1
|
Chen JQ, Zhang LZ, Ma J, Li CJ, Zang YD, Sun H, Zhang DM. Three undescribed diterpenoids from Pini Lignum Nodi with hepatoprotective activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:854-863. [PMID: 40183548 DOI: 10.1080/10286020.2025.2481289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Three new abietane-type diterpenes, named pinusins A-C (1-3) were isolated from Pini Lignum Nodi (the dried tuberculate or branched nodes of Pinus massoniana Lamb.), together with five known diterpenoids (4-8), a flavonoid (9) and a monoterpene (10). The structures of these compounds were elucidated based on detailed spectroscopic analyses (1D, 2D NMR, HRESIMS, IR, and UV), while ECD calculations determined their absolute configurations. All compounds were assayed in vitro for their protective activities against acetaminophen (APAP)-induced hepatotoxicity at 10 μM. Compounds 1-4, 9, and 10 experimentally exerted protective effects against APAP-induced HepG2 cell damage.
Collapse
Affiliation(s)
- Jia-Qi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling-Zhi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chuang-Jun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying-Da Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Xu J, Zhang LX, Yang XY, Fan BY, Ju D, Tang ZY, Lei J, Xu ZG, Chen ZZ. Site-Divergent C-H Bond Functionalization of Free Phenols Enables Hydroxyflavanones. J Org Chem 2025; 90:6378-6391. [PMID: 40327859 DOI: 10.1021/acs.joc.4c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
A solvent-controlled strategy to regulate the site-selectivity of free phenols and stereospecificity of 1,4-addition is presented, thereby divergently producing 4'-hydroxyflavanone and 2'-hydroxyflavanone via site-specific C-H bond functionalization. This protocol is applicable to a diverse range of free phenols. Furthermore, this strategy efficiently accesses natural product-like frameworks, including Eriodictyol, Narigenin, (+)-Anastatins A, (+)-Anastatins B, and (+)-Cycloaltilisin 7 with high selectivity. Late-stage modifications of pharmaceuticals, such as Ethinylestradiol, β-Estradiol, Ezetimibe, and Estrone, are certainly enabling. Importantly, the IC50 values of the newly synthesized compounds 4o and 5m were determined to be in the submicromolar range, indicating a notably potent inhibitory effect. This finding for the synthesis of hydroxyflavanones marks a significant stride in overcoming the extraction challenges of natural products.
Collapse
Affiliation(s)
- Jia Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Li-Xin Zhang
- College of Agricultural and Forestry Sciences, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Xiao-Yu Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bing-Ying Fan
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dong Ju
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zi-Yi Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Zhang LX, Tang ZY, Liu XY, Chen XY, Jia SQ, Jiang XW, Gao XY, Xu J, Lei J. Regio- and chemoselective synthesis of flavanone isosteres via multicomponent reactions: synergistic role of hydrogen bonding and solvent effects. Mol Divers 2025:10.1007/s11030-025-11151-4. [PMID: 40140236 DOI: 10.1007/s11030-025-11151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025]
Abstract
Given the prevalence and significance of flavanones, we present a regio- and chemoselective approach for the synthesis of flavanone isosteres. This method is facilitated by the synergistic effects of hydrogen bonding and solvent interactions. Notably, this novel multicomponent reaction employs commercially available starting materials, operates without the need for catalysts, and achieves high levels of regio- and chemoselectivity under mild conditions. The protocol exhibits excellent tolerance for complex substrates, including those derived from Linagliptin and Cholesterol. Furthermore, this robust synthetic method not only surpasses the limitations of traditional approaches but also aligns with the principles of green chemistry.
