1
|
Gasevic T, Bursch M, Ma Q, Grimme S, Werner HJ, Hansen A. Correction: The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations. Phys Chem Chem Phys 2025; 27:8572-8574. [PMID: 40183190 DOI: 10.1039/d5cp90062j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Correction for 'The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations' by Thomas Gasevic et al., Phys. Chem. Chem. Phys., 2024, 26, 13884-13908, https://doi.org/10.1039/D3CP06217A.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Koeln, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
2
|
Chun Y, Remmerswaal WA, Codée JDC, Woerpel KA. Neighboring-Group Participation by a Less Electron-Donating, Participating C-2-Ester Ensures Higher 1,2- trans Stereoselectivity in Nucleophilic Substitution Reactions of Furanosyl Acetals. J Org Chem 2025; 90:1585-1596. [PMID: 39813125 PMCID: PMC11791888 DOI: 10.1021/acs.joc.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
Nucleophilic substitution reactions of C-2-acyloxy furanosyl acetals can be highly diastereoselective. We here show that the presence of a less electron-donating p-nitrobenzoyloxy group at C-2 of a furanosyl acetal can be of use to control the 1,2-trans stereoselectivity of acetal substitution reactions with higher stereoselectivity than the analogue with the more electron-donating benzoyloxy group, just as what was observed in the pyranosyl system. Computational results support a reaction manifold involving both open oxocarbenium ions and cis-dioxolenium ions to provide the 1,2-cis and 1,2-trans products. Participation by the less electron-donating C-2-(p-nitrobenzoyloxy) group forms a less stabilized cis-dioxolenium ion that reacts with the incoming nucleophile more readily to provide 1,2-trans products. The relative stability of the furanosyl cis-dioxolenium ion versus the open oxocarbenium ion is much higher than the pyranosyl system as a result of the lower energy penalty for forming the cis-fused [5,5]-bicyclic dioxolenium ion.
Collapse
Affiliation(s)
- Yuge Chun
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Wouter A. Remmerswaal
- Leiden
Institute
of Chemistry, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute
of Chemistry, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - K. A. Woerpel
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
3
|
Kazakov A, Paulechka E. Accurate Enthalpies of Formation for Bioactive Compounds from High-Level Ab Initio Calculations with Detailed Conformational Treatment: A Case of Cannabinoids. J Chem Theory Comput 2025; 21:643-654. [PMID: 39787319 DOI: 10.1021/acs.jctc.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol-1 for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions. Although the present capabilities allow processing even a few hundred distinct conformer structures for a given compound, many systems of interest exhibit numbers well in excess of 1000. In this study, we investigate how to reduce the number of expensive LCCSD(T) calculations for large conformer ensembles while controlling the error of the approximation. The best strategy found was to correct the results of the lower-level, surrogate model (density functional theory, DFT) in a systematic manner. It was also found that the error in the conformational contribution introduced by a surrogate model is mainly driven by a systematic (bias) rather than a random component of the DFT energy deviation from the LCCSD(T) target. This distinction is usually overlooked in DFT benchmarking studies. As a result of this work, the enthalpies of formation for 20 cannabinoid and cannabinoid-related compounds were obtained. Comprehensive uncertainty analysis suggests that the expanded uncertainties of the obtained values are below 4 kJ·mol-1.
Collapse
Affiliation(s)
- Andrei Kazakov
- Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado 80305-3337, United States
| | - Eugene Paulechka
- Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado 80305-3337, United States
| |
Collapse
|
4
|
Snowdon C, Barca GMJ. An Efficient RI-MP2 Algorithm for Distributed Many-GPU Architectures. J Chem Theory Comput 2024; 20:9394-9406. [PMID: 39422609 DOI: 10.1021/acs.jctc.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Second-order Møller-Plesset perturbation theory (MP2) using the Resolution of the Identity approximation (RI-MP2) is a widely used method for computing molecular energies beyond the Hartree-Fock mean-field approximation. However, its high computational cost and lack of efficient algorithms for modern supercomputing architectures limit its applicability to large molecules. In this paper, we present the first distributed-memory many-GPU RI-MP2 algorithm explicitly designed to utilize hundreds of GPU accelerators for every step of the computation. Our novel algorithm achieves near-peak performance on GPU-based supercomputers through the development of a distributed memory algorithm for forming RI-MP2 intermediate tensors with zero internode communication, except for a single O ( N 2 ) asynchronous broadcast, and a distributed memory algorithm for the O ( N 5 ) energy reduction step, capable of sustaining near-peak performance on clusters with several hundred GPUs. Comparative analysis shows our implementation outperforms state-of-the-art quantum chemistry software by over 3.5 times in speed while achieving an 8-fold reduction in computational power consumption. Benchmarking on the Perlmutter supercomputer, our algorithm achieves 11.8 PFLOP/s (83% of peak performance) performing and the RI-MP2 energy calculation on a 314-water cluster with 7850 primary and 30,144 auxiliary basis functions in 4 min on 180 nodes and 720 A100 GPUs. This performance represents a substantial improvement over traditional CPU-based methods, demonstrating significant time-to-solution and power consumption benefits of leveraging modern GPU-accelerated computing environments for quantum chemistry calculations.
Collapse
Affiliation(s)
- Calum Snowdon
- School of Computing, Australian National University, Canberra 2600, Australia
| | - Giuseppe M J Barca
- School of Computing and Information Systems, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
5
|
Denjean AEF, Rio J, Ciofini I, Perrin MEL, Payard PA. Computed versus experimental energy barriers in solution: Influence of the type of the density functional approximation. J Comput Chem 2024; 45:2284-2293. [PMID: 38847601 DOI: 10.1002/jcc.27436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024]
Abstract
Mechanistic investigations at the density functional theory level of organic and organometallic reactions in solution are now broadly accessible and routinely implemented to complement experimental investigations. The selection of an appropriate functional among the plethora of developed ones is the first challenge on the way to reliable energy barrier calculations. To provide guidelines for the choice of an initial and reliable computational level, the performances of commonly used non-empirical (PBE, PBE0, PBE0-DH) and empirical density functionals (BLYP, B3LYP, B2PLYP) were evaluated relative to experimental activation enthalpies. Most reactivity databases to assess density functional performances are primarily based on high level calculations, here a set of experimental activation enthalpies of organic and organometallic reactions performed in solution were selected from the literature. As a general trend, the non-empirical functionals outperform the empirical ones. The most accurate energy barriers are obtained with hybrid PBE0 and double-hybrid PBE0-DH density functionals, both providing similar performance. Regardless of the functional under consideration, the addition of the GD3-BJ empirical dispersion correction does not enhance the accuracy of computed energy barriers.
