1
|
Zhao X, Wang Y, Yin J, Cun S, Ou Y, Li Q, Zhao X, Zhang Y. Integrating click chemistry into protein expression for efficient preparation of immobilized protein bio-surface with enhanced stability and reproducibility in affinity chromatography. Anal Chim Acta 2025; 1360:344142. [PMID: 40409903 DOI: 10.1016/j.aca.2025.344142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/20/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Protein immobilization method play a pivotal role in developing affinity chromatographic assays for both basic and applied research, and site-specific, covalent attachment serves as the most desirable strategy. Traditional strategy often gives rise to inconsistent results due to the use of heterobifunctional cross-linker or a similar two-step protocol. Introducing unnatural amino acids into the immobilization is possible to address the issue, however, it needs purification of the protein whereas suffers from loss of the protein activity. Herein, this work developed a method by integrating a thiol-ene addition click reaction during the protein expression for preparation of immobilized protein. RESULTS The methodology involved the genetically incorporated O-allyl-l-tyrosine (O-ALTyr) into serotonin transporter (SERT) and norepinephrine transporter (NET), the fusion proteins were immobilized onto silica gel through " thiol-ene " click reaction. The activities of the immobilized proteins were verified by surface plasmon resonance (SPR) measurement with high success rates of 91.4 % for immobilized SERT and 92.8 % for immobilized NET. The stability and repeatability of immobilized proteins were quantified by determination of protein-drug binding parameters by affinity chromatography under diverse conditions including extreme pHs (pH = 6.0-8.0) and high concentrations of denature reagents (5 %-20 % for DMSO and 5 %-40 % for methanol). Finally, screening analysis found that crocin I and n-butylphthalide were dual-target compounds binding to SERT and NET in Gardenia jasminoides Ellis- Rhizoma Ligustici Chuanxiong Hort (GR) extract. The accuracy of the chromatographic screening method was validated by determined the regulation of the two compounds on release of neurotransmitters including 5-HT, NE, and DA, as well as the expression of the SERT and NET. SIGNIFICANCE This efficient, purification-free, site-specific, and one-step immobilization method proved to yield immobilized protein with highly enhanced stability and reproducibility which is possible to be used in challenging systems, especially affinity chromatographic analysis using mobile phase containing organic solvents. It benefits analysis of interaction between protein and drugs with low water-solubility, thereby having potential for strengthening the role of immobilized protein-based methods in many fields like drug discovery and fabricating other protein surface to pursue improved assay performance.
Collapse
Affiliation(s)
- Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yunshan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Jiatai Yin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Sidi Cun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Yuanyuan Ou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China.
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, PR China.
| |
Collapse
|
2
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Garnes-Portolés F, Merino E, Leyva-Pérez A. Mizoroki-Heck Macrocyclization Reactions at 1 M Concentration Catalyzed by Sub-nanometric Palladium Clusters. CHEMSUSCHEM 2023; 16:e202300200. [PMID: 37115962 DOI: 10.1002/cssc.202300200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/19/2023]
Abstract
The synthesis of cyclized organic compounds with more than ten atoms (macrocycles) is traditionally based on reversible reactions under highly diluted conditions, typically <0.05 M, in order to circumvent the formation of intermolecular products. These reaction conditions severely hamper industrial productivity and the use of solid catalysts. Herein, it is shown that the intramolecular Mizoroki-Heck reaction of ω-iodide cinnamates proceeds at 1 M concentration when catalyzed by few-atom Pd clusters, either in solution or supported on a solid, to give different macrocycles in good yields. This paradigmatic increase in reaction concentration not only opens the door for macrocycle production with high throughputs but also enables the use of solid catalysts for a macrocyclization reaction in flow.
