1
|
Chen Y, Yang Z, Zeng S, Tian H, Cheng Q, Lv S, Li H. Quantitative analysis of β-carotene and unsaturated fatty acids in blended olive oil via Raman spectroscopy combined with model prediction. Food Chem 2025; 470:142621. [PMID: 39733625 DOI: 10.1016/j.foodchem.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Blended vegetable oil is considered to be a valuable product in the market owing to favourable taste and nutritional composition. The quantification of its contents has notable implications for protecting food safety and consumer interests. Thus, a rapid and non-destructive method is needed to analyse the composition of blended oil. This study established an analytical method combining Raman spectroscopy and prediction models to determine the content of olive oil in a mixture. Competitive adaptive reweighted sampling was employed to select feature bands attributed to β-carotene and unsaturated fatty acids. Various models were used to calculate the mixture proportion, and the importance of characteristic peak intensity affecting the prediction was evaluated via grey relational analysis. The random forest model exhibited superior performance in quantitative analysis, with RMSE and R2 of 0.0447 and 0.9799, respectively. Overall, this approach was proven to effectively identify blended olive oils, exemplifying its potential in food authentication.
Collapse
Affiliation(s)
- Yulong Chen
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhihan Yang
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shan Zeng
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Hui Tian
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - QingZhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Site Lv
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hao Li
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Jafari A, Seth K, Werner A, Shi S, Hofmann R, Hoyos-Villegas V. Probing Biological Nitrogen Fixation in Legumes Using Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:4944. [PMID: 39123990 PMCID: PMC11314804 DOI: 10.3390/s24154944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Biological nitrogen fixation (BNF) by symbiotic bacteria plays a vital role in sustainable agriculture. However, current quantification methods are often expensive and impractical. This study explores the potential of Raman spectroscopy, a non-invasive technique, for rapid assessment of BNF activity in soybeans. Raman spectra were obtained from soybean plants grown with and without rhizobia bacteria to identify spectral signatures associated with BNF. δN15 isotope ratio mass spectrometry (IRMS) was used to determine actual BNF percentages. Partial least squares regression (PLSR) was employed to develop a model for BNF quantification based on Raman spectra. The model explained 80% of the variation in BNF activity. To enhance the model's specificity for BNF detection regardless of nitrogen availability, a subsequent elastic net (Enet) regularisation strategy was implemented. This approach provided insights into key wavenumbers and biochemicals associated with BNF in soybeans.
Collapse
Affiliation(s)
| | - Kritarth Seth
- AgResearch, Lincoln 7608, New Zealand; (K.S.); (S.S.)
| | - Armin Werner
- Lincoln Agritech, Lincoln University, Lincoln 7647, New Zealand;
| | - Shengjing Shi
- AgResearch, Lincoln 7608, New Zealand; (K.S.); (S.S.)
| | - Rainer Hofmann
- Plant Biology Department, Lincoln University, Lincoln 7647, New Zealand;
| | - Valerio Hoyos-Villegas
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
3
|
Improving powder performances of natural extracted lutein with spherulitic growth control. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Novikov VS, Kuzmin VV, Darvin ME, Lademann J, Sagitova EA, Prokhorov KA, Ustynyuk LY, Nikolaeva GY. Relations between the Raman spectra and molecular structure of selected carotenoids: DFT study of α-carotene, β-carotene, γ-carotene and lycopene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120755. [PMID: 34973611 DOI: 10.1016/j.saa.2021.120755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Using the density functional theory (DFT), we calculated the structures and Raman spectra of trans-isomers of α-carotene, β-carotene, γ-carotene and lycopene as well as trans-isomers of modified β-carotene and lycopene molecules with substituted end or/and side groups. The DFT calculations showed that the position of the CC stretching band depends mainly on the number of conjugated CC bonds and decreases with an increase in the conjugation length. The weak dependence of the position of the CC stretching band on the structure of the carotenoid side and end groups suggests that this band can be used to evaluate the conjugation length for trans-isomers of various molecules containing polyene chains. The CC stretching band shifts towards lower wavenumbers with growth of the conjugation length or masses of the end groups and to higher wavenumbers in the presence of the side CH3 groups. The intensities of the CC and CC stretching bands are enhanced with growth of the conjugation length or masses of the end groups. The presence of the side CH3 groups results in bending of the carotenoid backbone, splitting and dumping of intensities of the CC and CC stretching bands.