Collapse
Affiliation(s)
- Aurore E F Denjean
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, Oslo, Norway
- Universite Claude Bernard Lyon I, CNRS, CPE-Lyon, INSA-Lyon, UMR 5246, ICBMS Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Villeurbanne, France
| | - Jordan Rio
- Universite Claude Bernard Lyon I, CNRS, CPE-Lyon, INSA-Lyon, UMR 5246, ICBMS Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Villeurbanne, France
| | - Ilaria Ciofini
- i-CLeHS (UMR 8060), CNRS Chimie Paris-Tech-PSL, Université Paris Sciences et Lettres, Paris, France
| | - Marie-Eve L Perrin
- Universite Claude Bernard Lyon I, CNRS, CPE-Lyon, INSA-Lyon, UMR 5246, ICBMS Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Villeurbanne, France
| | - Pierre-Adrien Payard
- Universite Claude Bernard Lyon I, CNRS, CPE-Lyon, INSA-Lyon, UMR 5246, ICBMS Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Villeurbanne, France
| |
Collapse
|
6
|
Plett C, Grimme S, Hansen A. Toward Reliable Conformational Energies of Amino Acids and Dipeptides─The DipCONFS Benchmark and DipCONL Datasets. J Chem Theory Comput 2024. [PMID: 39259679 DOI: 10.1021/acs.jctc.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Simulating peptides and proteins is becoming increasingly important, leading to a growing need for efficient computational methods. These are typically semiempirical quantum mechanical (SQM) methods, force fields (FFs), or machine-learned interatomic potentials (MLIPs), all of which require a large amount of accurate data for robust training and evaluation. To assess potential reference methods and complement the available data, we introduce two sets, DipCONFL and DipCONFS, which cover large parts of the conformational space of 17 amino acids and their 289 possible dipeptides in aqueous solution. The conformers were selected from the exhaustive PeptideCS dataset by Andris et al. [ J. Phys. Chem. B 2022, 126, 5949-5958]. The structures, originally generated with GFN2-xTB, were reoptimized using the accurate r2SCAN-3c density functional theory (DFT) composite method including the implicit CPCM water solvation model. The DipCONFS benchmark set contains 918 conformers and is one of the largest sets with highly accurate coupled cluster conformational energies so far. It is employed to evaluate various DFT and wave function theory (WFT) methods, especially regarding whether they are accurate enough to be used as reliable reference methods for larger datasets intended for training and testing more approximated SQM, FF, and MLIP methods. The results reveal that the originally provided BP86-D3(BJ)/DGauss-DZVP conformational energies are not sufficiently accurate. Among the DFT methods tested as an alternative reference level, the revDSD-PBEP86-D4 double hybrid performs best with a mean absolute error (MAD) of 0.2 kcal mol-1 compared with the PNO-LCCSD(T)-F12b reference. The very efficient r2SCAN-3c composite method also shows excellent results, with an MAD of 0.3 kcal mol-1, similar to the best-tested hybrid ωB97M-D4. With these findings, we compiled the large DipCONFL set, which includes over 29,000 realistic conformers in solution with reasonably accurate r2SCAN-3c reference conformational energies, gradients, and further properties potentially relevant for training MLIP methods. This set, also in comparison to DipCONFS, is used to assess the performance of various SQM, FF, and MLIP methods robustly and can complement training sets for those.
Collapse
Affiliation(s)
- Christoph Plett
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
7
|
Hancock AC, Giudici E, Goerigk L. How do spin-scaled double hybrids designed for excitation energies perform for noncovalent excited-state interactions? An investigation on aromatic excimer models. J Comput Chem 2024; 45:1667-1681. [PMID: 38553847 DOI: 10.1002/jcc.27351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/04/2024]
Abstract
Time-dependent double hybrids with spin-component or spin-opposite scaling to their second-order perturbative correlation correction have demonstrated competitive robustness in the computation of electronic excitation energies. Some of the most robust are those recently published by our group (M. Casanova-Páez, L. Goerigk, J. Chem. Theory Comput. 2021, 20, 5165). So far, the implementation of these functionals has not allowed correctly calculating their ground-state total energies. Herein, we define their correct spin-scaled ground-state energy expressions which enables us to test our methods on the noncovalent excited-state interaction energies of four aromatic excimers. A range of 22 double hybrids with and without spin scaling are compared to the reasonably accurate wavefunction reference from our previous work (A. C. Hancock, L. Goerigk, RSC Adv. 2023, 13, 35964). The impact of spin scaling is highly dependent on the underlying functional expression, however, the smallest overall errors belong to spin-scaled functionals with range separation: SCS- and SOS- ω PBEPP86, and SCS-RSX-QIDH. We additionally determine parameters for DFT-D3(BJ)/D4 ground-state dispersion corrections of these functionals, which reduce errors in most cases. We highlight the necessity of dispersion corrections for even the most robust TD-DFT methods but also point out that ground-state based corrections are insufficient to completely capture dispersion effects for excited-state interaction energies.