Collapse
Affiliation(s)
- Francisco Garnes-Portolés
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Estíbaliz Merino
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Facultad de Farmacia, Alcalá de Henares, 28805, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, Km. 9.100, 28034, Madrid, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev 2022; 51:4121-4145. [PMID: 35510539 PMCID: PMC9126251 DOI: 10.1039/d0cs01148g] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases. We highlight chemical and biochemical strategies taken to optimise peptide and protein modification using peptide ligases.![]()
Collapse
Affiliation(s)
- Holly E Morgan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
5
|
Zhang D, Wang Z, Hu S, Chan NY, Liew HT, Lescar J, Tam JP, Liu CF. Asparaginyl Endopeptidase-Mediated Protein C-Terminal Hydrazinolysis for the Synthesis of Bioconjugates. Bioconjug Chem 2022; 33:238-247. [PMID: 34985285 DOI: 10.1021/acs.bioconjchem.1c00551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asparaginyl endopeptidases (AEPs) are cysteinyl enzymes naturally catalyzing the hydrolysis and transpeptidation reactions at Asx-Xaa bonds. These reactions go by a common acyl-enzyme thioester intermediate, which is either attacked by water (for a protease-AEP) or by a peptidic amine nucleophile (for a ligase-AEP) to form the respective hydrolysis or aminolysis product. Herein, we show that hydrazine and hydroxylamine, two α-effect nucleophiles, are capable of resolving the thioester intermediate to yield peptide and protein products containing a C-terminal hydrazide and hydroxamic acid functionality, respectively. The hydrazinolysis reaction exhibits very high efficiency and can be completed in minutes at a low enzyme-to-substrate ratio. We further show the utility of the so-formed asparaginyl hydrazide in native chemical ligation and hydrazone conjugation. Using an EGFR-targeting affibody as a model protein, we have showcased our methodology in the preparation of a number of protein ligation or conjugation products, which are decorated with various functional moieties. The ZEGFR affibody-doxorubicin conjugate shows high selective binding and cytotoxicity toward the EGFR-positive A431 cells. Our results demonstrate the advantages of AEP-mediated protein hydrazinolysis as a simple and straightforward strategy for the precision manufacturing of protein bioconjugates.
Collapse
Affiliation(s)
- Dingpeng Zhang
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Zhen Wang
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Side Hu
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Ning-Yu Chan
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Heng Tai Liew
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Julien Lescar
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - James P Tam
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Chuan-Fa Liu
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
6
|
Zhang D, Wang Z, Hu S, Lescar J, Tam JP, Liu CF. Vypal2: A Versatile Peptide Ligase for Precision Tailoring of Proteins. Int J Mol Sci 2021; 23:ijms23010458. [PMID: 35008882 PMCID: PMC8745061 DOI: 10.3390/ijms23010458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The last two decades have seen an increasing demand for new protein-modification methods from the biotech industry and biomedical research communities. Owing to their mild aqueous reaction conditions, enzymatic methods based on the use of peptide ligases are particularly desirable. In this regard, the recently discovered peptidyl Asx-specific ligases (PALs) have emerged as powerful biotechnological tools in recent years. However, as a new class of peptide ligases, their scope and application remain underexplored. Herein, we report the use of a new PAL, VyPAL2, for a diverse range of protein modifications. We successfully showed that VyPAL2 was an efficient biocatalyst for protein labelling, inter-protein ligation, and protein cyclization. The labelled or cyclized protein ligands remained functionally active in binding to their target receptors. We also demonstrated on-cell labelling of protein ligands pre-bound to cellular receptors and cell-surface engineering via modifying a covalently anchored peptide substrate pre-installed on cell-surface glycans. Together, these examples firmly establish Asx-specific ligases, such as VyPAL2, as the biocatalysts of the future for site-specific protein modification, with a myriad of applications in basic research and drug discovery.
Collapse
|
7
|
Cao Y, Bi X. Butelase-1 as the Prototypical Peptide Asparaginyl Ligase and Its Applications: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021; 167:140-158. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
The past decades witnessed an increasing interest in peptides as clinical therapeutics. Rightfully considered as a potential alternative for small molecule therapy, these remarkable pharmaceuticals can be structurally fine-tuned to impact properties such as high target affinity, selectivity, low immunogenicity along with satisfactory tissue penetration. Although physicochemical and pharmacokinetic challenges have mitigated, to some extent, the clinical applications of therapeutic peptides, their potential impact on modern healthcare remains encouraging. According to recent reports, there are more than 400 peptides under clinical trials and 60 were already approved for clinical use. As the demand for efficient and safer therapy became high, especially for cancers, peptides have shown some exciting developments not only due to their potent antiproliferative action but also when used as adjuvant therapies, either to decrease side effects with tumor-targeted therapy or to enhance the activity of anticancer drugs via transbarrier delivery. The first part of the present review gives an insight into challenges related to peptide product development. Both molecular and formulation approaches intended to optimize peptide's pharmaceutical properties are covered, and some of their current issues are highlighted. The second part offers a comprehensive overview of the emerging applications of therapeutic peptides in chemotherapy from bioconjugates to nanovectorized therapeutics.
