1
|
Jonušas M, Bournet Q, Bonvalet A, Natile M, Ersen AO, Guichard F, Zaouter Y, Georges P, Druon F, Hanna M, Joffre M. Two-dimensional infrared spectroscopy using a fast-scanning interferometer and chirped pulse upconversion at 100 kHz. J Chem Phys 2025; 162:174201. [PMID: 40309936 DOI: 10.1063/5.0261494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
We report on a 100-kHz two-dimensional infrared (2DIR) spectrometer in the pump-probe geometry, which we apply to the measurement of the 2DIR spectrum of carboxyhemoglobin. The probe pulses are spectrally resolved by chirped-pulse upconversion (CPU) using a fast 2048-pixel line scan CMOS camera. The two-pulse pump sequence is generated using a conventional interferometer with a fast-scanning mechanical delay line allowing to achieve a scanning frequency of 2 Hz. The resulting modulation frequency of 3.1 kHz is large enough to shift the relevant signal away from the low-frequency noise of the laser source. The combined use of an interferometer on the pump side and of CPU on the probe side opens the way to an improved spectral resolution in both pump and probe dimensions, as compared to currently available 100-kHz 2DIR spectrometers based on pulse shapers and mercury-cadmium telluride detector arrays.
Collapse
Affiliation(s)
- Mindaugas Jonušas
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Quentin Bournet
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
- Amplitude, 11 Avenue de Canteranne, Cité de la Photonique, Pessac, France
| | - Adeline Bonvalet
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Michele Natile
- Amplitude, 11 Avenue de Canteranne, Cité de la Photonique, Pessac, France
| | - Andrei-Ovidiu Ersen
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Florent Guichard
- Amplitude, 11 Avenue de Canteranne, Cité de la Photonique, Pessac, France
| | - Yoann Zaouter
- Amplitude, 11 Avenue de Canteranne, Cité de la Photonique, Pessac, France
| | - Patrick Georges
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Frédéric Druon
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Marc Hanna
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Manuel Joffre
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
2
|
Gajo C, Jordan CJC, Oliver TAA. Two-Dimensional Electronic Spectroscopy of Rhodamine 700 Using an 8 fs Ultrabroadband Laser Source and Full-Wavelength Reference Detection. J Phys Chem A 2025; 129:3537-3551. [PMID: 40043307 PMCID: PMC12010339 DOI: 10.1021/acs.jpca.4c08494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
Two-dimensional electronic spectroscopy (2DES) is one of the premier tools for investigating photoinduced condensed phase dynamics, combining high temporal and spectral resolution to probe ultrafast phenomena. We have coupled an ultrabroadband laser source generated with a hollow-core fiber, compressing pulses to have a pulse duration of 8 fs, with a boxcars 2DES interferometer constructed from only conventional optics. The resulting ultrabroad bandwidth and high temporal resolution allow for superior spectral coverage of the typically broad molecular line shapes in the near-IR/visible region in room temperature solutions, and the exploration of the excited state dynamics at the earliest time epoch in complex systems. The new spectrometer is characterized by examining the dynamics of the dye molecule Rhodamine 700 in methanol solution. These data exhibit rich vibrational wavepacket dynamics, with 2DES data unraveling key molecular vibronic couplings between multiple vibrational modes. For the first time in a degenerate broadband 2DES experiment, we demonstrate the implementation of full-wavelength reference detection to correct wavelength-dependent laser intensity fluctuations. The net result is a 4-5× increased signal-to-noise (S/N) ratio compared to data acquired without reference detection, yielding a typical S/N ratio = 28. The increased S/N ratio facilitates more rapid data acquisition and examination of samples at lower optical densities, and thus concentrations, than typically used in 2DES experiments. These advances will help to alleviate the typical high demands on precious samples in 2DES measurements.
Collapse
|
3
|
Brown K, Farmer A, Gurung S, Baker MJ, Board R, Hunt NT. Machine-learning based classification of 2D-IR liquid biopsies enables stratification of melanoma relapse risk. Chem Sci 2025:d5sc01526j. [PMID: 40225184 PMCID: PMC11983777 DOI: 10.1039/d5sc01526j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
Non-linear laser spectroscopy methods such as two-dimensional infrared (2D-IR) produce large, information-rich datasets, while developments in laser technology have brought substantial increases in data collection rates. This combination of data depth and quantity creates the opportunity to unite advanced data science approaches, such as Machine Learning (ML), with 2D-IR to reveal insights that surpass those from established data interpretation methods. To demonstrate this, we show that ML and 2D-IR spectroscopy can classify blood serum samples collected from patients with melanoma according to diagnostically-relevant groupings. Using just 20 μL samples, 2D-IR measures 'protein amide I fingerprints', which reflect the protein profile of blood serum. A hyphenated Partial Least Squares-Support Vector Machine (PLS-SVM) model was able to classify 2D-protein fingerprints taken from 40 patients with melanoma according to the presence, absence or later development of metastatic disease. Area under the receiver operating characteristic curve (AUROC) values of 0.75 and 0.86 were obtained when identifying samples from patients who were radiologically cancer free and with metastatic disease respectively. The model was also able to classify (AUROC = 0.80) samples from a third group of patients who were radiologically cancer-free at the point of testing but would go on to develop metastatic disease within five years. This ability to identify post-treatment patients at higher risk of relapse from a spectroscopic measurement of biofluid protein content shows the potential for hybrid 2D-IR-ML analyses and raises the prospect of a new route to an optical blood-based test capable of risk stratification for melanoma patients.