Collapse
Affiliation(s)
- Amy C Hancock
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Erica Giudici
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Becke AD. A remarkably simple dispersion damping scheme and the DH24 double hybrid density functional. J Chem Phys 2024; 160:204118. [PMID: 38818895 DOI: 10.1063/5.0207682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
In recent papers, Becke et al. [J. Chem. Phys. 158, 151103 (2023)] and then Becke [J. Chem. Phys. 159, 241101 (2023)] have developed a novel double hybrid density functional, "DH23," whose terms are based on good local physics. Its 12 coefficients are trained on the GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. The lowest GMTKN55 "WTMAD2" error to date for any hybrid or double hybrid density functional was obtained (1.73 kcal/mol for the revDH23 variant). Here, we simplify DH23 by introducing a dispersion damping scheme involving atomic numbers only and one global parameter. The resulting new functional, "DH24," performs as well as its predecessors.
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
9
|
Gasevic T, Bursch M, Ma Q, Grimme S, Werner HJ, Hansen A. The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations. Phys Chem Chem Phys 2024; 26:13884-13908. [PMID: 38661329 DOI: 10.1039/d3cp06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The elements of the p-block of the periodic table are of high interest in various chemical and technical applications like frustrated Lewis-pairs (FLP) or opto-electronics. However, high-quality benchmark data to assess approximate density functional theory (DFT) for their theoretical description are sparse. In this work, we present a benchmark set of 604 dimerization energies of 302 "inorganic benzenes" composed of all non-carbon p-block elements of main groups III to VI up to polonium. This so-called IHD302 test set comprises two classes of structures formed by covalent bonding and by weaker donor-acceptor (WDA) interactions, respectively. Generating reliable reference data with ab initio methods is challenging due to large electron correlation contributions, core-valence correlation effects, and especially the slow basis set convergence. To compute reference values for these dimerization reactions, after thorough testing, we applied a computational protocol using state-of-the-art explicitly correlated local coupled cluster theory termed PNO-LCCSD(T)-F12/cc-VTZ-PP-F12(corr.). It includes a basis set correction at the PNO-LMP2-F12/aug-cc-pwCVTZ level. Based on these reference data, we assess 26 DFT methods in combination with three different dispersion corrections and the def2-QZVPP basis set, five composite DFT approaches, and five semi-empirical quantum mechanical methods. For the covalent dimerizations, the r2SCAN-D4 meta-GGA, the r2SCAN0-D4 and ωB97M-V hybrids, and the revDSD-PBEP86-D4 double-hybrid functional are found to be the best-performing methods among the evaluated functionals of the respective class. However, since def2 basis sets for the 4th period are not associated to relativistic pseudo-potentials, we obtained significant errors in the covalent dimerization energies (up to 6 kcal mol-1) for molecules containing p-block elements of the 4th period. Significant improvements were achieved for systems containing 4th row elements by using ECP10MDF pseudopotentials along with re-contracted aug-cc-pVQZ-PP-KS basis sets introduced in this work with the contraction coefficients taken from atomic DFT (PBE0) calculations. Overall, the IHD302 set represents a challenge to contemporary quantum chemical methods. This is due to a large number of spatially close p-element bonds which are underrepresented in other benchmark sets, and the partial covalent bonding character for the WDA interactions. The IHD302 set may be helpful to develop more robust and transferable approximate quantum chemical methods in the future.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Koeln, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
10
|
Stocks R, Palethorpe E, Barca GMJ. High-Performance Multi-GPU Analytic RI-MP2 Energy Gradients. J Chem Theory Comput 2024; 20:2505-2519. [PMID: 38456899 DOI: 10.1021/acs.jctc.3c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
This article presents a novel algorithm for the calculation of analytic energy gradients from second-order Møller-Plesset perturbation theory within the Resolution-of-the-Identity approximation (RI-MP2), which is designed to achieve high performance on clusters with multiple graphical processing units (GPUs). The algorithm uses GPUs for all major steps of the calculation, including integral generation, formation of all required intermediate tensors, solution of the Z-vector equation and gradient accumulation. The implementation in the EXtreme Scale Electronic Structure System (EXESS) software package includes a tailored, highly efficient, multistream scheduling system to hide CPU-GPU data transfer latencies and allows nodes with 8 A100 GPUs to operate at over 80% of theoretical peak floating-point performance. Comparative performance analysis shows a significant reduction in computational time relative to traditional multicore CPU-based methods, with our approach achieving up to a 95-fold speedup over the single-node performance of established software such as Q-Chem and ORCA. Additionally, we demonstrate that pairing our implementation with the molecular fragmentation framework in EXESS can drastically lower the computational scaling of RI-MP2 gradient calculations from quintic to subquadratic, enabling further substantial savings in runtime while retaining high numerical accuracy in the resulting gradients.