Collapse
Affiliation(s)
- Li-Xin Zhang
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- College of Agricultural and Forestry Sciences, Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Zi-Yi Tang
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xin-Yue Liu
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xing-Yu Chen
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Shi-Qi Jia
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xing-Wei Jiang
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Xin-Yan Gao
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jia Xu
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Jie Lei
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
4
|
Yoo HS, Yoon YS, Shin JW, Choi SI, Son SH, Jang YH, Yang YS, Kim SY, Kim YR, Chung KS, Lee KT, Kim NJ. In vitro and in vivo anti-inflammatory and antinociceptive activities of a synthetic hydrangenol derivative: 5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one. Int Immunopharmacol 2025; 148:114175. [PMID: 39889413 DOI: 10.1016/j.intimp.2025.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
In the present study, we developed and synthesized novel hydrangenol derivatives and featured their anti-inflammatory activities. Especially, a synthetic derivative 11 (compound 11), which possesses the 4H-1-benzopyran-4-one moiety, 5-hydroxyl group in A-ring, and 4'-hydroxyl group in B-ring, most dominantly downregulated nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. In addition, compound 11 suppressed the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) expression by inhibiting nuclear factor kappa-B (NF-κB), activator protein 1 (AP-1), and signal transducer and activator of transcription protein (STAT) pathways in LPS-provoked RAW264.7 macrophages. Additionally, we confirmed that compound 11 had better plasma stability than hydrangenol with a plasma-labile δ-valerolactone moiety. In carrageenan-induced rats, compound 11 potently reduced paw inflammation (as measured by paw volume, width, and thickness) by inhibiting the iNOS and COX-2 expression in paw tissue, thereby reducing inflammatory pain. All things considered, as compound 11 shows anti-inflammatory and antinociceptive properties, converting metabolically unstable hydrangenol into a stable compound 11 could be a promising strategy for developing new drugs.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Young-Seo Yoon
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Jeong-Won Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Se-In Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341 Kangwon-do, Republic of Korea
| | - Yoon Hu Jang
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Yo-Sep Yang
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Soo-Yeon Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Ye-Rin Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Kyung-Tae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea.
| | - Nam-Jung Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea.
| |
Collapse
|
5
|
Won HJ, Son SH, Yang YS, Park GH, Shin JW, Jang YH, Hwang HS, Kim JH, Kim NJ. One-Step Synthesis of 2-Arylquinolin-4(1 H)-Ones from 1-(2-Aminoaryl)-3-Arylpropan-1-Ones via Pd(II)-Catalyzed Dehydrogenative Cyclization. J Org Chem 2025; 90:98-108. [PMID: 39791137 DOI: 10.1021/acs.joc.4c01901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this study, we developed palladium-catalyzed dehydrogenative cyclization to transform 1-(2-aminoaryl)-3-arylpropan-1-ones into 2-arylquinolin-4(1H)-ones, also known as aza-flavones which are the bioisosteres of flavones, in an atom-economic manner. This method exhibited excellent chemical compatibility with a broad substrate scope, accommodating up to 25 derivatives. Additionally, kinetic studies were performed to elucidate the reaction mechanism. Further, 2-phenylquinolin-4(1H)-one was used as a common intermediate for synthesizing privileged structures such as 4-methoxyquinoline, N-methylquinoline-4(1H)-one, and 4-(pseudo)halogenated quinoline moieties.
Collapse
Affiliation(s)
- Hyuck-Jae Won
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Hwan Son
- Department of Pharmacy, College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Yo-Sep Yang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ga Hyun Park
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hee Sung Hwang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ju Hee Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Troshkova N, Politanskaya L, Bagryanskaya I, Chuikov I, Wang J, Ilyina P, Mikhalski M, Esaulkova I, Volobueva A, Zarubaev V. Fluorinated 2-arylchroman-4-ones and their derivatives: synthesis, structure and antiviral activity. Mol Divers 2024; 28:3635-3660. [PMID: 38153637 DOI: 10.1007/s11030-023-10769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 μM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI's of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.
Collapse
Affiliation(s)
- Nadezhda Troshkova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Larisa Politanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090.