Collapse
Affiliation(s)
- Kelly Brown
- Department of Chemistry and York Biomedical Research Institute, University of York UK
| | - Amy Farmer
- Department of Chemistry and York Biomedical Research Institute, University of York UK
| | - Sabina Gurung
- Department of Chemistry and York Biomedical Research Institute, University of York UK
| | - Matthew J Baker
- School of Medicine and Dentistry, University of Central Lancashire UK
| | - Ruth Board
- Department of Oncology, Lancashire Teaching Hospitals NHS Trust Preston UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York UK
| |
Collapse
|
4
|
Shipp JD, Fernández-Terán RJ, Auty AJ, Carson H, Sadler AJ, Towrie M, Sazanovich IV, Donaldson PM, Meijer AJHM, Weinstein JA. Two-Dimensional Infrared Spectroscopy Resolves the Vibrational Landscape in Donor-Bridge-Acceptor Complexes with Site-Specific Isotopic Labeling. ACS PHYSICAL CHEMISTRY AU 2024; 4:761-772. [PMID: 39634644 PMCID: PMC11613348 DOI: 10.1021/acsphyschemau.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a trans-Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective 13C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center. Decoupling of the D-acetylide- from the A-acetylide- enables site-specific investigation of vibrational energy transfer (VET) rates, dynamic anharmonicities, and spectral diffusion. Surprisingly, the asymmetrically labeled D-B-A still undergoes intramolecular IVR between acetylide groups even though they are decoupled and positioned across a heavy atom usually perceived as a "vibrational bottleneck". Further, the rate of population transfer from the bridge to the acceptor was both site-specific and distance dependent. We show that vibrational excitation of the acetylide modes is transferred to ligand-centered modes on a subpicosecond time scale, followed by VET to solvent modes on the time scale of a few picoseconds. We also show that isotopic substitution does not affect the rate of spectral diffusion, indicating that changes in the vibrational dynamics are not a result of differences in local environment around the acetylides. Oscillations imprinted on the decay of the vibrationally excited acceptor-localized carbonyl modes show they enter a coherent superposition of states after excitation that dephases over 1-2 ps, and thus cannot be treated as independent in the 2D-IR spectra. These findings elucidate the vibrational landscape governing IR-mediated electron transfer and illustrate the power of isotopic labeling combined with multidimensional IR spectroscopy to disentangle vibrational energy propagation pathways in complex systems.
Collapse
Affiliation(s)
- James D. Shipp
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Ricardo J. Fernández-Terán
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
- Department
of Physical Chemistry, University of Geneva, CH-1205 Geneva, Switzerland
| | - Alexander J. Auty
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Heather Carson
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Andrew J. Sadler
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Michael Towrie
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | - Igor V. Sazanovich
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | - Paul M. Donaldson
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | | | - Julia A. Weinstein
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| |
Collapse
|
5
|
Gasse P, Stensitzki T, Müller-Werkmeister HM. 2D-IR spectroscopy of azide-labeled carbohydrates in H2O. J Chem Phys 2024; 161:195101. [PMID: 39564876 DOI: 10.1063/5.0225308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
Carbohydrates constitute one of the key classes of biomacromolecules, yet vibrational spectroscopic studies involving carbohydrates remain scarce as spectra are highly congested and lack significant marker vibrations. Recently, we introduced and characterized a thiocyanate-labeled glucose [Gasse et al., J. Chem. Phys. 158, 145101 (2023)] demonstrating 2D-IR spectroscopy of carbohydrates using vibrational probes. Here, we build on that work and test azide groups as alternative for studies of carbohydrates to expand the available set of local probes. Many common carbohydrates with different azide labeling positions, such as galactose, glucose, or lactose, are readily available due to their application in click chemistry and hence do not require additional complex synthesis strategies. In this work, we have characterized azide-labeled glucose,, galactose, acetylglucosamine and lactose in water using IR and 2D-IR spectroscopy to test their potential for future applications in studies of carbohydrate-protein interactions. Our findings indicate that their absorption profiles and vibrational dynamics are primarily determined by the labeling position on the ring. However, we also observe additional variations between samples with the same labeling position. Furthermore, we demonstrate that their usage remains feasible at biologically relevant concentrations, highlighting their potential to probe more complex biological processes, i.e., enzymatic catalysis.
