1
|
Martínková L, Kotik M, Kulik N, Křístková B, Šťastná K, Winkler M. Aldoxime dehydratases: production, immobilization, and use in multistep processes. Appl Microbiol Biotechnol 2024; 108:518. [PMID: 39545989 PMCID: PMC11568032 DOI: 10.1007/s00253-024-13272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 11/17/2024]
Abstract
The synthesis of nitriles is of utmost importance for preparative organic chemistry. The classical routes are often associated with disadvantages such as toxicity of the reagents and drastic conditions. The uses of enzymes like aldoxime dehydratases (Oxds) and hydroxynitrile lyases constitute attractive benign alternatives. In this review, we summarize the recent trends regarding Oxds. Thousands of oxd genes were sequenced but less than thirty Oxds were investigated on protein level. We give an overview of these Oxds, their sequence analysis, conditions required for their overexpression, and their purification and assays. We then focus on the use of Oxds especially in multistep reactions combining the chemical or chemoenzymatic synthesis of aldoximes from different starting materials with the enzymatic dehydration of aldoximes to nitriles, possibly followed by the hydration of nitriles to amides. Progress in Oxd immobilization is also highlighted. Based on data published mainly in the last 5 years, we evaluate the industrial prospects of these enzyme processes in comparison with some other innovations in nitrile synthesis. KEY POINTS: • Aldoxime dehydratases (Oxds) are promising for cyanide-free routes to nitriles • A comprehensive overview of wet-lab explored Oxds is provided • Recent trends include combining Oxds with other enzymes or chemical catalysts.
Collapse
Affiliation(s)
- Ludmila Martínková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic.
| | - Michael Kotik
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
| | - Natalia Kulik
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 81, Třeboň, Czech Republic
| | - Barbora Křístková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Katarína Šťastná
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 44, Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology GmbH, Krenngasse 37, 8010, Graz, Austria.
| |
Collapse
|
2
|
Formen JSSK, Wolf C. Optical Enantiodifferentiation of Chiral Nitriles. Org Lett 2024; 26:7644-7649. [PMID: 39229874 PMCID: PMC11406584 DOI: 10.1021/acs.orglett.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chiroptical sensing of nitriles is achieved with excellent functional group tolerance by hydrozirconation and subsequent transmetalation of the corresponding iminate to a chromophoric palladium complex. A one-pot workflow that uses the Schwartz reagent and [(η3-1-tert-butylindenyl)(μ-Cl)Pd]2 as sensor generates a palladium complex displaying red-shifted CD inductions and characteristic UV changes. These chiroptical responses are accurately correlated to the enantiomeric ratio and total concentration of the original nitrile.
Collapse
Affiliation(s)
- Jeffrey S S K Formen
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| |
Collapse
|
3
|
Chaikaew S, Watanabe Y, Zheng D, Motojima F, Yamaguchi T, Asano Y. Structure-Based Site-Directed Mutagenesis of Hydroxynitrile Lyase from Cyanogenic Millipede, Oxidus gracilis for Hydrocyanation and Henry Reactions. Chembiochem 2024; 25:e202400118. [PMID: 38526556 DOI: 10.1002/cbic.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Å resolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.
Collapse
Affiliation(s)
- Siriporn Chaikaew
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Yukio Watanabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Daijun Zheng
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Fumihiro Motojima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
4
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Shan Y, Zhang X, Liu G, Li J, Liu Y, Wang J, Chen D. Cyanation with isocyanides: recent advances and perspectives. Chem Commun (Camb) 2024; 60:1546-1562. [PMID: 38240334 DOI: 10.1039/d3cc05880h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.