| | - Irina Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Igor Chuikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Jiaying Wang
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk, Russian Federation, 630090
| | - Polina Ilyina
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Mikhail Mikhalski
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Iana Esaulkova
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Alexandrina Volobueva
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Vladimir Zarubaev
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| |
Collapse
|
7
|
Dong H, Liao L, Long B, Che Y, Peng T, He Y, Mei L, Xu B. Total Synthesis and Antibacterial Evaluation of Lupinifolin and Its Natural Analogues. JOURNAL OF NATURAL PRODUCTS 2024; 87:1044-1058. [PMID: 38373268 DOI: 10.1021/acs.jnatprod.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
In this study, lupinifolin (1) and its natural analogues, mundulin (2), minimiorin (3), khonklonginol H (4), flemichin D (5), and eriosemaone A (27), were obtained by chemical synthesis for the first time. Key steps involved an electrocyclization to build the linear pyran rings and a Claisen/Cope rearrangement to install the 8-prenyl substituents. All compounds were assessed for their in vitro antimicrobial activities against clinically relevant human pathogens, including one Gram-negative bacterial strain (E. coli ATCC 25922) and four Gram-positive bacterial strains (S. aureus ATCC 29213, E. faecalis ATCC 29212, MRSA21-5, and VRE ATCC 51299). The result indicated that eriosemaone A (27) was the most potent one against Gram-positive bacteria, with minimum inhibitory concentrations in the range of 0.25-0.5 μg/mL. Mechanistic studies indicated that 27 has good membrane-targeting ability to bacterial inner membranes and can bind to phosphatidylglycerol and cardiolipin in bacterial membranes, thereby disrupting the bacterial cell membranes and causing bacterial death.
Collapse
Affiliation(s)
- Hongbo Dong
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Li Liao
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Bin Long
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yufei Che
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ting Peng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yujiao He
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu 610106, People's Republic of China
| | - Bing Xu
- Department of Pediatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, People's Republic of China
| |
Collapse
|
8
|
Yeon NR, Cho JS, Yoo HS, Jeon SH, Yi CM, Jung MJ, Lee YS, Shin EB, Kim N, Kim H, Seong J, Kim NJ, Lee JK, Inn KS. Dextran sodium sulfate (DSS)-induced colitis is alleviated in mice after administration of flavone-derived NRF2-activating molecules. Life Sci 2024; 340:122424. [PMID: 38242497 DOI: 10.1016/j.lfs.2024.122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic and relapsing inflammatory condition characterized by severe symptoms such as diarrhea, fatigue, and weight loss. Growing evidence underscores the direct involvement of the nuclear factor-erythroid 2-related factor 2 (NRF2) in the development and progression of IBD, along with its associated complications, including colorectal cancer. The NRF2 pathway plays a crucial role in cellular responses to oxidative stress, and dysregulation of this pathway has been implicated in IBD. Flavones, a significant subclass of flavonoids, have shown pharmacological impacts in various diseases including IBD, through the NRF2 signaling pathway. In this study, we conducted a screening of compounds with a flavone structure and identified NJK15003 as a promising NRF2 activator. NJK15003 demonstrated potent NRF2 activation, as evidenced by the upregulation of downstream proteins, promoter activation, and NRF2 nuclear translocation in IBD cellular models. Treatment with NJK15003 effectively restored the protein levels of tight junctions in cells treated with dextran sodium sulfate (DSS) and in DSS-treated mice, suggesting its potential to protect cells from barrier integrity disruption in IBD. In DSS-treated mice, the administration of NJK15003 resulted in the prevention of body weight loss, a reduction in colon length shortening, and a decrease in the disease activity index. Furthermore, NJK15003 treatment substantially alleviated inflammatory responses and apoptotic cell death in the colon of DSS-treated mice. Taken together, this study proposes the potential utility of NRF2-activating flavone compounds, exemplified by NJK15003, for the treatment of IBD.