Collapse
Affiliation(s)
- Ange B Ilangala
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| |
Collapse
|
9
|
Tang TMS, Luk LYP. Asparaginyl endopeptidases: enzymology, applications and limitations. Org Biomol Chem 2021; 19:5048-5062. [PMID: 34037066 PMCID: PMC8209628 DOI: 10.1039/d1ob00608h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Asparaginyl endopeptidases (AEP) are cysteine proteases found in mammalian and plant cells. Several AEP isoforms from plant species were found to exhibit transpeptidase activity which is integral for the key head-to-tail cyclisation reaction during the biosynthesis of cyclotides. Since many plant AEPs exhibit excellent enzyme kinetics for peptide ligation via a relatively short substrate recognition sequence, they have become appealing tools for peptide and protein modification. In this review, research focused on the enzymology of AEPs and their applications in polypeptide cyclisation and labelling will be presented. Importantly, the limitations of using AEPs and opportunities for future research and innovation will also be discussed.
Collapse
Affiliation(s)
- T M Simon Tang
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
10
|
Zhao J, Fan R, Jia F, Huang Y, Huang Z, Hou Y, Hu SQ. Enzymatic Properties of Recombinant Ligase Butelase-1 and Its Application in Cyclizing Food-Derived Angiotensin I-Converting Enzyme Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5976-5985. [PMID: 34003638 DOI: 10.1021/acs.jafc.1c01755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Butelase-1 is an efficient ligase from Clitoria ternatea with wide applications in the food and biopharmaceutical fields. This research aimed to achieve high-efficiency expression of butelase-1 and explore its application in food-derived angiotensin I-converting enzyme (ACE) inhibitory peptides. The recombinant butelase-1 zymogen was prepared at a yield of 100 mg/L in Escherichia coli and successfully activated at pH 4.5, resulting in a 6973.8 U/L yield of activated butelase-1 with a specific activity of 348.69 U/mg and a catalytic efficiency of 9956 M-1 s-1. Activated butelase-1 exhibited considerable resistance to Tween-20, Triton X-100, and methanol. The "traceless" cyclization of ACE inhibitory peptides was realized using activated butelase-1, which resulted in higher stability and ACE inhibitory activity than those of the linear peptides. Our work proposed an efficient method for the preparation of butelase-1 and provided a promising model for its application in food fields.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Renshui Fan
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Jia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhiqiang Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Rehm FBH, Tyler TJ, Xie J, Yap K, Durek T, Craik DJ. Asparaginyl Ligases: New Enzymes for the Protein Engineer's Toolbox. Chembiochem 2021; 22:2079-2086. [PMID: 33687132 DOI: 10.1002/cbic.202100071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Indexed: 01/11/2023]
Abstract
Enzyme-catalysed site-specific protein modifications enable the precision manufacture of conjugates for the study of protein function and/or for therapeutic or diagnostic applications. Asparaginyl ligases are a class of highly efficient transpeptidases with the capacity to modify proteins bearing only a tripeptide recognition motif. Herein, we review the types of protein modification that are accessible using these enzymes, including N- and C-terminal protein labelling, head-to-tail cyclisation, and protein-protein conjugation. We describe the progress that has been made to engineer highly efficient ligases as well as efforts to chemically manipulate the enzyme reaction to favour product formation. These enzymes are powerful additions to the protein engineer's toolbox.