Collapse
Affiliation(s)
- V S Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia.
| | - V V Kuzmin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - J Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Sagitova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - K A Prokhorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - L Yu Ustynyuk
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1(3), 119991 Moscow, Russia
| | - G Yu Nikolaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
5
|
Novikov VS, Kuzmin VV, Kuznetsov SM, Darvin ME, Lademann J, Sagitova EA, Ustynyuk LY, Prokhorov KA, Nikolaeva GY. DFT study of Raman spectra of polyenes and ß-carotene: Dependence on length of polyene chain and isomer type. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119668. [PMID: 33761387 DOI: 10.1016/j.saa.2021.119668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We carried out calculations of non-resonance Raman spectra of ß-carotene and polyenes CH2(CHCH)n-2CHCH2 using the density functional theory (DFT). We revealed that the peak positions and intensities of the CC and CC stretching bands depend on length of the polyene chain and type of the isomer. Our experimental non-resonance Raman spectra of ß-carotene powder match well the DFT-simulated Raman spectrum of ß-carotene in the all-trans form. The peak positions and relative intensities of the CC and CC stretching bands of ß-carotene turned out to be similar in the resonance and non-resonance Raman spectra. An increase in the number of conjugated double bonds (n = 3-30) in a polyene structure results in a monotonous shift of the positions of the most intense CC and CC bands towards lower wavenumbers with an increase in the band intensities. An increase in the isomer number results in the monotonous decrease of the CC stretching band intensity for polyenes with 9, 10, 11, 15 and 24 double bonds. An increase in the isomer number inhomogeneously influences the form, position and intensity of the CC stretching band.
Collapse
Affiliation(s)
- V S Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia.
| | - V V Kuzmin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - S M Kuznetsov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - J Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Sagitova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - L Yu Ustynyuk
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1(3), 119991 Moscow, Russia
| | - K A Prokhorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - G Yu Nikolaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
6
|
Zheng M, Bi J, Chen Y, Wang H, Zhou M. Fluorescence-enhanced second harmonic normal Raman scattering in β-carotene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118494. [PMID: 32485606 DOI: 10.1016/j.saa.2020.118494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
β-carotene, an important biomolecule from the carotenoid family, plays a vital role in biosystem, the characteristic features of electronic and vibrational spectra will shed light on its photophysical properties. Here, in-situ high pressure Raman spectra of β-carotene are measured up to 26 GPa. Two possible phase transitions are identified at about 7 GPa and 14 GPa, respectively, through analysis of the frequency-pressure relationships. In order to clarify the intensity changes of Raman bands, high pressure UV-Vis absorption measurements of β-carotene are conducted. Besides resonance Raman enhancement effect, a new mechanism, fluorescence enhancement of normal Raman scattering, is proposed, which provides new methods and approaches for Raman spectroscopy.
Collapse
Affiliation(s)
- Mengying Zheng
- College of Physics, Jilin University, Changchun 130012, China
| | - Jingkai Bi
- College of Physics, Jilin University, Changchun 130012, China
| | - Yixin Chen
- College of Physics, Jilin University, Changchun 130012, China
| | - Hongbo Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
| | - Mi Zhou
- College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Phase transition induced changes in β-ring rotation and methyl group asymmetric deformation of all-trans-β-carotene. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Baldez TS, Remédios CMR, de Menezes AS, Dos Santos AO, de Sousa FF. New structural phases of [bis(L-alaninato) diaqua] nickel(II) dihydrate crystal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:294-301. [PMID: 30802790 DOI: 10.1016/j.saa.2019.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
The study of [bis(L‑alaninato) diaqua] nickel(II) dihydrate crystal using Raman scattering and X-ray diffraction as a function of temperature is reported in this paper. Thermal analysis (TGA and DSC) complementary measurements were also performed in order to obtain information on structural changes and mass loss occurred in this material. It was identified that the crystal undergoes loss of water at two different temperatures: ~340 and 393 K. X-ray diffraction measurements showed two phase transformations related to these two water loss events. After heating up to 423 K, the sample was cooled down to 298 K and its diffraction pattern presented the same pattern at 423 K, evidencing an irreversible phase transformation. The diffraction results also showed that crystal goes to monohydrate and anhydrous phases. Furthermore, cell lattice parameters and space groups of both phases were determined by applying Rietveld refinement through Le Bail method, demonstrating that their structures belong to the P21 and C2/c space groups, both with monoclinic symmetry. In addition, assignments of Raman spectra vibrational bands (at 300 K) are provided. The high-temperature Raman spectra were obtained in the 100-3500 cm-1 range, where it was observed several abrupt changes in the intensity of low-wavenumber bands and the appearance/disappearance of some vibrational modes that have coupling with OH⋯O hydrogen bonds. These spectral changes are in good agreement with X-ray diffraction and thermal analyses data. Finally, we obtained Raman measurements at low temperatures, from which we identified that the crystal structure is extremely stable throughout the temperature range of 293-10 K.
