1
|
Chen SH, Chen YL, Chen CY, Wu CS, Su MD, Chuang SC. Spirocyclopropanes and Substituted Furans by Controlling Reactivity of 1,3-Enynoates: γ- and δ-Addition of Phosphines to Conjugate Acceptors. Chemistry 2024; 30:e202402688. [PMID: 39325539 DOI: 10.1002/chem.202402688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
In the Morita-Baylis-Hillman (MBH) reaction, a nucleophile undergoes β-addition to activated alkenes or alkynes, forming reactive intermediates for subsequent carbon-carbon or carbon-hetero bond formation. By using a π-conjugated acceptor, however, an unprecedented reactivity of 1,3-enynoates and indane-1,3-diones was uncovered in the presence of phosphines. When indan-1,3-diones were used, γ-addition of phosphines to 1,3-enynoates was observed for the first time; moderate to good yields were obtained for 14 substances containing the prominent spirocyclopropane scaffold with 100 % retention of (Z)-alkene. When 2-methyl-indan-1,3-diones were used, di(tri)-substituted furans were produced through the δ-addition pathway, with 20 substances and a yield of up to 88 % being achieved. Control experiments and density functional theory calculations were conducted to obtain insights into the unconventional γ-addition reaction pathway.
Collapse
Affiliation(s)
- Szu-Han Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Yi-Liang Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Chun-Yu Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| | - Chi-Shiun Wu
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi, 60004, Taiwan, ROC
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu City, 30010, Taiwan, ROC
| |
Collapse
|
2
|
Yu S, Lei J, Xu J, Li X, Zhang B, Xu ZG, Lv ML, Tang DY, Chen ZZ. Copper-Catalyzed Radical Sulfonylation: Divergent Construction of C(sp 3)-Sulfonyl Bonds with Sulfonylhydrazones. J Org Chem 2024; 89:16340-16350. [PMID: 39504540 DOI: 10.1021/acs.joc.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Sulfonylhydrazones have been proven to be versatile synthetic intermediates in a panel of transformations. However, radical sulfonylation with sulfonylhydrazone as sulfonyl radical source is relatively rare. Here, we found that sulfonylhydrazone can serve as a new sulfonyl radical precursor to couple various partners such as arylacetic acids, ene-yne-ketones, and para-quinone methides under copper catalysis and microwave irradiation. The reactions of sulfonyl radicals have been successively developed to enable the divergent synthesis of C(sp3)-sulfonyl bonds. In addition, when alkynes and alkenes are used as radical receptors, this method can also promote the formation of C(sp2)-sulfonyl bonds. This finding suggests that sulfonylhydrazone could be regarded as a potentially useful sulfonyl radical in sulfone synthesis.
Collapse
Affiliation(s)
- Shan Yu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jia Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xue Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Meng-Lan Lv
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Li B, Peng JH, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Manganese-Promoted Cyclization Reaction of Enynones with Tetrasulfides: Synthesis of Multisubstituted Furanmethyl Disulfides. J Org Chem 2024; 89:13386-13400. [PMID: 39258469 DOI: 10.1021/acs.joc.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A tandem cyclization reaction of enynones with tetrasulfides has been developed under manganese-promoted conditions, leading to the high-yield formation of various furanmethyl disulfides. This reaction is characterized by readily available starting materials, mild reaction conditions, and a broad substrate scope, making it attractive and practical. It provides a new strategy for the synthesis of disulfide-containing functionalized furans.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Jing-Han Peng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu road, Huqiu district, Suzhou 215009, PR China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
4
|
Zhou X, Jiang Y, Li J, Wang J, Chen J, Yu Y, Cao H. Synthesis of (Furyl)Methyl Disulfides via Tandem Reaction of Conjugated Ene-Yne-Ketones with Acetyl-Masked Disulfide Nucleophiles. J Org Chem 2024; 89:6684-6693. [PMID: 38676651 DOI: 10.1021/acs.joc.3c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
In this study, we outline a general method for the construction of various (furyl)methyl disulfides from acetyl-masked disulfide nucleophiles and ene-yne-ketones. This protocol is feathered by metal-free, simple experimental conditions, high efficiency, and scalable potential, which make it attractive and practical.
