1
|
Niu J, Wang Y, Yan S, Zhang Y, Ma X, Zhang Q, Zhang W. One-pot Ugi-azide and Heck reactions for the synthesis of heterocyclic systems containing tetrazole and 1,2,3,4-tetrahydroisoquinoline. Beilstein J Org Chem 2024; 20:912-920. [PMID: 38711586 PMCID: PMC11070971 DOI: 10.3762/bjoc.20.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
A new method for the synthesis of heterocyclic systems containing tetrazole and tetrahydroisoquinoline is developed via the performance of one-pot Ugi-azide and Heck cyclization reactions. The integration of the multicomponent and post-condensation reactions in one-pot maximizes the pot-, atom-, and step-economy (PASE).
Collapse
Affiliation(s)
- Jiawei Niu
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Yue Zhang
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China
| | - Wei Zhang
- Department of Chemistry and Center for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| |
Collapse
|
2
|
Kornfeind J, Allen JE, Keller TM, Fleming FF. Heterocycles via SiCl 4-Promoted Isocyanide Additions to Oxonitriles. J Org Chem 2023; 88:15947-15955. [PMID: 37938807 DOI: 10.1021/acs.joc.3c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
SiCl4 promotes isocyanide additions to oxoalkenenitriles to selectively generate 3-acylpyrroles, 2-aminofurans, or pyrrolidinones. Cyclic oxoalkenenitriles add 2 equiv of an isocyanide that installs the two core atoms of an acylpyrrole and a nitrile substituent, whereas acyclic oxoalkenenitriles add 1 equiv of an isocyanide to afford 2-aminofurans; subsequent air oxidation generates pyrrolidinones via a furan oxygenation-cleavage-cyclization sequence. The syntheses proceed under mild conditions to rapidly access three richly decorated heterocycles.
Collapse
Affiliation(s)
- John Kornfeind
- Department of Chemistry, Drexel University, 3401 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - James E Allen
- Department of Chemistry, Drexel University, 3401 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Taylor M Keller
- Department of Chemistry, Drexel University, 3401 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Fraser F Fleming
- Department of Chemistry, Drexel University, 3401 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Fan H, Li A, Li J, Du Z, Wang L, Zhou X, He P, Ren Z. Construction of Tetrazole Derivatives via Sequential Ugi‐N
3
/Pd‐Catalyzed Isocyanide Insertion Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hao‐Jie Fan
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - A‐Ting Li
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Jun Li
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Zi‐Qi Du
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Long Wang
- College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. of China
- Hubei Three Gorges Laboratory Yichang Hubei 443007 P. R. of China
| | - Xian‐Min Zhou
- Hubei Institute of Aerospace Chemical Technology Xiangyang Hubei 441053 P. R. of China
| | - Ping He
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
| | - Zhi‐Lin Ren
- College of Chemical Engineering Hubei University of Arts and Science Xiangyang Hubei Province 441053 P. R. of China
- College of Materials and Chemical Engineering China Three Gorges University Yichang Hubei 443002 P. R. of China
| |
Collapse
|
4
|
Wang J, Tang M, Gu W, Huang S, Xie LG. Synthesis of Pyrrole via Formal Cycloaddition of Allyl Ketone and Amine under Metal-Free Conditions. J Org Chem 2022; 87:12482-12490. [PMID: 36053128 DOI: 10.1021/acs.joc.2c01565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new metal-free synthesis of pyrrole from allyl ketone and amine has been established. The reaction proceeds via an thiolative activation of the C-C double bond with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by a nucleophilic ring-opening addition of primary amine to the generated episulfonium intermediate, and then an internal condensation and aromatization. This mild procedure provides a novel strategy to the construction of substituted pyrroles through a formal [4 + 1] cycloaddition reaction.
