, Chunchon 24341 Republic of Korea
| | - Hye Lim Shin
- Department of Chemistry Kangwon National University, and Institute for Molecular Science and Fusion Technology, Chunchon 24341 Republic of Korea
| | - Jaeeun Yi
- Department of Chemistry Kangwon National University, and Institute for Molecular Science and Fusion Technology, Chunchon 24341 Republic of Korea
| | - Hyeon Seong Choi
- Department of Chemistry Kangwon National University, and Institute for Molecular Science and Fusion Technology, Chunchon 24341 Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry Kangwon National University, and Institute for Molecular Science and Fusion Technology, Chunchon 24341 Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry Kangwon National University, and Institute for Molecular Science and Fusion Technology, Chunchon 24341 Republic of Korea
| | - Duk Keun An
- Department of Chemistry Kangwon National University, and Institute for Molecular Science and Fusion Technology, Chunchon 24341 Republic of Korea
| |
Collapse
|
35
|
Two new 4-coordinate Cu(II) chains with 1,2,3-triazole derivate as bridging ligand: Synthesis, structures and magnetic properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Kim H, Kim HT, Lee JH, Hwang H, An DK. Lithium bromide: an inexpensive and efficient catalyst for imine hydroboration with pinacolborane at room temperature. RSC Adv 2020; 10:34421-34427. [PMID: 35514425 PMCID: PMC9056805 DOI: 10.1039/d0ra06023b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
An efficient protocol for the hydroboration of imines is reported. Lithium halide salts are effective catalysts to convert aldimines and ketimines to their corresponding amines. Here, we report excellent isolated yield of secondary amines (>95%) using 3 mol% lithium bromide in THF at room temperature. In addition, DFT calculations for a plausible reaction pathway are reported.
Collapse
Affiliation(s)
- Hanbi Kim
- Department of Chemistry, Kangwon National University, Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| | - Hyun Tae Kim
- Department of Chemistry, Kangwon National University, Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry, Kangwon National University, Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry, Kangwon National University, Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| | - Duk Keun An
- Department of Chemistry, Kangwon National University, Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| |
Collapse
|
37
|
Panda TK, Banerjee I, Sagar S. Alkali Metal–Promoted Facile Synthesis of Secondary Amines from Imines and Carbodiimides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tarun K. Panda
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502285 India
| | - Indrani Banerjee
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502285 India
| | - Shweta Sagar
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502285 India
| |
Collapse
|
38
|
Bage AD, Hunt TA, Thomas SP. Hidden Boron Catalysis: Nucleophile-Promoted Decomposition of HBpin. Org Lett 2020; 22:4107-4112. [PMID: 32379466 DOI: 10.1021/acs.orglett.0c01168] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simple nucleophiles with structural similarities to known hydroboration catalysts can readily mediate the formation of BH3 and borohydride species from pinacolborane (HBpin). Alkyne and alkene hydroboration reactions were successfully mediated by nucleophiles through BH3 generation, with BH3-catalyzed hydroboration found to dominate catalysis. NMR spectroscopy and kinetic analyses showed that the nucleophiles NaOtBu, Na[N(SiMe3)2], nBu2Mg, and nBuLi only promoted the formation of BH3 and were not "true" hydroboration catalysts.
Collapse
Affiliation(s)
- Andrew D Bage
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Thomas A Hunt
- Medicinal Chemistry, Early Oncology, AstraZeneca, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
39
|
Hossain I, Schmidt JAR. Nickel(II) Catalyzed Hydroboration: A Route to Selective Reduction of Aldehydes and
N
‐Allylimines. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Istiak Hossain
- Department of Chemistry and Biochemistry School of Green Chemistry and Engineering College of Natural Sciences and Mathematics The University of Toledo 2801 W. Bancroft St. MS 602 43606‐3390 Toledo Ohio USA
| | - Joseph A. R. Schmidt
- Department of Chemistry and Biochemistry School of Green Chemistry and Engineering College of Natural Sciences and Mathematics The University of Toledo 2801 W. Bancroft St. MS 602 43606‐3390 Toledo Ohio USA
| |
Collapse
|
40
|
Winter A, Schubert US. Metal‐Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem 2020. [DOI: 10.1002/cctc.201902290] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
41
|
Abstract
The catalytic hydroboration of aldimines was demonstrated, with only 3 mol% NaH required for the quantitative production of secondary amines under minimal solvent conditions.