Collapse
Affiliation(s)
- Ryan Stocks
- School of Computing, Australian National University, Canberra, ACT 2601, Australia
| | - Elise Palethorpe
- School of Computing, Australian National University, Canberra, ACT 2601, Australia
| | - Giuseppe M J Barca
- School of Computing, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Bursch M, Grimme S, Hansen A. Influence of Steric and Dispersion Interactions on the Thermochemistry of Crowded (Fluoro)alkyl Compounds. Acc Chem Res 2024; 57:153-163. [PMID: 38102118 DOI: 10.1021/acs.accounts.3c00634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
ConspectusAlkanes play a pivotal role in industrial, environmental, and biological processes. They are characterized by their carbon-carbon single-bond structure, remarkable stability, and conformational diversity. Fluorination of such compounds imparts unique physicochemical properties that often enhance pharmacokinetic profiles, metabolic stability, and receptor interactions while keeping beneficial properties. However, such per- and polyfluoroalkyl substances (PFAS) show a persistent presence in the environment and potential adverse health effects, which propelled them to the forefront of global environmental and health discussions. Alkyl compounds are also prototypical for stereoelectronic (SE) effects that are widely applied in chemistry. Substituents are typically described as electron-density-donating/withdrawing and/or responsible for sterically interacting with reagents or strategic groups in the molecule. That alkane branching can result in higher stability compared to less-branched isomers has been investigated in detail also by testing quantum chemical methods, in particular density functional theory (DFT). Alkane branching results in spatially compact structures with close intramolecular contacts so that at a specific size the detailed balance of attractive London dispersion and covalent versus repulsive Pauli exchange interactions shifts to new, chemically unfragile situations. This may lead to dissociation at room temperature and opens the central question: what is the smallest crowed alkane that cannot be made synthetically? In this Account, we try to shed light on the interplay among the various (free) energy components for crowded (fluoro)alkane dissociation. In this context, homolytic cleavage of the central C-C bond in a series of model alkanes of increasing size with tert-butyl (tBu), adamantyl (Ad), and [1.1.1]propellanyl (Prop) substituents is investigated. Reference energies are calculated at the PNO-LCCSD(T)-F12b level and used to benchmark the performance of contemporary DFT functionals. In line with previous conclusions, the application of dispersion corrections to density functionals is mandatory. For crowed structures, the accurate description of the midrange correlation effects, specifically repulsive van der Waals interactions, is crucial, and we observed that the density-dependent VV10 correction is superior to D4 in this context, although the asymptotic region is better described by the latter. The best available dispersion-inclusive functionals show systematic and reasonably small residual errors and can be safely applied to large systems (>100 atoms), for which coupled cluster methods with large basis sets are not computationally feasible anymore. For qualitatively correct predictions of synthetic accessibility under equilibrium conditions (free energy), the inclusion of thermostatistical (entropy) contributions is also essential. According to our results, tetra-tert-butylmethane (C17tBu) is the largest and most crowded system with a positive dissociation free energy and should be synthesizable. The difference between hydrogenated and perfluorinated systems originates from the increase in the steric repulsion of spatially close substituents, which is not compensated to the same extent by attractive orbital and dispersion interactions. A sometimes-assumed similar steric demand for fluorine and hydrogen atoms is not corroborated by our investigations on crowded systems. Perfluorination is found to substantially decrease thermal stability, rendering perfluorinated hexamethylethane (C8tBuF) the last potentially stable representative.
Collapse
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Beringstraße 4, D-53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Beringstraße 4, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Becke AD. Doubling down on density-functional theory. J Chem Phys 2023; 159:241101. [PMID: 38146827 DOI: 10.1063/5.0178236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
In a recent paper, Becke et al. [J. Chem. Phys. 158, 151103 (2023)] presented a novel double hybrid density functional, "DH23," whose terms are based on good physics. Its 12 coefficients were trained on the GMTKN55 (general main-group thermochemistry, kinetics, and noncovalent interactions) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. The lowest GMTKN55 "WTMAD2" error to date for any hybrid or double hybrid density functional was obtained (1.76 kcal/mol). Here, we make some revisions to DH23 and test its efficacy on reference data beyond GMTKN55, namely, organometallic reaction energies and barrier heights. The results confirm that DH23 is robust outside its training set. In the process, a slightly smaller GMTKN55 WTMAD2 of 1.73 kcal/mol is achieved.
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
13
|
Chun Y, Remmerswaal WA, Codée JDC, Woerpel KA. Neighboring-Group Participation by C-2 Acyloxy Groups: Influence of the Nucleophile and Acyl Group on the Stereochemical Outcome of Acetal Substitution Reactions. Chemistry 2023; 29:e202301894. [PMID: 37410662 PMCID: PMC10592418 DOI: 10.1002/chem.202301894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
A single acyloxy group at C-2 can control the outcome of nucleophilic substitution reactions of pyran-derived acetals, but the extent of the neighboring-group participation depends on a number of factors. We show here that neighboring-group participation does not necessarily control the stereochemical outcome of acetal substitution reactions with weak nucleophiles. The 1,2-trans selectivity increased with increasing reactivity of the incoming nucleophile. This trend suggests the intermediacy of both cis-fused dioxolenium ions and oxocarbenium ions in the stereochemistry-determining step. In addition, as the electron-donating ability of the neighboring group decreased, the preference for the 1,2-trans products increased. Computational studies show how the barriers for the ring-opening reaction on the dioxolenium ions and the transition states to provide the oxocarbenium ions change with the electron-donating capacity of the C-2-acyloxy group and the reactivity of the nucleophile.
Collapse
Affiliation(s)
- Yuge Chun
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Wouter A Remmerswaal
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - K A Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
14
|
Becke AD, Santra G, Martin JML. A double-hybrid density functional based on good local physics with outstanding performance on the GMTKN55 database. J Chem Phys 2023; 158:2882268. [PMID: 37094004 DOI: 10.1063/5.0141238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
In two recent papers [A. D. Becke, J. Chem. Phys. 156, 214101 (2022) and A. D. Becke, J. Chem. Phys. 157, 234102 (2022)], we compared two Kohn-Sham density functionals based on physical modeling and theory with the best density-functional power-series fits in the literature. The best error statistics reported to date for a hybrid functional on the general main-group thermochemistry, kinetics, and noncovalent interactions (GMTKN55) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)] were obtained. In the present work, additional second-order perturbation-theory terms are considered. The result is a 12-parameter double-hybrid density functional with the lowest GMTKN55 WTMAD2 "weighted total mean absolute deviation" error (1.76 kcal/mol) yet seen for any hybrid or double-hybrid density-functional approximation. We call it "DH23."
Collapse
Affiliation(s)
- Axel D Becke
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
15
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
16
|
Demkiw KM, Remmerswaal WA, Hansen T, van der Marel GA, Codée JDC, Woerpel KA. Halogen Atom Participation in Guiding the Stereochemical Outcomes of Acetal Substitution Reactions. Angew Chem Int Ed Engl 2022; 61:e202209401. [PMID: 35980341 PMCID: PMC9561118 DOI: 10.1002/anie.202209401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/11/2023]
Abstract
Acetal substitution reactions of α-halogenated five- and six-membered rings can be highly stereoselective. Erosion of stereoselectivity occurs as nucleophilicity increases, which is consistent with additions to a halogen-stabilized oxocarbenium ion, not a three-membered-ring halonium ion. Computational investigations confirmed that the open-form oxocarbenium ions are the reactive intermediates involved. Kinetic studies suggest that hyperconjugative effects and through-space electrostatic interactions can both contribute to the stabilization of halogen-substituted oxocarbenium ions.