Collapse
Affiliation(s)
- Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xiuhua Zhang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Gongle Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yongwei Liu
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jia Wang
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
6
|
Engineered aldoxime dehydratase to enable the chemoenzymatic conversion of benzyl amines to aromatic nitriles. Bioorg Chem 2023; 134:106468. [PMID: 36933338 DOI: 10.1016/j.bioorg.2023.106468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
A chemoenzymatic strategy has been implemented to synthesize nitriles from benzyl amines under mild conditions. Aldoxime dehydratase (Oxd) plays a decisive role to convert aldoximes into corresponding nitriles. However, natural Oxds commonly exhibit extremely low catalytic capacity toward benzaldehyde oximes. Here, we engineered the OxdF1 from Pseudomonas putida F1 to enhance its catalytic efficiency toward benzaldehyde oximes by a semi-rational design strategy. The protein structure-based CAVER analysis indicates that M29, A147, F306, and L318 are located adjacent to the substrate tunnel entrance of OxdF1, which were responsible for the transportation of substrate into the active site. After two rounds of mutagenesis, the maximum activities of the mutants L318F and L318F/F306Y were 2.6 and 2.8 U/mg respectively, which were significantly higher than the wild OxdF1 of 0.7 U/mg. Meanwhile, the lipase type B from Candida antarctica was functionally expressed in Escherichia coli cells to selectively oxidize benzyl amines to aldoximes using urea-hydrogen peroxide adduct (UHP) as an oxidant in ethyl acetate. To merge the oxidation and dehydration reactions, a reductive extraction solution was added to remove the residue UHP, which is critical to eliminate its inhibition on the Oxd activity. Consequently, nine benzyl amines were efficiently converted into corresponding nitriles by the chemoenzymatic sequence.
Collapse
|
7
|
Cui K, Li YL, Li G, Xia JB. Regio- and Stereoselective Reductive Coupling of Alkynes and Crotononitrile. J Am Chem Soc 2022; 144:23001-23009. [DOI: 10.1021/jacs.2c10021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kun Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 21181, China
| | - Yan-Lin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gongqiang Li
- Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 21181, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Schulz A, Surkau J. Main group cyanides: from hydrogen cyanide to cyanido-complexes. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Homoleptic cyanide compounds exist of almost all main group elements. While the alkali metals and alkaline earth metals form cyanide salts, the cyanides of the lighter main group elements occur mainly as covalent compounds. This review gives an overview of the status quo of main group element cyanides and cyanido complexes. Information about syntheses are included as well as applications, special substance properties, bond lengths, spectroscopic characteristics and computations. Cyanide chemistry is presented mainly from the field of inorganic chemistry, but aspects of chemical biology and astrophysics are also discussed in relation to cyano compounds.
Collapse
Affiliation(s)
- Axel Schulz
- Chemie , Universität Rostock , Albert-Einstein-Straße 3a, 18059 Rostock , Mecklenburg-Vorpommern , Germany
| | - Jonas Surkau
- Chemie , Universität Rostock , Albert-Einstein-Straße 3a, 18059 Rostock , Mecklenburg-Vorpommern , Germany
| |
Collapse
|
9
|
Wohlgemuth R. Selective Biocatalytic Defunctionalization of Raw Materials. CHEMSUSCHEM 2022; 15:e202200402. [PMID: 35388636 DOI: 10.1002/cssc.202200402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biobased raw materials, such as carbohydrates, amino acids, nucleotides, or lipids contain valuable functional groups with oxygen and nitrogen atoms. An abundance of many functional groups of the same type, such as primary or secondary hydroxy groups in carbohydrates, however, limits the synthetic usefulness if similar reactivities cannot be differentiated. Therefore, selective defunctionalization of highly functionalized biobased starting materials to differentially functionalized compounds can provide a sustainable access to chiral synthons, even in case of products with fewer functional groups. Selective defunctionalization reactions, without affecting other functional groups of the same type, are of fundamental interest for biocatalytic reactions. Controlled biocatalytic defunctionalizations of biobased raw materials are attractive for obtaining valuable platform chemicals and building blocks. The biocatalytic removal of functional groups, an important feature of natural metabolic pathways, can also be utilized in a systemic strategy for sustainable metabolite synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Łódź, 90-537, Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8002, Zurich, Switzerland
| |
Collapse
|
10
|