Collapse
Affiliation(s)
- Hanbi Kim
- Department of Chemistry
- Kangwon National University, and Institute for Molecular Science and Fusion Technology
- Chunchon 24341
- Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry
- Kangwon National University, and Institute for Molecular Science and Fusion Technology
- Chunchon 24341
- Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry
- Kangwon National University, and Institute for Molecular Science and Fusion Technology
- Chunchon 24341
- Republic of Korea
| | - Duk Keun An
- Department of Chemistry
- Kangwon National University, and Institute for Molecular Science and Fusion Technology
- Chunchon 24341
- Republic of Korea
| |
Collapse
|
42
|
Zhang G, Zeng H, Li S, Johnson J, Mo Z, Neary MC, Zheng S. 1-D manganese(ii)-terpyridine coordination polymers as precatalysts for hydrofunctionalisation of carbonyl compounds. Dalton Trans 2020; 49:2610-2615. [PMID: 32037438 DOI: 10.1039/c9dt04637b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient hydroboration and hydrosilylation of ketones and aldehydes has been achieved using a MnII-coordination polymer as precatalyst under mild conditions.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences
- John Jay College and Ph.D. Program in Chemistry
- The Graduate Center of the City University of New York
- New York
- USA
| | - Haisu Zeng
- Department of Sciences
- John Jay College and Ph.D. Program in Chemistry
- The Graduate Center of the City University of New York
- New York
- USA
| | - Sihan Li
- Department of Sciences
- John Jay College and Ph.D. Program in Chemistry
- The Graduate Center of the City University of New York
- New York
- USA
| | - Jahvon Johnson
- Department of Sciences
- John Jay College and Ph.D. Program in Chemistry
- The Graduate Center of the City University of New York
- New York
- USA
| | - Zixuan Mo
- Department of Sciences
- John Jay College and Ph.D. Program in Chemistry
- The Graduate Center of the City University of New York
- New York
- USA
| | - Michelle C. Neary
- Department of Chemistry
- Hunter College
- the City University of New York
- New York
- USA
| | - Shengping Zheng
- Department of Chemistry
- Hunter College
- the City University of New York
- New York
- USA
| |
Collapse
|
43
|
Willcox D, Carden JL, Ruddy AJ, Newman PD, Melen RL. Asymmetric ketone hydroboration catalyzed by alkali metal complexes derived from BINOL ligands. Dalton Trans 2020; 49:2417-2420. [PMID: 32039419 DOI: 10.1039/d0dt00232a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability of alkali metal complexes featuring functionalized BINOL-derived ligands to catalyze ketone hydroboration reactions was explored. The reduced products were formed in excellent yields and with variable enantioselectivities dependent upon the nature of the ligand and the alkali metal cation.
Collapse
Affiliation(s)
- Darren Willcox
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK. and Department of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Jamie L Carden
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Adam J Ruddy
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Paul D Newman
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
44
|
Wang W, Luo M, Zhu D, Yao W, Xu L, Ma M. Green hydroboration of carboxylic acids and mechanism investigation. Org Biomol Chem 2019; 17:3604-3608. [PMID: 30912564 DOI: 10.1039/c9ob00485h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A catalyst-free and solvent-free method for the hydroboration of a variety of carboxylic acids with pinacolborane was developed. The hydroboration of various aromatic and aliphatic carboxylic acids as well as dicarboxylic acids with HBpin could be completed within 6 h at room temperature or within 1 h at 60 °C to give the products in quantitative yields under neat conditions without the need for any solvent or metal catalyst. The possible reaction mechanism was investigated in detail based on the corresponding DFT calculations and the stoichiometric reaction of acetic acid with different equivalents of HBpin (at room temperature and 0 °C) and it revealed the stepwise nature of the protocol.
Collapse
Affiliation(s)
- Weifan Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | | | |
Collapse
|
45
|
Ma DH, Jaladi AK, Lee JH, Kim TS, Shin WK, Hwang H, An DK. Catalytic Hydroboration of Aldehydes, Ketones, and Alkenes Using Potassium Carbonate: A Small Key to Big Transformation. ACS OMEGA 2019; 4:15893-15903. [PMID: 31592459 PMCID: PMC6776975 DOI: 10.1021/acsomega.9b01877] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 05/05/2023]
Abstract
An efficient transition-metal-free protocol for the hydroboration of aldehydes and ketones (reduction) was developed. The hydroboration of a wide range of aldehydes and ketones with pinacolborane (HBpin) under the K2CO3 catalyst has been studied. The reaction system is practical and reliable and proceeds under extremely mild and operationally simple conditions. No prior preparation of the complex metal catalyst was required, and hydroboration occurred stoichiometrically. Further, the chemoselective reduction of aldehydes over ketones was carried out. Moreover, we demonstrated the use of K2CO3 as an efficient catalyst for the hydroboration of alkenes. The operational simplicity, inexpensive and transition-metal-free catalyst, and the applicability to gram-scale synthesis strengthen its potential applications for hydroboration (reduction) at an industrial scale.
