1
|
Tanikawa M, Ishida T, Nakamura Y, Makino K, Shimada N. Unified Strategy for the Concise Total Syntheses of All Six 3″- O-Acyl Quercitrins Based on Regioselective Acylation Catalyzed by Boronic Acid. J Org Chem 2025. [PMID: 39898530 DOI: 10.1021/acs.joc.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The naturally occurring 3″-O-acylquercitrin family exhibits a range of biological activities with significant potential health and medical benefits. Herein, we present a unified strategy for concise total syntheses of all six known 3″-O-acylquercitrin natural products─namely, 3″-O-galloylquercitrin, 3″-O-(E)-cinnamoylquercitrin, 3″-O-(E)-coumaroylquercitrin, 3″-O-(E)-feruloylquercitrin, 3″-O-acetylquercitrin, and 3″-O-tigloylquercitrin─based on regioselective acylation of carbohydrates catalyzed by N-methylimidazole-containing boronic acid. The core advancement in this approach is a late-stage catalytic regioselective functionalization of a common synthetic intermediate, enabling efficient access to the natural products.
Collapse
Affiliation(s)
- Mari Tanikawa
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Toshihiro Ishida
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| | - Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
2
|
Dey K, Jayaraman N. Trivalent dialkylaminopyridine-catalyzed site-selective mono- O-acylation of partially-protected pyranosides. Org Biomol Chem 2024; 22:5134-5149. [PMID: 38847370 DOI: 10.1039/d4ob00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This work demonstrates trivalent tris-(3-N-methyl-N-pyridyl propyl)amine (1) catalyzing the site-selective mono-O-acylation of glycopyranosides. Different acid anhydrides were used for the acylation of monosaccharides, mediated by catalyst 1, at a loading of 1.5 mol%; the extent of site-selectivity and the yields of mono-O-acylation products were assessed. The reactions were performed between 2 and 10 h, depending on the nature of the acid anhydride, where the bulkier pivalic anhydride required a longer duration for acylation. The glycopyranosides are maintained as diols and triols, and from a set of experiments, the site-selectivity of acylations was observed to follow the intrinsic reactivities and stereochemistry of hydroxy functionalities. The trivalent catalyst 1 mediates the reactions with excellent site-selectivities for mono-O-acylation product formation in the studied glycopyranosides, in comparison to the monovalent N,N-dimethylamino pyridine (DMAP) catalyst. This study illustrates the benefits of the multivalency of catalytic moieties in catalysis.
Collapse
Affiliation(s)
- Kalyan Dey
- Indian Institute of Science, Bangalore 560012, India.
| | | |
Collapse
|
3
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
4
|
Rölz M, Butschke B, Breit B. Azobenzene-Integrated NHC Ligands: A Versatile Platform for Visible-Light-Switchable Metal Catalysis. J Am Chem Soc 2024; 146:13210-13225. [PMID: 38709955 DOI: 10.1021/jacs.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A new class of photoswitchable NHC ligands, named azImBA, has been developed by integrating azobenzene into a previously unreported imidazobenzoxazol-1-ylidene framework. These rigid photochromic carbenes enable precise control over confinement around a metal's coordination sphere. As a model system, gold(I) complexes of these NHCs exhibit efficient bidirectional E-Z isomerization under visible light, offering a versatile platform for reversibly photomodulating the reactivity of organogold species. Comprehensive kinetic studies of the protodeauration reaction reveal rate differences of up to 2 orders of magnitude between the E and Z isomers of the NHCs, resulting in a quasi-complete visible-light-gated ON/OFF switchable system. Such a high level of photomodulation efficiency is unprecedented for gold complexes, challenging the current state-of-the-art in photoswitchable organometallics. Thorough investigations into the ligand properties paired with structure-reactivity correlations underscored the unique ligand's steric features as a key factor for reactivity. This effective photocontrol strategy was further validated in gold(I) catalysis, enabling in situ photoswitching of catalytic activity in the intramolecular hydroalkoxylation and -amination of alkynes. Given the significance of these findings and its potential as a widely applicable, easily customizable photoswitchable ancillary ligand platform, azImBA is poised to stimulate the development of adaptive, multifunctional metal complexes.