Alcántara AR, Domínguez de María P, Littlechild JA, Schürmann M, Sheldon RA, Wohlgemuth R. Biocatalysis as Key to Sustainable Industrial Chemistry. CHEMSUSCHEM 2022; 15:e202102709. [PMID: 35238475 DOI: 10.1002/cssc.202102709] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The role and power of biocatalysis in sustainable chemistry has been continuously brought forward step by step to its present outstanding position. The problem-solving capabilities of biocatalysis have been realized by numerous substantial achievements in biology, chemistry and engineering. Advances and breakthroughs in the life sciences and interdisciplinary cooperation with chemistry have clearly accelerated the implementation of biocatalytic synthesis in modern chemistry. Resource-efficient biocatalytic manufacturing processes have already provided numerous benefits to sustainable chemistry as well as customer-centric value creation in the pharmaceutical, food, flavor, fragrance, vitamin, agrochemical, polymer, specialty, and fine chemical industries. Biocatalysis can make significant contributions not only to manufacturing processes, but also to the design of completely new value-creation chains. Biocatalysis can now be considered as a key enabling technology to implement sustainable chemistry.
Collapse
Affiliation(s)
- Andrés R Alcántara
- Department of Chemistry in Pharmaceutical Sciences (QUICIFARM), Complutense University of Madrid (UCM), 28040-, Madrid, Spain
| | - Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, 35011, Las Palmas de Gran Canaria, Canary Is., Spain
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | | | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-537, Lodz, Poland
- Swiss Coordination Committee for Biotechnology, 8021, Zurich, Switzerland
| |
Collapse
|
11
|
Matsui D, Muraki N, Chen K, Mori T, Ingram AA, Oike K, Gröger H, Aono S, Asano Y. Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: Importance of surface residues in optimization for crystallization. J Inorg Biochem 2022; 230:111770. [DOI: 10.1016/j.jinorgbio.2022.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
|
12
|
Horvat M, Weilch V, Rädisch R, Hecko S, Schiefer A, Rudroff F, Wilding B, Klempier N, Pátek M, Martínková L, Winkler M. Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime. Catal Sci Technol 2022; 12:62-66. [PMID: 35126993 PMCID: PMC8725990 DOI: 10.1039/d1cy01694f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022]
Abstract
We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation. The final step to the nitrile is catalyzed by aldoxime dehydratase (Oxd). Full conversions of phenylacetic acid and hexanoic acid were achieved in a two-phase mode. We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation and enzymatic dehydration by aldoxime dehydratase (Oxd).![]()
Collapse
Affiliation(s)
- Melissa Horvat
- Institute of Molecular Biotechnology, Graz University of Technology Petersgasse 14 A-8010 Graz Austria
| | - Victoria Weilch
- Institute of Molecular Biotechnology, Graz University of Technology Petersgasse 14 A-8010 Graz Austria
| | - Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ-142 20 Prague Czech Republic .,Department of Genetics and Microbiology, Faculty of Science, Charles University Viničná 5 CZ-12844 Prague 2 Czech Republic
| | - Sebastian Hecko
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/OC-163 A-1060 Vienna Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/OC-163 A-1060 Vienna Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/OC-163 A-1060 Vienna Austria
| | - Birgit Wilding
- Acib GmbH Krenngasse 37 A-8010 Graz Austria.,Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
| | - Norbert Klempier
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ-142 20 Prague Czech Republic
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ-142 20 Prague Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology Petersgasse 14 A-8010 Graz Austria .,Acib GmbH Krenngasse 37 A-8010 Graz Austria
| |
Collapse
|
13
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
14
|
Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angew Chem Int Ed Engl 2021; 60:19162-19168. [PMID: 33886145 PMCID: PMC8456930 DOI: 10.1002/anie.202017234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/08/2023]
Abstract
In this contribution, the unique and unprecedented stereochemical phenomenon of an aldoxime dehydratase‐catalyzed enantioselective dehydration of racemic E‐ and Z‐aldoximes with selective formation of both enantiomeric forms of a chiral nitrile is rationalized by means of molecular modelling, comprising in silico mutations and docking studies. This theoretical investigation gave detailed insight into why with the same enzyme the use of racemic E‐ and Z‐aldoximes leads to opposite forms of the chiral nitrile. The calculated mutants with a larger or smaller cavity in the active site were then prepared and used in biotransformations, showing the theoretically predicted decrease and increase of the enantioselectivities in these nitrile syntheses. This validated model also enabled the rational design of mutants with a smaller cavity, which gave superior enantioselectivities compared to the known wild‐type enzyme, with excellent E‐values of up to E>200 when the mutant OxdRE‐Leu145Phe was utilized.