Collapse
|
46
|
Pandey VK, Donthireddy SNR, Rit A. Catalyst-Free and Solvent-Free Facile Hydroboration of Imines. Chem Asian J 2019; 14:3255-3258. [PMID: 31430049 DOI: 10.1002/asia.201901016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Indexed: 11/06/2022]
Abstract
A facile process for the catalyst-free and solvent-free hydroboration of aromatic as well as heteroaromatic imines is reported. This atom-economic methodology is scalable, compatible with sterically and electronically diverse imines, displaying excellent tolerance towards various functional groups, and works efficiently at ambient temperature in most of the cases, affording secondary amines in good to excellent yield after hydrolysis.
Collapse
Affiliation(s)
- Vipin K Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India
| | | | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, India
| |
Collapse
|
47
|
Tamang SR, Findlater M. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation. Molecules 2019; 24:E3194. [PMID: 31484333 PMCID: PMC6749197 DOI: 10.3390/molecules24173194] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Base metal catalysis offers an alternative to reactions, which were once dominated by precious metals in hydrofunctionalization reactions. This review article details the development of some base metals (Fe, Co, and Ni) in the hydroboration and hydrosilylation reactions concomitant with a brief overview of recent advances in the field. Applications of both commercially available metal salts and well-defined metal complexes in catalysis and opportunities to further advance the field is discussed as well.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Findlater
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
48
|
Kim JH, Jaladi AK, Kim HT, An DK. Lithium
tert
‐Butoxide‐catalyzed Hydroboration of Carbonyl Compounds. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jea Ho Kim
- Department of ChemistryKangwon National University, and Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| | - Ashok Kumar Jaladi
- Department of ChemistryKangwon National University, and Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| | - Hyun Tae Kim
- Department of ChemistryKangwon National University, and Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| | - Duk Keun An
- Department of ChemistryKangwon National University, and Institute for Molecular Science and Fusion Technology Chunchon 24341 Republic of Korea
| |
Collapse
|
49
|
Zhang MX, Xu HL. A greener catalyst for hydroboration of imines-external electric field modify the reaction mechanism. J Comput Chem 2019; 40:1772-1779. [PMID: 30942507 DOI: 10.1002/jcc.25830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
Usually, an extra catalyst (for example, the transition metal complexes) need to be used in catalyzing hydroboration, which involved the cost, environment, and so forth. Here, a greener and controllable catalyst-external electric field (EEF) was used to study its effect on hydroboration of N-(4-methylbenzyl)aniline (PhN═CHPhMe) with pinacolboane (HBPin). The results demonstrated that EEF could affect the barrier heights of both two pathways of this reaction. More significantly, flipping the direction of EEF could modify the reaction mechanism to induce a dominant inverse hydroboration at some field strength. That is to say, oriented EEF is a controlling switch for the anti- or Markovnikov hydroboration reaction of imines. This investigation is meaningful for the exploration of greener catalyst for chemistry reaction and guide a new method for the Markovnikov hydroboration addition. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ming-Xia Zhang
- Department of Chemistry, National & Local United Engineering Lab for Power Battery, Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China
| | - Hong-Liang Xu
- Department of Chemistry, National & Local United Engineering Lab for Power Battery, Institute of Functional Material Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China
| |
Collapse
|
50
|
Li T, Zhang J, Cui C. Heterocyclic Carbene‐Catalyzed Hydride Transfer in the Hydroboration of Carbonyl Compounds. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tianhao Li
- State Key Laboratory of Elemento‐Organic ChemistryNankai University, 94 Weijin Road Tianjin 300071 China
| | - Jianying Zhang
- State Key Laboratory of Elemento‐Organic ChemistryNankai University, 94 Weijin Road Tianjin 300071 China
| | - Chunming Cui
- State Key Laboratory of Elemento‐Organic ChemistryNankai University, 94 Weijin Road Tianjin 300071 China
| |
Collapse
|