Collapse
Affiliation(s)
- T S Baldez
- Instituto Federal do Maranhão, CEP 65950-000 Barra do Corda, MA, Brazil
| | - C M R Remédios
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - A S de Menezes
- Departamento de Física, Universidade Federal do Maranhão, CCET, CEP 65080-805 São Luis, MA, Brazil
| | - A O Dos Santos
- Universidade Federal do Maranhão, CCSST, CEP 65900-410 Imperatriz, MA, Brazil
| | - F F de Sousa
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil.
| |
Collapse
|
9
|
Gummaluri VS, Krishnan SR, Vijayan C. Stokes mode Raman random lasing in a fully biocompatible medium. OPTICS LETTERS 2018; 43:5865-5868. [PMID: 30499961 DOI: 10.1364/ol.43.005865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate for the first time, to the best of our knowledge, Raman random lasing in a continuous-wave (CW) excited, completely biocompatible and biodegradable carrot medium naturally composed of fibrous cellulose scattering medium and rich carotene Raman gain medium. The CW-laser-induced photoluminescence threshold and linewidth analysis at the Stokes modes of carotene show a characteristic lasing action with a threshold of 130 W/cm2 and linewidth narrowing with mode Q factor up to 1300. Polarization study of output modes reveals that lasing mode mostly retains the source polarization state. A neat and interesting linear temperature dependence of emission intensity is also discussed. Easy availability, biocompatibility, excitation-dependent emission wavelength selectivity, and temperature sensitivity are hallmarks of this elegant Raman laser medium with strong potential as an optical source for applications in bio-sensing, imaging, and spectroscopy.
Collapse
|
10
|
Rygula A, Oleszkiewicz T, Grzebelus E, Pacia MZ, Baranska M, Baranski R. Raman, AFM and SNOM high resolution imaging of carotene crystals in a model carrot cell system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:47-55. [PMID: 29402560 DOI: 10.1016/j.saa.2018.01.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/13/2018] [Accepted: 01/19/2018] [Indexed: 05/24/2023]
Abstract
Three non-destructive and complementary techniques, Raman imaging, Atomic Force Microscopy and Scanning Near-field Optical Microscopy were used simultaneously to show for the first time chemical and structural differences of carotenoid crystals. Spectroscopic and microscopic scanning probe measurements were applied to the released crystals or to crystals accumulated in a unique, carotenoids rich callus tissue growing in vitro that is considered as a new model system for plant carotenoid research. Three distinct morphological crystal types of various carotenoid composition were identified, a needle-like, rhomboidal and helical. Raman imaging using 532 and 488 nm excitation lines provided evidence that the needle-like and rhomboidal crystals had similar carotenoid composition and that they were composed mainly of β-carotene accompanied by α-carotene. However, the presence of α-carotene was not identified in the helical crystals, which had the characteristic spatial structure. AFM measurements of crystals identified by Raman imaging revealed the crystal topography and showed the needle-like and rhomboidal crystals were planar but they differed in all three dimensions. Combining SNOM and Raman imaging enabled indication of carotenoid rich structures and visualised their distribution in the cell. The morphology of identified subcellular structures was characteristic for crystalline, membraneous and tubular chromoplasts that are plant organelles responsible for carotenoid accumulation in cells.
Collapse
Affiliation(s)
- Anna Rygula
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tomasz Oleszkiewicz
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425 Krakow, Poland
| | - Ewa Grzebelus
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425 Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Rafal Baranski
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, AL. 29 Listopada 54, 31-425 Krakow, Poland.
| |
Collapse
|
11
|
Broadhurst CL, Schmidt WF, Nguyen JK, Qin J, Chao K, Kim MS. Continuous gradient temperature Raman spectroscopy from -100 to 40°C yields new molecular models of arachidonic acid and 2-Arachidonoyl-1-stearoyl-sn-glycero-3-phosphocholine. Prostaglandins Leukot Essent Fatty Acids 2017; 127:6-15. [PMID: 29156157 DOI: 10.1016/j.plefa.2017.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 09/27/2017] [Indexed: 01/31/2023]
Abstract
Despite its biochemical importance, a complete Raman analysis of arachidonic acid (AA, 20:4n-6) has never been reported. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we utilize the GTRS technique for AA and 1-18:0, 2-20:4n-6 phosphatidyl choline (AAPC) from cryogenic to mammalian body temperatures. 20Mb three-dimensional data arrays with 0.2°C increments and first/second derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. The AA DSC shows a large exothermic peak at -60°C indicating crystallization or a similar major structural change. No exothermic peak of this magnitude was observed in six other unsaturated lipids (DHA, n-3DPA, n-6DPA, LA, ALA, OA). Melting in AA occurs over a large range: (-60 to -35°C): very large frequency offsets and intensity changes correlate with premelting initiating circa -60°C, followed by melting (-37°C). Novel, unique 3D structures for both molecules reveal that AA is not symmetric as a free fatty acid, and it changes significantly when in the sn-2 phospholipid position. Further, different CH and CH2 sites are unequally elastic and nonequivalent.
Collapse
Affiliation(s)
- C Leigh Broadhurst
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States; Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, United States.
| | - Walter F Schmidt
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Julie K Nguyen
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Jianwei Qin
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Kuanglin Chao
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Moon S Kim
- Environmental Microbiology and Food Safety Laboratory, US Department of Agriculture Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| |
Collapse
|