Collapse
Affiliation(s)
- Nu-Ri Yeon
- Department of Biomedical and Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae Seok Cho
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chae-Min Yi
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Ji Jung
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yun-Seok Lee
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun-Bin Shin
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Namkwon Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Heejung Kim
- Department of Pharmacology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Nam-Jung Kim
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Kyung-Soo Inn
- Department of Fundamental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
9
|
Yoo HS, Shin JW, Jang YH, Yang YS, Son SH, Won HJ, Kim SL, Sim J, Kim NJ. Synthesis of 2,3-Benzotropones via Palladium(II)-Catalyzed Aerobic Dehydrogenation from 1-Benzosuberones and Sequential Diels-Alder Reaction to Yield Benzobicyclo[3.2.2]nonenones. J Org Chem 2024; 89:3102-3110. [PMID: 38364274 DOI: 10.1021/acs.joc.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
An approach to 2,3-benzotropone from 1-benzosuberone via palladium(II)-catalyzed aerobic dehydrogenation was developed. This method first provided a catalytic route to various 2,3-benzotropones from their corresponding 1-benzosuberones in good yields. In addition, the reaction could be applied to a one-pot Diels-Alder reaction with maleimide, providing a complex benzobicyclo[3.2.2]nonenone in ≤90% yield. Kinetic analysis supporting our proposed mechanism was also performed, underscoring the robustness of the developed synthetic pathway.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yo-Sep Yang
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Hwan Son
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyuck-Jae Won
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jaehoon Sim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Mizuguchi M, Nakagawa Y, Inui K, Katayama W, Sawai Y, Shimane A, Kitakami R, Okada T, Nabeshima Y, Yokoyama T, Kanamitsu K, Nakagawa S, Toyooka N. Chlorinated Naringenin Analogues as Potential Inhibitors of Transthyretin Amyloidogenesis. J Med Chem 2022; 65:16218-16233. [PMID: 36472374 DOI: 10.1021/acs.jmedchem.2c00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Misfolding and aggregation of transthyretin are implicated in the fatal systemic disease known as transthyretin amyloidosis. Here, we report the development of a naringenin derivative bearing two chlorine atoms that will be efficacious for preventing aggregation of transthyretin in the eye. The amyloid inhibitory activity of the naringenin derivative was as strong as that of tafamidis, which is the first therapeutic agent targeting transthyretin in the plasma. X-ray crystal structures of the compounds in complex with transthyretin demonstrated that the naringenin derivative with one chlorine bound to the thyroxine-binding site of transthyretin in the forward mode and that the derivative with two chlorines bound to it in the reverse mode. An ex vivo competitive binding assay showed that naringenin derivatives exhibited more potent binding than tafamidis in the plasma. Furthermore, an in vivo pharmacokinetic study demonstrated that the dichlorinated derivative was significantly delivered to the eye.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Yusuke Nakagawa
- Graduate School of Innovative Life Science, University of Toyama, Toyama 930-8555, Japan
| | - Kishin Inui
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Wakana Katayama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Yurika Sawai
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Ayaka Shimane
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Ryota Kitakami
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Takeshi Yokoyama
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0914, Japan
| | - Kayoko Kanamitsu
- Drug Discovery Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsaku Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
11
|
Torres‐Sauret Q, Vilchis‐Reyes MA, Martínez R, Romero‐Ceronio N, Alarcon‐Matus E, Hernández‐Abreu O, Vázquez Cancino R, Alvarado Sánchez. C. Crossing borders: On‐Water Synthesis of Flavanones. ChemistrySelect 2022. [DOI: 10.1002/slct.202202567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Quirino Torres‐Sauret
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Miguel A. Vilchis‐Reyes
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Roberto Martínez
- Instituto de Química Universidad Nacional Autónoma de México Circuito exterior s/n Ciudad Universitaria, Alcaldía Coyoacán CP 04510 Ciudad de México México
| | - Nancy Romero‐Ceronio
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Erika Alarcon‐Matus
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Oswaldo Hernández‐Abreu
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Romario Vázquez Cancino
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| | - Cuauhtémoc Alvarado Sánchez.
- Centro de Investigación en Ciencia y Tecnología Aplicada de Tabasco (CICTAT), División Académica de Ciencias Básicas Universidad Juárez Autónoma de Tabasco Carretera Cunduacán-Jalpa Km 1, Col. La Esperanza 86690. Cunduacán Tabasco México
| |
Collapse
|
12
|