Collapse
Affiliation(s)
- Jinli Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weijin Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Origin of enantioselectivity and product-distribution control in isocyanide-based multicomponent reaction catalysed by chiral N, N'-dioxide-Mg(II) complex. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Liu Y, Luo P, Fu Y, Hao T, Liu X, Ding Q, Peng Y. Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives. Beilstein J Org Chem 2021; 17:2462-2476. [PMID: 34630726 PMCID: PMC8474070 DOI: 10.3762/bjoc.17.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Great progress has been made in the tandem annulation of enynes in the past few years. This review only presents the corresponding reactions of 1,3-enyne structural motifs to provide the functionalized pyridine and pyrrole derivatives. The functionalization reactions cover iodination, bromination, trifluoromethylation, azidation, carbonylation, arylation, alkylation, selenylation, sulfenylation, amidation, esterification, and hydroxylation. We also briefly introduce the applications of the products and the reaction mechanisms for the synthesis of corresponding N-heterocycles.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Puying Luo
- Department of Gynaecology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, 92 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Yang Fu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Tianxin Hao
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Xuan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
7
|
Wu J, Zhao L, Yang ML, Ding MW. Four-Component Synthesis of Polysubstituted Pyrazin-2(1 H)-ones through a Ugi/Staudinger/Aza-Wittig/Isomerization Sequence. J Org Chem 2021; 86:10755-10761. [PMID: 34251829 DOI: 10.1021/acs.joc.1c00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new efficient synthesis of polysubstituted pyrazin-2(1H)-ones via the sequential Ugi/Staudinger/aza-Wittig/isomerization reaction has been developed. The four-component Ugi reactions of arylglyoxals 1, primary amines 2, α-azidovinyl acids 3, and isocyanides 4 produced the azides 5, which were treated with triphenylphosphine to give pyrazin-2(1H)-ones 6 in good yields through domino Staudinger/aza-Wittig/isomerization reactions.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Long Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Mao-Lin Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
8
|
Xiong J, Mu Z, Yao G, Zhang J, Feng Q, He H, Pang Y, Shi H, Ding M. One‐Pot
Synthesis of Polysubstituted Pyrroles
via
Sequential Ketenimine Formation/Ag(I)‐Catalyzed Alkyne Cycloisomerisation Starting from Ylide Adducts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jun Xiong
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Zhi‐Ying Mu
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Gang Yao
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Jia‐An Zhang
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Qi‐Xun Feng
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Hui‐Ting He
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Yong‐Long Pang
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Hang Shi
- School of Pharmacy, Hubei University of Science and Technology Xianning Hubei 437100 China
| | - Ming‐Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University Wuhan Hubei 430079 China
| |
Collapse
|
9
|
Sun F, Yang C, Ni J, Cheng GJ, Fang X. Ligand-Controlled Regiodivergent Nickel-Catalyzed Hydrocyanation of Silyl-Substituted 1,3-Diynes. Org Lett 2021; 23:4045-4050. [PMID: 33979524 DOI: 10.1021/acs.orglett.1c01262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A regiodivergent nickel-catalyzed hydrocyanation of 1-aryl-4-silyl-1,3-diynes is reported. When appropriate bisphosphine and phosphine-phosphite ligands are applied, the same starting materials can be converted into two different enynyl nitriles with good yields and high regioselectivities. The DFT calculations unveiled that the structural features of different ligands bring divergent alkyne insertion modes, which in turn lead to different regioselectivities. Moreover, the synthetic value of the cyano-containing 1,3-enynes has been demonstrated with several downstream transformations.
Collapse
Affiliation(s)
- Feilong Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chengxi Yang
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jie Ni
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
Sun M, Yu YL, Zhao L, Ding MW. One-pot and divergent synthesis of furo[3,2-c]quinolines and quinazolin-4(3H)-ones via sequential isocyanide-based three-component/Staudinger/aza-Wittig reaction. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Nazeri MT, Shaabani A. Synthesis of polysubstituted pyrroles via isocyanide-based multicomponent reactions as an efficient synthesis tool. NEW J CHEM 2021. [DOI: 10.1039/d1nj04514h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present review covers all synthetic methods based on isocyanide-based multicomponent reactions for the preparation of polysubstituted pyrroles as the parent cores of many essential drugs, biologically active compounds, and compounds with wide application in materials science.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
- Peoples’ Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
12
|
Huang W, Wang K, Liu P, Li M, Ke S, Gu Y. Three-component reactions of aromatic amines, 1,3-dicarbonyl compounds, and α-bromoacetaldehyde acetal to access N-(hetero)aryl-4,5-unsubstituted pyrroles. Beilstein J Org Chem 2020; 16:2920-2928. [PMID: 33335599 PMCID: PMC7722624 DOI: 10.3762/bjoc.16.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
N-(Hetero)aryl-4,5-unsubstituted pyrroles were synthesized from (hetero)arylamines, 1,3-dicarbonyl compounds, and α-bromoacetaldehyde acetal by using aluminum(III) chloride as a Lewis acid catalyst through [1 + 2 + 2] annulation. This new versatile methodology provides a wide scope for the synthesis of different functional N-(hetero)aryl-4,5-unsubstituted pyrrole scaffolds, which can be further derived to access multisubstituted pyrrole-3-carboxamides. In the presence of 1.2 equiv of KI, a polysubstituted pyrazolo[3,4-b]pyridine derivative was also successfully synthesized.