Collapse
Affiliation(s)
- Krystyna M. Demkiw
- Department of ChemistryNew York University100 Washington Square EastNew YorkNY 10003USA
| | - Wouter A. Remmerswaal
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeidenThe Netherlands
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeidenThe Netherlands
| | | | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeidenThe Netherlands
| | - K. A. Woerpel
- Department of ChemistryNew York University100 Washington Square EastNew YorkNY 10003USA
| |
Collapse
|
17
|
Louis H, Charlie DE, Amodu IO, Benjamin I, Gber TE, Agwamba EC, Adeyinka AS. Probing the Reactions of Thiourea (CH 4N 2S) with Metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) Anchored on Fullerene Surfaces (C 59X). ACS OMEGA 2022; 7:35118-35135. [PMID: 36211036 PMCID: PMC9535727 DOI: 10.1021/acsomega.2c04044] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 05/21/2023]
Abstract
Upon various investigations conducted in search for a nanosensor material with the best sensing performance, the need to explore these materials cannot be overemphasized as materials associated with best sensing attributes are of vast interest to researchers. Hence, there is a need to investigate the adsorption performances of various metal-doped fullerene surfaces: C59Au, C59Hf, C59Hg, C59Ir, C59Os, C59Pt, C59Re, and C59W on thiourea [SC(NH2)2] molecule using first-principles density functional theory computation. Comparative adsorption study has been carried out on various adsorption models of four functionals, M06-2X, M062X-D3, PBE0-D3, and ωB97XD, and two double-hybrid (DH) functionals, DSDPBEP86 and PBE0DH, as reference at Gen/def2svp/LanL2DZ. The visual study of weak interactions such as quantum theory of atoms in molecule analysis and noncovalent interaction analysis has been invoked to ascertain these results, and hence we arrived at a conclusive scientific report. In all cases, the weak adsorption observed is best described as physisorption phenomena, and CH4N2S@C59Pt complex exhibits better sensing attributes than its studied counterparts in the interactions between thiourea molecule and transition metal-doped fullerene surfaces. Also, in the comparative adsorption study, DH density functionals show better performance in estimating the adsorption energies due to their reduced mean absolute deviation (MAD) and root-mean-square deviation (RMSD) values of (MAD = 1.0305, RMSD = 1.6277) and (MAD = 0.9965, RMSD = 1.6101) in DSDPBEP86 and PBE0DH, respectively.
Collapse
Affiliation(s)
- Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Destiny E. Charlie
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Ismail O. Amodu
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Mathematics, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Terkumbur E. Gber
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Ernest C. Agwamba
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
18
|
Santra G, Calinsky R, Martin JML. Benefits of Range-Separated Hybrid and Double-Hybrid Functionals for a Large and Diverse Data Set of Reaction Energies and Barrier Heights. J Phys Chem A 2022; 126:5492-5505. [PMID: 35930677 PMCID: PMC9393870 DOI: 10.1021/acs.jpca.2c03922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Indexed: 11/28/2022]
Abstract
To better understand the thermochemical kinetics and mechanism of a specific chemical reaction, an accurate estimation of barrier heights (forward and reverse) and reaction energies is vital. Because of the large size of reactants and transition state structures involved in real-life mechanistic studies (e.g., enzymatically catalyzed reactions), density functional theory remains the workhorse for such calculations. In this paper, we have assessed the performance of 91 density functionals for modeling the reaction energies and barrier heights on a large and chemically diverse data set (BH9) composed of 449 organic chemistry reactions. We have shown that range-separated hybrid functionals perform better than the global hybrids for BH9 barrier heights and reaction energies. Except for the PBE-based range-separated nonempirical double hybrids, range separation of the exchange term helps improve the performance for barrier heights and reaction energies. The 16-parameter Berkeley double hybrid, ωB97M(2), performs remarkably well for both properties. However, our minimally empirical range-separated double hybrid functionals offer marginally better accuracy than ωB97M(2) for BH9 barrier heights and reaction energies.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Rivka Calinsky
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Molecular Chemistry
and Materials Science, Weizmann Institute
of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
19
|
Demkiw KM, Remmerswaal WA, Hansen T, van der Marel GA, Codée JDC, Woerpel K. Halogen Atom Participation in Guiding the Stereochemical Outcomes of Acetal Substitution Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Krystyna M. Demkiw
- New York University Department of Chemistry Department of ChemistryNew York University100 Washington Square East 10003 New York UNITED STATES
| | - Wouter A. Remmerswaal
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Thomas Hansen
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Gijsbert A. van der Marel
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Jeroen D. C. Codée
- Leiden University: Universiteit Leiden Leiden Institute of Chemistry Einsteinweg 552333 CC Leiden NETHERLANDS
| | - Keith Woerpel
- NYU: New York University Chemistry 100 Washington Square East 10003 New York UNITED STATES
| |
Collapse
|
20
|
Grotjahn R, Kaupp M. A Look at Real‐World Transition‐Metal Thermochemistry and Kinetics with Local Hybrid Functionals. Isr J Chem 2022. [DOI: 10.1002/ijch.202200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robin Grotjahn
- Technische Universität Berlin Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7 Straße des 17. Juni 135 D-10623 Berlin Germany
| | - Martin Kaupp
- Technische Universität Berlin Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7 Straße des 17. Juni 135 D-10623 Berlin Germany
| |
Collapse
|
21
|
Brémond É, Li H, Pérez-Jiménez ÁJ, Sancho-García JC, Adamo C. Tackling an accurate description of molecular reactivity with double-hybrid density functionals. J Chem Phys 2022; 156:161101. [DOI: 10.1063/5.0087586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this Communication, we assess a panel of 18 double-hybrid density functionals for the modeling of the thermochemical and kinetic properties of an extended dataset of 449 organic chemistry reactions belonging to the BH9 database. We show that most of DHs provide a statistically robust performance to model barrier height and reaction energies in reaching the “chemical accuracy.” In particular, we show that nonempirical DHs, such as PBE0-DH and PBE-QIDH, or minimally parameterized alternatives, such as ωB2PLYP and B2K-PLYP, succeed to accurately model both properties in a balanced fashion. We demonstrate, however, that parameterized approaches, such as ωB97X-2 or DSD-like DHs, are more biased to only one of both properties.