Collapse
Affiliation(s)
- Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiaxin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, PR China
| |
Collapse
|
5
|
Dattatri, Singam MKR, Nanubolu JB, Reddy MS. Cu-Catalyzed tandem cyclization and coupling of enynones with enaminones for multisubstituted furans & furano-pyrroles. Org Biomol Chem 2022; 20:6363-6367. [PMID: 35861157 DOI: 10.1039/d2ob00839d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy that efficiently constructs complex molecular diversity in a few steps will always be embraced by organic chemists. Here, we report a cascade reaction of enynones with enaminones via carbene insertion and aryl migration to engineer distinctive multisubstituted furans with an all-carbon quaternary center, and could extend the protocol in the same pot towards furano-pyrrole bis-heterocycles. Heterogeneity of this protocol was proved with the upshot of divergent chemical space under a relatively mild reaction environment.
Collapse
Affiliation(s)
- Dattatri
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
6
|
Ma R, Chen Y, Fang S, Jiang H, Yang S, Wu W. Palladium-catalyzed acetalization/cyclization of enynones with alcohols: rapid access to functionalized dihaloalkenyl dihydrofurans. Chem Commun (Camb) 2022; 58:13907-13910. [DOI: 10.1039/d2cc03949d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel Pd-catalyzed acetalization/cyclization of enynones and alcohols for the construction of dihaloalkenyl dihydrofuran derivatives is described.
Collapse
Affiliation(s)
- Ruize Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Songjia Fang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shaorong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Hrizi A, Thiery E, Romdhani‐Younes M, Jacquemin J, Thibonnet J. Efficient Synthesis of Polysubstituted Furans through a Base‐Promoted Oxacyclization of (
Z
)‐2‐En‐4‐yn‐1‐ols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Asma Hrizi
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
- University of Carthage Department of Chemistry, Faculté de Bizerte 7021 Zarzouna, Bizerte Tunisie
- Université de Tunis El Manar Faculté des Sciences de Tunis Département de chimie Laboratoire de Chimie (Bio)Organique Structurale et de Polymères (LR99ES14) Campus Universitaire 2092 El Manar Tunisia
| | - Emilie Thiery
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
| | - Moufida Romdhani‐Younes
- University of Carthage Department of Chemistry, Faculté de Bizerte 7021 Zarzouna, Bizerte Tunisie
- Université de Tunis El Manar Faculté des Sciences de Tunis Département de chimie Laboratoire de Chimie (Bio)Organique Structurale et de Polymères (LR99ES14) Campus Universitaire 2092 El Manar Tunisia
| | - Johan Jacquemin
- University of Tours Department of Chemistry Laboratoire PCM2E EA 6299 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
- Mohammed VI Polytechnic University Materials Science and Nano-Engineering Lot 660-Hay Moulay Rachid 43150 Ben Guerir Morocco
| | - Jérôme Thibonnet
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
| |
Collapse
|
8
|
Ge J, Ding Q, Long X, Liu X, Peng Y. Copper(II)-Catalyzed Domino Synthesis of 4-Benzenesulfonyl Isoxazoles from 2-Nitro-1,3-enynes, Amines, and Sodium Benzenesulfinate. J Org Chem 2020; 85:13886-13894. [PMID: 33084339 DOI: 10.1021/acs.joc.0c01964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and effective method for the synthesis of fully substituted 4-benzenesulfonyl isoxazoles through a copper(II)-catalyzed three-component reaction of 2-nitro-1,3-enynes, amines, and sodium benzenesulfinate is described. The reaction proceeds smoothly under mild conditions and provides the benzenesulfonyl isoxazoles with high chemoselectivity.
Collapse
Affiliation(s)
- Junying Ge
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.,Institute of Coordination Catalysis, Engineering Center of Jiangxi, University for Lithium Energy and Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, Jiangxi 336000, China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xujing Long
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xuan Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
9
|
Yu W, Yang S, Wang PL, Li P, Li H. BF 3·OEt 2-mediated cyclization of β,γ-unsaturated oximes and hydrazones with N-(arylthio/arylseleno)succinimides: an efficient approach to synthesize isoxazoles or dihydropyrazoles. Org Biomol Chem 2020; 18:7165-7173. [PMID: 32966513 DOI: 10.1039/d0ob01388a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly efficient BF3·OEt2-mediated cyclization of β,γ-unsaturated oximes and tosylhydrazones with N-(arylthio/arylseleno)succinimides has been established for the construction of N-heterocycles in a one-step manner. This metal-free cyclization provides direct access to isoxazoles and dihydropyrazoles in good to excellent yields at room temperature. The mechanistic experiments support the formation of a cationic species PhS+ which plays a critical role in this cyclization process.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Shichao Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China. and Information College, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| |
Collapse
|