Politanskaya L, Wang J, Troshkova N, Chuikov I, Bagryanskaya I. One-pot synthesis of fluorinated 2-arylchroman-4-one derivatives from 2-(triisopropylsilyl)ethynylphenols and aromatic aldehydes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Lokolkar MS, Pal MK, Dey S, Bhanage BM. POP-Pincer Xantphos Pd Complex of 4-Pyridylthiolate: Cyclocarbonylative Reaction for the Synthesis of Flavones Using Cobalt Carbonyl as a C1 Source. Catal Letters 2022. [DOI: 10.1007/s10562-022-04161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Barboza AA, Dantas JA, Jardim GADM, Ferreira MAB, Costa MO, Chiavegatti A. Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1701-7397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOver the past years, Pd(II)-catalyzed oxidative couplings have enabled the construction of molecular scaffolds with high structural diversity via C–C, C–N and C–O bond-forming reactions. In contrast to the use of stoichiometric amounts of more common oxidants, such as metal salts (Cu and Ag) and benzoquinone derivatives, the use of molecular oxygen for the direct or indirect regeneration of Pd(II) species presents itself as a more viable alternative in terms of economy and sustainability. In this review, we describe recent advances on the development of Pd-catalyzed oxidative cyclizations/functionalizations, where molecular oxygen plays a pivotal role as the sole stoichiometric oxidant.1 Introduction2 Oxidative C–C and C–Nu Coupling2.1 Intramolecular Oxidative C–Nu Heterocyclization Reactions2.1.1 C–H Activation2.1.2 Wacker/Aza-Wacker-Type Cyclization2.1.3 Tandem Wacker/Aza-Wacker and Cyclization/Cross-Coupling Reactions2.2 Intermolecular Oxidative C–Nu Heterocoupling Reactions2.3 Intramolecular Oxidative (C–C) Carbocyclization Reactions2.4 Intermolecular Oxidative C–C Coupling Reactions2.4.1 Cyclization Reactions2.4.2 Cross-Coupling Reactions2.4.3 Homo-Coupling Reactions3 Aerobic Dehydrogenative Coupling/Functionalization4 Oxidative C–H Functionalization5 Summary
Collapse
|
15
|
Wang S, Lin JJ, Cui X, Li JP, Huang C. Controllable Synthesis of Two Isomers 4 H-Chromene and 2,8-Dioxabicyclo[3.3.1]nonane Derivatives under Catalyst-Free Conditions. J Org Chem 2021; 86:16396-16408. [PMID: 34781678 DOI: 10.1021/acs.joc.1c01762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A one-pot method for the selective synthesis of two isomers 4H-chromene and 2,8-dioxabicyclo[3.3.1]nonane derivatives was developed without a catalyst and using EtOH/H2O (4:1, v/v) as the solvent. The reaction was conducted under mild conditions, with forming multiple chemical bonds in one pot and high atom economy, and only a stoichiometric amount of H2O is produced as the byproduct. Its selectivity was controlled by thermodynamics and kinetics, and the reasons for the transformation of the two structures are also discussed.
Collapse
Affiliation(s)
- Shuang Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Jun-Jie Lin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Xin Cui
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Jing-Peng Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, People's Republic of China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, People's Republic of China
| |
Collapse
|
16
|
Yoo HS, Yang YS, Kim SL, Son SH, Jang YH, Shin JW, Kim NJ. Syntheses of 1H-Indoles, Quinolines, and 6-Membered Aromatic N-Heterocycle-Fused Scaffolds via Palladium(II)-Catalyzed Aerobic Dehydrogenation under Alkoxide-Free Conditions. Chem Asian J 2021; 16:3469-3475. [PMID: 34494376 DOI: 10.1002/asia.202100861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Aromatic N-heterocycle-fused scaffolds such as indoles and quinolines are important core structures found in various bioactive natural products and synthetic compounds. Recently, various dehydrogenation methods with the help of alkoxides, known to significantly promote dihydro- or tetrahydro-heterocycles to be oxidized, were developed for the heterocycle synthesis. However, these approaches are sometimes unsuitable due to resulting undesired side reactions such as reductive dehalogenation. Herein, expedient syntheses of 1H-indoles, quinolines, and 6-membered N-heterocycle-fused scaffolds from their hydrogenated forms through palladium(II)-catalyzed aerobic dehydrogenation under alkoxide-free conditions are reported. A total of 48 compounds were successfully synthesized with a wide range of functional groups including halogens (up to 99% yield). These methodologies provide facile routes for various privileged structures possessing aromatic N-heterocycles without the help of alkoxides, in highly efficient manners.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yo-Sep Yang
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
17
|
Convenient synthesis of flavanone derivatives via oxa-Michael addition using catalytic amount of aqueous cesium fluoride. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Kurapati C, Muthukrishnan M, Singh OV, Gundla R. Thallium(
III
)
p
‐tosylate‐mediated oxidative [1,2] rearrangement of
2‐naphthyl
and
2‐heteroarylchromanones. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chidvilas Kurapati
- Department of Chemistry, School of Science GITAM Deemed to be University Hyderabad India
| | | | - Om V. Singh
- Devsynthesis India Pvt Ltd Hyderabad Telangana India
| | - Rambabu Gundla
- Department of Chemistry, School of Science GITAM Deemed to be University Hyderabad India
| |
Collapse
|
19
|
Son SH, Shin JW, Won HJ, Yoo HS, Cho YY, Kim SL, Jang YH, Park BY, Kim NJ. Synthesis of meta-(Indol-3-yl)phenols from Indoles and Cyclohexenone via Palladium(II)-Catalyzed Oxidative Heck Reaction and Dehydrogenative Aromatization in a One-Step Sequence. Org Lett 2021; 23:7467-7471. [PMID: 34523938 DOI: 10.1021/acs.orglett.1c02679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facile construction of a meta-(indol-3-yl)phenol framework with a wide substrate scope (a total of 25 compounds) via a palladium(II)-catalyzed oxidative Heck reaction and dehydrogenative aromatization in a one-step sequence is reported. This methodology affords a novel route for the privileged structures that are challenging to access via a direct link between indole and phenol, in a highly efficient and atom-economical manner.