Collapse
Affiliation(s)
- Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, 8 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, 8 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China
| | - Minghao Li
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, 8 Nanhu Avenue, Hongshan District, Wuhan 430064, China
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
13
|
Guan ZR, Liu ZM, Wan Q, Ding MW. One-pot four-component synthesis of polysubstituted thiazoles via cascade Ugi/Wittig cyclization starting from odorless Isocyano(triphenylphosphoranylidene)-acetates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Ren ZL, Lu WT, Cai S, Xiao MM, Yuan YF, Ping He, Ding MW. Isocyano(triphenylphosphoranylidene)acetates: Key to the One-Pot Synthesis of Oxazolo[4,5-c]quinoline Derivatives via a Sequential Ugi/Wittig/aza-Wittig Cyclization Process. J Org Chem 2019; 84:14911-14918. [DOI: 10.1021/acs.joc.9b02220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, P.R. China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Ting Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Shuang Cai
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, P.R. China
| | - Mi-Mi Xiao
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, P.R. China
| | - Yue-Fei Yuan
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, P.R. China
| | - Ping He
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, P.R. China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
15
|
Ojeda GM, Ranjan P, Fedoseev P, Amable L, Sharma UK, Rivera DG, Van der Eycken EV. Combining the Ugi-azide multicomponent reaction and rhodium(III)-catalyzed annulation for the synthesis of tetrazole-isoquinolone/pyridone hybrids. Beilstein J Org Chem 2019; 15:2447-2457. [PMID: 31666879 PMCID: PMC6808192 DOI: 10.3762/bjoc.15.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
An efficient sequence based on the Ugi-azide reaction and rhodium(III)-catalyzed intermolecular annulation has been established for the preparation of tetrazole-isoquinolone/pyridone hybrids. Several N-acylaminomethyltetrazoles were reacted with arylacetylenes to form the hybrid products in moderate to very good yields. The method relies on the capacity of the rhodium catalyst to promote C(sp2)-H activation in the presence of a suitable directing group. The Ugi-azide reaction provides broad molecular diversity and enables the introduction of the tetrazole moiety, which may further assist the catalytic reaction by coordinating the metal center. The scope of the isoquinolones is very wide and may be extended to the preparation of complex compounds having heterocyclic moieties such as pyridone, furan, thiophene and pyrrole, as well as the corresponding benzo-fused derivatives. The developed procedure is simple, reproducible and does not require inert conditions.
Collapse
Affiliation(s)
- Gerardo M Ojeda
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Prabhat Ranjan
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Pavel Fedoseev
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Lisandra Amable
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Daniel G Rivera
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Peoples´ Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
16
|
Guan ZR, Wan Q, Ding MW. Diastereoselective synthesis of multisubstituted isoindolines via Sequential Ugi and aza-Michael addition reaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Yang K, Gao JJ, Luo SH, Wu HQ, Pang CM, Wang BW, Chen XY, Wang ZY. Quick construction of a C–N bond from arylsulfonyl hydrazides and Csp2–X compounds promoted by DMAP at room temperature. RSC Adv 2019; 9:19917-19923. [PMID: 35514736 PMCID: PMC9065325 DOI: 10.1039/c9ra03403j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/17/2019] [Indexed: 01/16/2023] Open
Abstract
A mild C–N coupling reaction with arylsulfonyl hydrazides and 2(5H)-furanones shows good yields, excellent reaction regioselectivity and functional group tolerance.
Collapse
Affiliation(s)
- Kai Yang
- College of Pharmacy
- Gannan Medical University
- Ganzhou
- P. R. China
- School of Chemistry and Environment
| | - Juan-Juan Gao
- College of Sports and Rehabilitation
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Shi-He Luo
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou
| | - Han-Qing Wu
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou
| | - Chu-Ming Pang
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou
| | - Bo-Wen Wang
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou
| | - Xiao-Yun Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- P. R. China
| | - Zhao-Yang Wang
- School of Chemistry and Environment
- South China Normal University
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- Guangzhou
| |
Collapse
|