Collapse
Affiliation(s)
- Hilmi Yavuzer
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
15
|
Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hilmi Yavuzer
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Yasuhisa Asano
- Biotechnology Research Center Toyama Prefectural University 5180 Kurokawa Imizu Toyama 939-0398 Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|
16
|
Domínguez de María P. Nitrile Synthesis with Aldoxime Dehydratases: A Biocatalytic Platform with Applications in Asymmetric Synthesis, Bulk Chemicals, and Biorefineries. Molecules 2021; 26:molecules26154466. [PMID: 34361620 PMCID: PMC8347273 DOI: 10.3390/molecules26154466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022] Open
Abstract
Nitriles comprise a broad group of chemicals that are currently being industrially produced and used in fine chemicals and pharmaceuticals, as well as in bulk applications, polymer chemistry, solvents, etc. Aldoxime dehydratases catalyze the cyanide-free synthesis of nitriles starting from aldoximes under mild conditions, holding potential to become sustainable alternatives for industrial processes. Different aldoxime dehydratases accept a broad range of aldoximes with impressive high substrate loadings of up to >1 Kg L−1 and can efficiently catalyze the reaction in aqueous media as well as in non-aqueous systems, such as organic solvents and solvent-free (neat substrates). This paper provides an overview of the recent developments in this field with emphasis on strategies that may be of relevance for industry and sustainability. When possible, potential links to biorefineries and to the use of biogenic raw materials are discussed.
Collapse
Affiliation(s)
- Pablo Domínguez de María
- Sustainable Momentum, SL, Av. Ansite 3, 4-6, 35011 Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
17
|
Hinzmann A, Betke T, Asano Y, Gröger H. Synthetic Processes toward Nitriles without the Use of Cyanide: A Biocatalytic Concept Based on Dehydration of Aldoximes in Water. Chemistry 2021; 27:5313-5321. [PMID: 33112445 PMCID: PMC8049032 DOI: 10.1002/chem.202001647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/22/2020] [Indexed: 11/29/2022]
Abstract
While belonging to the most fundamental functional groups, nitriles represent a class of compound that still raises challenges in terms of an efficient, cost‐effective, general and, at the same time, sustainable way for their synthesis. Complementing existing chemical routes, recently a cyanide‐free enzymatic process technology based on the use of an aldoxime dehydratase (Oxd) as a biocatalyst component has been developed and successfully applied for the synthesis of a range of nitrile products. In these biotransformations, the Oxd enzymes catalyze the dehydration of aldoximes as readily available substrates to the nitrile products. Herein, these developments with such enzymes are summarized, with a strong focus on synthetic applications. It is demonstrated that this biocatalytic technology has the potential to “cross the bridge” between the production of fine chemicals and pharmaceuticals, on one hand, and bulk and commodity chemicals, on the other.
Collapse
Affiliation(s)
- Alessa Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Betke
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
18
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 641] [Impact Index Per Article: 160.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
19
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|