Collapse
Affiliation(s)
- Martin Rölz
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Burkhard Butschke
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Herold D, Brauser M, Kind J, Thiele CM. Evolution of a Combined UV/Vis and NMR Setup with Fixed Pathlengths for Mass-limited Samples. Chemistry 2024; 30:e202304016. [PMID: 38360972 DOI: 10.1002/chem.202304016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
The investigation of reaction mechanisms is a complex task that usually requires the use of several techniques. To obtain as much information as possible on the reaction and any intermediates - possibly invisible to one technique - the combination of techniques is a solution. In this work we present a new setup for combined UV/Vis and NMR spectroscopy and compare it to an established alternative. The presented approach allows a versatile usage of different commercially-available components like mirrors and fiber bundles as well as different fixed pathlengths according to double transmission or single transmission measurements. While a previous approach is based on a dip-probe setup for conventional NMR probes, the new one is based on a micro-Helmholtz coil array (LiquidVoxel™). This makes the use of rectangular cuvettes possible, which ensure well-defined pathlengths allowing for quantification of species. Additionally, very low quantities of compound can be analyzed due to the microfabrication and small cuvette size used. As proof-of-principle this new setup for combined UV/Vis and NMR spectroscopy is used to examine a well-studied photochromic system of the dithienylethene compound class. A thorough comparison of the pros and cons of the two setups for combined UV/Vis and NMR measurements is performed.
Collapse
Affiliation(s)
- Dominik Herold
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| | - Matthias Brauser
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| | - Jonas Kind
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| | - Christina M Thiele
- Technische Universität Darmstadt/Technical University of Darmstadt, Clemens-Schöpf-Institut für Organische Chemie und Biochemie/Clemens Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt, D-64289, Germany
| |
Collapse
|
6
|
Herold D, Kind J, Frieß F, Thiele CM. Extraction of pure component spectra from ex situ illumination UV/Vis and NMR spectroscopy. Photochem Photobiol Sci 2023; 22:2599-2606. [PMID: 37751073 DOI: 10.1007/s43630-023-00475-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
Obtaining understanding of a photochemical reaction relies on the observation, identification and quantification of the compounds involved. The photochemical properties of the individual components are of particular importance, and their determination, however, is not always trivial. This is also true for the quantitative measure on the ability to absorb light, the extinction coefficient εi if more than one species i is present and two or more species absorb light of the same wavelength. In this work, it is demonstrated how pure component spectra can be obtained with a simple combination of successive and repeated ex situ illumination, UV/Vis and NMR spectroscopy. From the complementary information accessible, the wavelength-dependent extinction coefficients of all species can be calculated yielding the pure component spectra. A comparison with published data shows excellent agreement and thus proves that this approach is highly reliable.
Collapse
Affiliation(s)
- Dominik Herold
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Florian Frieß
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| |
Collapse
|
7
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
9
|
Substrate Photoswitching for Rate Enhancement of an Organocatalytic Cyclization Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Liu R, Zhang X, Xia F, Dai Y. Azobenzene-based photoswitchable catalysts: State of the art and perspectives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Sun L, Lu B, Liu Y, Wang Q, Li G, Zhao L, Zhao C. Synthesis, characterization and antioxidant activity of quercetin derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1942059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lei Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Bo Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Yandan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Longxuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
12
|
Seitz A, Wende RC, Roesner E, Niedek D, Topp C, Colgan AC, McGarrigle EM, Schreiner PR. Site-Selective Acylation of Pyranosides with Oligopeptide Catalysts. J Org Chem 2021; 86:3907-3922. [PMID: 33617252 DOI: 10.1021/acs.joc.0c02772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, we report the oligopeptide-catalyzed site-selective acylation of partially protected monosaccharides. We identified catalysts that invert site-selectivity compared to N-methylimidazole, which was used to determine the intrinsic reactivity, for 4,6-O-protected glucopyranosides (trans-diols) as well as 4,6-O-protected mannopyranosides (cis-diols). The reaction yields up to 81% of the inherently unfavored 2-O-acetylated products with selectivities up to 15:1 using mild reaction conditions. We also determined the influence of protecting groups on the reaction and demonstrate that our protocol is suitable for one-pot reactions with multiple consecutive protection steps.