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyuck-Jae Won
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yang Yil Cho
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Boyoung Y Park
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Soto M, Gotor‐Fernández V, Rodríguez‐Solla H, Baratta W. Transfer Hydrogenation of Flavanones and
ortho
‐Hydroxychalcones to 1,3‐Diarylpropanols Catalyzed by CNN Pincer Ruthenium Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202002025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Martín Soto
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Humberto Rodríguez‐Solla
- Departamento de Química Orgánica e Inorgánica University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali Università di Udine Via Cotonoficio 108 33100 Udine Italy
| |
Collapse
|
21
|
Son SH, Cho YY, Yoo HS, Lee SJ, Kim YM, Jang HJ, Kim DH, Shin JW, Kim NJ. Divergent synthesis of flavones and flavanones from 2′-hydroxydihydrochalcones via palladium(ii)-catalyzed oxidative cyclization. RSC Adv 2021; 11:14000-14006. [PMID: 35423945 PMCID: PMC8697754 DOI: 10.1039/d1ra01672e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Divergent and versatile synthetic routes to flavones and flavanones via efficient Pd(ii) catalysis are disclosed. These Pd(ii) catalyses expediently provide a variety of flavones and flavanones from 2′-hydroxydihydrochalcones as common intermediates, depending on oxidants and additives, via discriminate oxidative cyclization sequences involving dehydrogenation, respectively, in a highly atom-economic manner. Divergent and versatile synthetic routes to flavones and flavanones via efficient Pd(ii) catalysis are disclosed.![]()
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Yang Yil Cho
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Soo Jin Lee
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Young Min Kim
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Hyu Jeong Jang
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Dong Hwan Kim
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences
- Graduate School
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
- Department of Life and Nanopharmaceutical Sciences
| |
Collapse
|
22
|
Kim YM, Yoo H, Son SH, Kim GY, Jang HJ, Kim DH, Kim SD, Park BY, Kim N. A Novel Approach to
N
‐Tf 2‐Aryl‐2,3‐Dihydroquinolin‐ 4(1
H
)‐ones via a Ligand‐Free Pd(II)‐Catalyzed Oxidative Aza‐Michael Cyclization. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Young Min Kim
- College of Pharmacy Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Hyung‐Seok Yoo
- College of Pharmacy Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Ga Yeong Kim
- College of Pharmacy Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Hyu Jeong Jang
- College of Pharmacy Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Dong Hwan Kim
- College of Pharmacy Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Soo Dong Kim
- Department of Life and Nanopharmaceutical Sciences Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Boyoung Y. Park
- Department of Life and Nanopharmaceutical Sciences Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Nam‐Jung Kim
- College of Pharmacy Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences Kyung Hee University 26 Kyungheedae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
He X, Xie M, Li R, Choy PY, Tang Q, Shang Y, Kwong FY. Organocatalytic Approach for Assembling Flavanones via a Cascade 1,4-Conjugate Addition/oxa-Michael Addition between Propargylamines with Water. Org Lett 2020; 22:4306-4310. [DOI: 10.1021/acs.orglett.0c01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| |
Collapse
|
24
|
Wang C, Dong G. Catalytic β-Functionalization of Carbonyl Compounds Enabled by α,β-Desaturation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01519] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chengpeng Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|