Collapse
Affiliation(s)
- Éric Brémond
- ITODYS, CNRS, Université de Paris, F-75006 Paris, France
| | - Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005 Paris, France
| | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
22
|
Santra G, Martin JML. Do Double-Hybrid Functionals Benefit from Regularization in the PT2 Term? Observations from an Extensive Benchmark. J Phys Chem Lett 2022; 13:3499-3506. [PMID: 35417181 PMCID: PMC9036584 DOI: 10.1021/acs.jpclett.2c00718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We put to the test a recent suggestion [Shee, J., et al. J. Phys. Chem. Lett. 2021, 12 (50), 12084-12097] that MP2 regularization might improve the performance of double-hybrid density functionals. Using the very large and chemically diverse GMTKN55 benchmark, we find that κ-regularization is indeed beneficial at lower percentages of Hartree-Fock exchange, especially if spin-component scaling is not applied [such as in B2GP-PLYP or ωB97M(2)]. This benefit dwindles for DSD and DOD functionals and vanishes entirely in the ∼70% HF exchange region optimal for them.
Collapse
|
23
|
Prokopiou G, Hartstein M, Govind N, Kronik L. Optimal Tuning Perspective of Range-Separated Double Hybrid Functionals. J Chem Theory Comput 2022; 18:2331-2340. [PMID: 35369687 PMCID: PMC9009176 DOI: 10.1021/acs.jctc.2c00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/29/2022]
Abstract
We study the optimal tuning of the free parameters in range-separated double hybrid functionals, based on enforcing the exact conditions of piecewise linearity and spin constancy. We find that introducing the range separation in both the exchange and the correlation terms allows for the minimization of both fractional charge and fractional spin errors for singlet atoms. The optimal set of parameters is system specific, underlining the importance of the tuning procedure. We test the performance of the resulting optimally tuned functionals for the dissociation curves of diatomic molecules. We find that they recover the correct dissociation curve for the one-electron system, H2+, and improve the dissociation curves of many-electron molecules such as H2 and Li2, but they also yield a nonphysical maximum and only converge to the correct dissociation limit at very large distances.
Collapse
Affiliation(s)
- Georgia Prokopiou
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Michal Hartstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Leeor Kronik
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| |
Collapse
|
24
|
Brémond E, Pérez-Jiménez AJ, Adamo C, Sancho-García JC. Stability of the polyynic form of C 18, C 22, C 26, and C 30 nanorings: a challenge tackled by range-separated double-hybrid density functionals. Phys Chem Chem Phys 2022; 24:4515-4525. [PMID: 35119058 DOI: 10.1039/d1cp04996h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We calculate the relative energy between the cumulene and polyyne structures of a set of C4k+2 (k = 4-7) rings (C18, C22, C26, and C30 prompted by the recent synthesis of the cyclo[18]carbon (or simply C18) compounds. Reference results were obtained by a costly Quantum Monte-Carlo (QMC) approach, providing thus very accurate values allowing to systematically compare the performance of a variety of wavefunction methods [(i.e., MP2, SCS-MP2, SOS-MP2, DLPNO-CCSD, and DLPNO-CCSD(T)] as well as DFT approaches, applying for the latter a diversity of density functionals covering global and range-separated hybrid and double-hybrid models. The influence of the use of a range-separation scheme for density functionals, for both hybrid and double-hybrid expressions, is discussed according to its key role. Overall, range-separated double-hybrid functionals (e.g., RSX-QIDH) behave very accurately and provide competitive results compared with DLPNO-CCSD(T), at a more reasonable computational cost.
Collapse
Affiliation(s)
- E Brémond
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - A J Pérez-Jiménez
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain.
| | - C Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), UMR 8060, F-75005 Paris, France.,Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005, Paris, France
| | - J C Sancho-García
- Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
25
|
Alipour M, Izadkhast T. Do any types of double-hybrid models render the correct order of excited state energies in inverted singlet–triplet emitters? J Chem Phys 2022; 156:064302. [DOI: 10.1063/5.0077722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Tahereh Izadkhast
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
26
|
Mester D, Kállay M. Accurate Spectral Properties within Double-Hybrid Density Functional Theory: A Spin-Scaled Range-Separated Second-Order Algebraic-Diagrammatic Construction-Based Approach. J Chem Theory Comput 2022; 18:865-882. [PMID: 35023739 PMCID: PMC8830052 DOI: 10.1021/acs.jctc.1c01100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 01/08/2023]
Abstract
Our second-order algebraic-diagrammatic construction [ADC(2)]-based double-hybrid (DH) ansatz (J. Chem. Theory Comput. 2019, 15, 4440. DOI: 10.1021/acs.jctc.9b00391) is combined with range-separation techniques. In the present scheme, both the exchange and the correlation contributions are range-separated, while spin-scaling approaches are also applied. The new methods are thoroughly tested for the most popular benchmark sets including 250 singlet and 156 triplet excitations, as well as 80 oscillator strengths. It is demonstrated that the range separation for the correlation contributions is highly recommended for both the genuine and the ADC(2)-based DH approaches. Our results show that the latter scheme slightly but consistently outperforms the former one for single excitation dominated transitions. Furthermore, states with larger fractions of double excitations are assessed as well, and challenging charge-transfer excitations are also discussed, where the recently proposed spin-scaled long-range corrected DHs fail. The suggested iterative fourth-power scaling RS-PBE-P86/SOS-ADC(2) method, using only three adjustable parameters, provides the most robust and accurate excitation energies within the DH theory. In addition, the relative error of the oscillator strengths is reduced by 65% compared to the best genuine DH functionals.