Collapse
Affiliation(s)
- Alexander Seitz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Emily Roesner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Dominik Niedek
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Christopher Topp
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Avene C Colgan
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
13
|
Heindl AH, Wegner HA. Rational Design of Azothiophenes-Substitution Effects on the Switching Properties. Chemistry 2020; 26:13730-13737. [PMID: 32330338 PMCID: PMC7702042 DOI: 10.1002/chem.202001148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/22/2022]
Abstract
A series of substituted azothiophenes was prepared and investigated toward their isomerization behavior. Compared to azobenzene (AB), the presented compounds showed red-shifted absorption and almost quantitative photoisomerization to their (Z) states. Furthermore, it was found that electron-withdrawing substitution on the phenyl moiety increases, while electron-donating substitution decreases the thermal half-lives of the (Z)-isomers due to higher or lower stabilization by a lone pair-π interaction. Additionally, computational analysis of the isomerization revealed that a pure singlet state transition state is unlikely in azothiophenes. A pathway via intersystem crossing to a triplet energy surface of lower energy than the singlet surface provided a better fit with experimental data of the (Z)→(E) isomerization. The insights gained in this study provide the necessary guidelines to design effective thiophenylazo-photoswitches for applications in photopharmacology, material sciences, or solar energy harvesting applications.
Collapse
Affiliation(s)
- Andreas H. Heindl
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Material Research (LaMa)Justus Liebig UniversityHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
14
|
Skubi KL, Swords WB, Hofstetter H, Yoon TP. LED-NMR Monitoring of an Enantioselective Catalytic [2+2] Photocycloaddition. CHEMPHOTOCHEM 2020; 4:685-690. [PMID: 34532566 PMCID: PMC8443221 DOI: 10.1002/cptc.202000094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/08/2023]
Abstract
We report that an NMR spectrometer equipped with a high-power LED light source can be used to study a fast enantioselective photocatalytic [2+2] cycloaddition. While traditional ex situ applications of NMR provide considerable information on reaction mechanisms, they are often ineffective for observing fast reactions. Recently, motivated by renewed interest in organic photochemistry, several approaches have been reported for in situ monitoring of photochemical reactions. These previously disclosed methods, however, have rarely been applied to rapid (<5 min) photochemical reactions. Furthermore, these approaches have not previously been used to interrogate the mechanisms of photocatalytic energy-transfer reactions. In the present work, we describe our experimental setup and demonstrate its utility by determining a phenomenological rate law for a model photocatalytic energy-transfer cycloaddition reaction.
Collapse
Affiliation(s)
- Kazimer L Skubi
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI (USA)
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY (USA)
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI (USA)
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI (USA)
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI (USA)
| |
Collapse
|
15
|
Ludwig J, Helberg J, Zipse H, Herges R. Azo-dimethylaminopyridine-functionalized Ni(II)-porphyrin as a photoswitchable nucleophilic catalyst. Beilstein J Org Chem 2020; 16:2119-2126. [PMID: 32952728 PMCID: PMC7476594 DOI: 10.3762/bjoc.16.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
We present the synthesis and the photochemical and catalytic switching properties of an azopyridine as a photoswitchable ligand, covalently attached to a Ni(II)-porphyrin. Upon irradiation with 530 nm (green light), the azopyridine switches to the cis configuration and coordinates with the Ni2+ ion. Light of 435 nm (violet) isomerizes the ligand back to the trans configuration, which decoordinates for steric reasons. This so-called record player design has been used previously to switch the spin state of Ni2+ between singlet and triplet. We now use the coordination/decoordination process to switch the catalytic activity of the dimethylaminopyridine (DMAP) unit. DMAP is a known catalyst in the nitroaldol (Henry) reaction. Upon coordination to the Ni2+ ion, the basicity of the pyridine lone pair is attenuated and hence the catalytic activity is reduced. Decoordination restores the catalytic activity. The rate constants in the two switching states differ by a factor of 2.2, and the catalytic switching is reversible.
Collapse
Affiliation(s)
- Jannis Ludwig
- Otto Diels Institute of Organic Chemistry, University of Kiel, Otto-Hahn-Platz 3-4, Kiel D-24098, Germany
| | - Julian Helberg
- Department of Chemistry, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5–13, 81377 Muenchen, Germany
| | - Hendrik Zipse
- Department of Chemistry, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5–13, 81377 Muenchen, Germany
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, University of Kiel, Otto-Hahn-Platz 3-4, Kiel D-24098, Germany
| |
Collapse
|