Collapse
Affiliation(s)
- Fabian B H Rehm
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan J Tyler
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Xie
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Wang Z, Zhang D, Hemu X, Hu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics 2021; 11:5863-5875. [PMID: 33897886 PMCID: PMC8058723 DOI: 10.7150/thno.53615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Protein theranostics integrate both diagnostic and treatment functions on a single disease-targeting protein. However, the preparation of these multimodal agents remains a major challenge. Ideally, conventional recombinant proteins should be used as starting materials for modification with the desired detection and therapeutic functionalities, but simple chemical strategies that allow the introduction of two different modifications into a protein in a site-specific manner are not currently available. We recently discovered two highly efficient peptide ligases, namely butelase-1 and VyPAL2. Although both ligate at asparaginyl peptide bonds, these two enzymes are bio-orthogonal with distinguishable substrate specificities, which can be exploited to introduce distinct modifications onto a protein. Methods: We quantified substrate specificity differences between butelase-1 and VyPAL2, which provide orthogonality for a tandem ligation method for protein dual modifications. Recombinant proteins or synthetic peptides engineered with the preferred recognition motifs of butelase-1 and VyPAL2 at their respective C- and N-terminal ends could be modified consecutively by the action of the two ligases. Results: Using this method, we modified an EGFR-targeting affibody with a fluorescein tag and a mitochondrion-lytic peptide at its respective N- and C-terminal ends. The dual-labeled protein was found to be a selective bioimaging and cytotoxic agent for EGFR-positive A431 cancer cells. In addition, the method was used to prepare a cyclic form of the affibody conjugated with doxorubicin. Both modified affibodies showed increased cytotoxicity to A431 cells by 10- and 100-fold compared to unconjugated doxorubicin and the free peptide, respectively. Conclusion: Bio-orthogonal tandem ligation using two asparaginyl peptide ligases with differential substrate specificities is a straightforward approach for the preparation of multifunctional protein biologics as potential theranostics.
Collapse
|
13
|
Hemu X, Zhang X, Nguyen GKT, To J, Serra A, Loo S, Sze SK, Liu CF, Tam JP. Characterization and application of natural and recombinant butelase-1 to improve industrial enzymes by end-to-end circularization. RSC Adv 2021; 11:23105-23112. [PMID: 35480425 PMCID: PMC9034278 DOI: 10.1039/d1ra03763c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023] Open
Abstract
Butelase-1, an asparaginyl endopeptidase or legumain, is the prototypical and fastest known Asn/Asp-specific peptide ligase that could be used for improving other enzymes by catalyzing simple and efficient end-to-end circularization.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - Xiaohong Zhang
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - Giang K. T. Nguyen
- WIL@NUS Corporate Lab
- MD6 Centre for Translational Medicine
- Wilmar International Limited
- National University of Singapore
- Singapore
| | - Janet To
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - Aida Serra
- IMDEA Food Research Institute
- +Pec Proteomics
- Campus of International Excellence UAM+CSIC
- Old Cantoblanco Hospital
- Madrid 28049
| | - Shining Loo
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - Siu Kwan Sze
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| | - James P. Tam
- School of Biological Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
14
|
Jackson MA, Nguyen LT, Gilding EK, Durek T, Craik DJ. Make it or break it: Plant AEPs on stage in biotechnology. Biotechnol Adv 2020; 45:107651. [DOI: 10.1016/j.biotechadv.2020.107651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
|
15
|
de Veer SJ, White AM, Craik DJ. Sunflower Trypsin Inhibitor-1 (SFTI-1): Sowing Seeds in the Fields of Chemistry and Biology. Angew Chem Int Ed Engl 2020; 60:8050-8071. [PMID: 32621554 DOI: 10.1002/anie.202006919] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Nature-derived cyclic peptides have proven to be a vast source of inspiration for advancing modern pharmaceutical design and synthetic chemistry. The focus of this Review is sunflower trypsin inhibitor-1 (SFTI-1), one of the smallest disulfide-bridged cyclic peptides found in nature. SFTI-1 has an unusual biosynthetic pathway that begins with a dual-purpose albumin precursor and ends with the production of a high-affinity serine protease inhibitor that rivals other inhibitors much larger in size. Investigations on the molecular basis for SFTI-1's rigid structure and adaptable function have planted seeds for thought that have now blossomed in several different fields. Here we survey these applications to highlight the growing potential of SFTI-1 as a versatile template for engineering inhibitors, a prototypic peptide for studying inhibitory mechanisms, a stable scaffold for grafting bioactive peptides, and a model peptide for evaluating peptidomimetic motifs and platform technologies.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
16
|
Veer SJ, White AM, Craik DJ. Der Sonnenblumen‐Trypsin‐Inhibitor 1 (SFTI‐1) in der Chemie und Biologie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Simon J. Veer
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - Andrew M. White
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| | - David J. Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane QLD 4072 Australien
| |
Collapse
|