Collapse
Affiliation(s)
- Dávid Mester
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and
Materials Science, Budapest University of
Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
27
|
Krstić M, Fink K, Sharapa DI. The Adsorption of Small Molecules on the Copper Paddle-Wheel: Influence of the Multi-Reference Ground State. Molecules 2022; 27:912. [PMID: 35164179 PMCID: PMC8840508 DOI: 10.3390/molecules27030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
We report a theoretical study of the adsorption of a set of small molecules (C2H2, CO, CO2, O2, H2O, CH3OH, C2H5OH) on the metal centers of the "copper paddle-wheel"-a key structural motif of many MOFs. A systematic comparison between DFT of different rungs, single-reference post-HF methods (MP2, SOS-MP2, MP3, DLPNO-CCSD(T)), and multi-reference approaches (CASSCF, DCD-CAS(2), NEVPT2) is performed in order to find a methodology that correctly describes the complicated electronic structure of paddle-wheel structure together with a reasonable description of non-covalent interactions. Apart from comparison with literature data (experimental values wherever possible), benchmark calculations with DLPNO-MR-CCSD were also performed. Despite tested methods show qualitative agreement in the majority of cases, we showed and discussed reasons for quantitative differences as well as more fundamental problems of specific cases.
Collapse
Affiliation(s)
- Marjan Krstić
- Institute for Theoretical Solid State Physics (TFP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany;
| | - Karin Fink
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Dmitry I. Sharapa
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
28
|
Semidalas E, Martin JM. The MOBH35 Metal–Organic Barrier Heights Reconsidered: Performance of Local-Orbital Coupled Cluster Approaches in Different Static Correlation Regimes. J Chem Theory Comput 2022; 18:883-898. [PMID: 35045709 PMCID: PMC8830049 DOI: 10.1021/acs.jctc.1c01126] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We have revisited
the MOBH35 (Metal–Organic Barrier Heights,
35 reactions) benchmark [Iron, Janes, J.
Phys. Chem. A, 2019, 123 ( (17), ), 3761−378130973722; ibid. 2019, 123, 6379–6380] for realistic organometallic catalytic reactions, using both canonical
CCSD(T) and localized orbital approximations to it. For low levels
of static correlation, all of DLPNO-CCSD(T), PNO-LCCSD(T), and LNO-CCSD(T)
perform well; for moderately strong levels of static correlation,
DLPNO-CCSD(T) and (T1) may break down catastrophically,
and PNO-LCCSD(T) is vulnerable as well. In contrast, LNO-CCSD(T) converges
smoothly to the canonical CCSD(T) answer with increasingly tight convergence
settings. The only two reactions for which our revised MOBH35 reference
values differ substantially from the original ones are reaction 9
and to a lesser extent 8, both involving iron. For the purpose of
evaluating density functional theory (DFT) methods for MOBH35, it
would be best to remove reaction 9 entirely as its severe level of
static correlation makes it just too demanding for a test. The magnitude
of the difference between DLPNO-CCSD(T) and DLPNO-CCSD(T1) is a reasonably good predictor for errors in DLPNO-CCSD(T1) compared to canonical CCSD(T); otherwise, monitoring all of T1, D1, max|tiA|, and 1/(εLUMO – εHOMO) should provide adequate warning
for potential problems. Our conclusions are not specific to the def2-SVP
basis set but are largely conserved for the larger def2-TZVPP, as
they are for the smaller def2-SV(P): the latter may be an economical
choice for calibrating against canonical CCSD(T). Finally, diagnostics
for static correlation are statistically clustered into groups corresponding
to (1) importance of single excitations in the wavefunction; (2a)
the small band gap, weakly separated from (2b) correlation entropy;
and (3) thermochemical importance of correlation energy, as well as
the slope of the DFT reaction energy with respect to the percentage
of HF exchange. Finally, a variable reduction analysis reveals that
much information on the multireference character is provided by T1, IND/Itot, and the exchange-based diagnostic A100[TPSS].
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Reḥovot 7610001, Israel
| | - Jan M.L. Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Reḥovot 7610001, Israel
| |
Collapse
|
29
|
Gorges J, Grimme S, Hansen A. Reliable prediction of association (free) energies of supramolecular complexes with heavy main group elements – the HS13L benchmark set. Phys Chem Chem Phys 2022; 24:28831-28843. [DOI: 10.1039/d2cp04049b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We introduce a set of 13 supramolecular complexes featuring diverse non-covalent interactions with heavy main group elements (Zn, As, Se, Te, Br, I), high charges (−2 up to +4), and large systems with up to 266 atoms (HS13L).
Collapse
Affiliation(s)
- Johannes Gorges
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
30
|
Efremenko I, Martin JML. Coupled Cluster Benchmark of New DFT and Local Correlation Methods: Mechanisms of Hydroarylation and Oxidative Coupling Catalyzed by Ru(II, III) Chloride Carbonyls. J Phys Chem A 2021; 125:8987-8999. [PMID: 34586809 DOI: 10.1021/acs.jpca.1c05124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have evaluated a set of accurate canonical CCSD(T) energies for stationary points on the potential energy surface for Ru(II, III) chloride carbonyl catalysis of two competing reactions between benzene and methyl acrylate (MA), namely, hydroarylation and oxidative coupling. We have then applied this set to evaluate the performance of localized orbital coupled-cluster methods and several new and common density functionals. We find that (a) DLPNO-CCSD(T) with TightPNO cutoffs is an acceptable substitute for full canonical CCSD(T) calculations on this system; (b) for the closed-shell systems where it could be applied, LNO-CCSD(T) with tight convergence criteria is very close to the canonical results; (c) the recent ωB97X-V and ωB97M-V functionals exhibit superior performance to commonly used DFT functionals in both closed- and open-shell calculations; (d) the revDSD-PBEP86 revision of the DSD-PBEP86 double hybrid represents an improvement over the original, even though transition metals were not involved in its parametrization; and (e) DSD-SCAN and DOD-SCAN show comparable efficiency. Most tested (meta)-GGA and hybrid density functionals perform better for open-shell than for closed-shell complexes; this is not the case for the double hybrids considered.
Collapse
Affiliation(s)
- Irena Efremenko
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
31
|
Maurer LR, Bursch M, Grimme S, Hansen A. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. J Chem Theory Comput 2021; 17:6134-6151. [PMID: 34546754 DOI: 10.1021/acs.jctc.1c00659] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the principle lack of systematic improvement possibilities of density functional theory, careful assessment of the performance of density functional approximations (DFAs) on well-designed benchmark sets, for example, for reaction energies and barrier heights, is crucial. While main-group chemistry is well covered by several available sets, benchmark data for transition metal chemistry is sparse. This is especially the case for larger, chemically relevant molecules. Addressing this issue, we recently introduced the MOR41 benchmark which covers chemically relevant reactions of closed-shell complexes. In this work, we extend these efforts to single-reference open-shell systems and introduce the "reactions of open-shell single-reference transition metal complexes" (ROST61) benchmark set. ROST61 includes accurate coupled-cluster reference values for 61 reaction energies with a mean reaction energy of -42.8 kcal mol-1. Complexes with 13-93 atoms covering 20 d-block elements are included, but due to the restriction to single-reference open-shell systems, important elements such as iron or platinum could not be taken into account, or only to a small extent. We assess the performance of 31 DFAs in combination with three London dispersion (LD) correction schemes. Further, DFT-based composite methods, MP2, and a few semiempirical quantum chemical methods are evaluated. Consistent with the results for the MOR41 closed-shell benchmark, we find that the ordering of DFAs according to Jacob's ladder is preserved and that adding an LD correction is crucial, clearly improving almost all tested methods. The recently introduced r2SCAN-3c composite method stands out with a remarkable mean absolute deviation (MAD) of only 2.9 kcal mol-1, which is surpassed only by hybrid DFAs with low amounts of Fock exchange (e.g., 2.3 kcal mol-1 for TPSS0-D4/def2-QZVPP) and double-hybrid (DH) DFAs but at a significantly higher computational cost. The lowest MAD of only 1.6 kcal mol-1 is obtained with the DH DFA PWPB95-D4 in the def2-QZVPP basis set approaching the estimated accuracy of the reference method. Overall, the ROST61 set adds important reference data to a sparsely sampled but practically relevant area of chemistry. At this point, it provides valuable orientation for the application and development of new DFAs and electronic structure methods in general.
Collapse
Affiliation(s)
- Leonard R Maurer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
32
|
Santra G, Semidalas E, Martin JML. Surprisingly Good Performance of XYG3 Family Functionals Using a Scaled KS-MP3 Correlation. J Phys Chem Lett 2021; 12:9368-9376. [PMID: 34550706 DOI: 10.1021/acs.jpclett.1c02838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
By adding a GLPT3 (third-order Görling-Levy perturbation theory, or KS-MP3) term E3 to the XYG7 form for a double hybrid, we are able to bring down WTMAD2 (weighted total mean absolute deviation) for the very large and chemically diverse GMTKN55 benchmark to an unprecedented 1.17 kcal/mol, competitive with much costlier composite wave function ab initio approaches. Intriguingly, (a) the introduction of E3 makes an empirical dispersion correction redundant; (b) generalized gradient approximation (GGA) or meta-GGA semilocal correlation functionals offer no advantage over the local density approximation (LDA) in this framework; (c) if a dispersion correction is retained, then simple Slater exchange leads to no significant loss in accuracy. It is possible to create a six-parameter functional with WTMAD2 = 1.42 that has no post-LDA density functional theory components and no dispersion correction in the final energy.
Collapse
Affiliation(s)
- Golokesh Santra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Emmanouil Semidalas
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| |
Collapse
|
33
|
Casanova-Páez M, Goerigk L. Time-Dependent Long-Range-Corrected Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling: A Comprehensive Analysis of Singlet-Singlet and Singlet-Triplet Excitation Energies. J Chem Theory Comput 2021; 17:5165-5186. [PMID: 34291643 DOI: 10.1021/acs.jctc.1c00535] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the work on spin-component and spin-opposite scaled (SCS/SOS) global double hybrids for singlet-singlet excitations by Schwabe and Goerigk [ J. Chem. Theory Comput. 2017, 13, 4307-4323] and our own works on new long-range corrected (LC) double hybrids for singlet-singlet and singlet-triplet excitations [ J. Chem. Theory Comput. 2019, 15, 4735-4744 and J. Chem. Phys. 2020, 153, 064106], we present new LC double hybrids with SCS/SOS that demonstrate further improvement over previously published results and methods. We introduce new unscaled and scaled versions of different global and LC double hybrids based on Becke88 or PBE exchange combined with LYP, PBE, or P86 correlation. For singlet-singlet excitations, we cross-validate them on six benchmark sets that cover small to medium-sized chromophores with different excitation types (local-valence, Rydberg, and charge transfer). For singlet-triplet excitations, we perform the cross-validation on three different benchmark sets following the same analysis as in our previous work in 2020. In total, 203 excitations are analyzed. Our results confirm and extend those of Schwabe and Goerigk regarding the superior performance of SCS and SOS variants compared to their unscaled parents by decreasing mean absolute deviations, root-mean-square deviations, or error spans by more than half and bringing absolute mean deviations closer to zero. Our SCS/SOS variants are shown to be highly efficient and robust for the computation of vertical excitation energies, which even outperform specialized double hybrids that also contain an LC in their perturbative part. In particular, our new SCS/SOS-ωPBEPP86 and SCS/SOS-ωB88PP86 functionals are four of the most accurate and robust methods tested in this work, and we fully recommend them for future applications. However, if the relevant SCS and SOS algorithms are not available to the user, we suggest ωPBEPP86 as the best unscaled method in this work.
Collapse
Affiliation(s)
- Marcos Casanova-Páez
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|