Collapse
Affiliation(s)
- P Gasse
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| | - T Stensitzki
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| | - H M Müller-Werkmeister
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| |
Collapse
|
6
|
Jonušas M, Bournet Q, Bonvalet A, Natile M, Guichard F, Zaouter Y, Georges P, Druon F, Hanna M, Joffre M. Chirped pulse upconversion for femtosecond mid-infrared spectroscopy at 100 kHz. OPTICS EXPRESS 2024; 32:8020-8029. [PMID: 38439469 DOI: 10.1364/oe.515291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
We demonstrate that chirped pulse up-conversion (CPU), a method routinely used with systems based on 1-kHz Titanium:Sapphire lasers, can be extended to a repetition rate of 100 kHz with an Ytterbium diode-pumped femtosecond amplifier. Individual mid-infrared spectra can thus be measured directly in the near infrared using a fast CMOS linescan camera. After an appropriate Fourier processing, a spectral resolution of 1.1 cm-1 is reported, currently limited by our spectrometer. Additionally, we demonstrate the application of CPU to a pump-probe measurement of the vibrational relaxation in carboxy-hemoglobin, and we show that the combination of fast scanning and fast acquisition enables a straightforward removal of pump scattering interference.
Collapse
|
7
|
Niu G, Jiang J, Wang X, Che L, Sui L, Wu G, Yuan K, Yang X. Time-Resolved Dynamics of Metal Halide Perovskite under High Pressure: Recent Progress and Challenges. J Phys Chem Lett 2024; 15:1623-1635. [PMID: 38306470 DOI: 10.1021/acs.jpclett.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Metal halide perovskites have garnered significant attention in the scientific community for their promising applications in optoelectronic devices. The application of pressure engineering, a viable technique, has played a crucial role in substantially improving the optoelectronic characteristics of perovskites. Despite notable progress in understanding ground-state structural changes under high pressure, a comprehensive exploration of excited-state dynamics influencing luminescence remains incomplete. This Perspective delves into recent advances in time-resolved dynamics studies of photoexcited metal halide perovskites under high pressure. With a focus on the intricate interplay between structural alterations and electronic properties, we investigate electron-phonon interactions, carrier transport mechanisms, and the influential roles of self-trapped excitons (STEs) and coherent phonons in luminescence. However, significant challenges persist, notably the need for more advanced measurement techniques and a deeper understanding of the phenomena induced by high pressure in perovskites.
Collapse
Affiliation(s)
- Guangming Niu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jutao Jiang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Li Che
- Department of Physics School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P. R. China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
8
|
Rutherford S, Hutchison CDM, Greetham GM, Parker AW, Nordon A, Baker MJ, Hunt NT. Optical Screening and Classification of Drug Binding to Proteins in Human Blood Serum. Anal Chem 2023; 95:17037-17045. [PMID: 37939225 PMCID: PMC10666086 DOI: 10.1021/acs.analchem.3c03713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Protein-drug interactions in the human bloodstream are important factors in applications ranging from drug design, where protein binding influences efficacy and dose delivery, to biomedical diagnostics, where rapid, quantitative measurements could guide optimized treatment regimes. Current measurement approaches use multistep assays, which probe the protein-bound drug fraction indirectly and do not provide fundamental structural or dynamic information about the in vivo protein-drug interaction. We demonstrate that ultrafast 2D-IR spectroscopy can overcome these issues by providing a direct, label-free optical measurement of protein-drug binding in blood serum samples. Four commonly prescribed drugs, known to bind to human serum albumin (HSA), were added to pooled human serum at physiologically relevant concentrations. In each case, spectral changes to the amide I band of the serum sample were observed, consistent with binding to HSA, but were distinct for each of the four drugs. A machine-learning-based classification of the serum samples achieved a total cross-validation prediction accuracy of 92% when differentiating serum-only samples from those with a drug present. Identification on a per-drug basis achieved correct drug identification in 75% of cases. These unique spectroscopic signatures of the drug-protein interaction thus enable the detection and differentiation of drug containing samples and give structural insight into the binding process as well as quantitative information on protein-drug binding. Using currently available instrumentation, the 2D-IR data acquisition required just 1 min and 10 μL of serum per sample, and so these results pave the way to fast, specific, and quantitative measurements of protein-drug binding in vivo with potentially invaluable applications for the development of novel therapies and personalized medicine.
Collapse
Affiliation(s)
- Samantha
H. Rutherford
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Christopher D. M. Hutchison
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Gregory M. Greetham
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Anthony W. Parker
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Alison Nordon
- WestCHEM,
Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Matthew J. Baker
- School
of Medicine and Dentistry, University of
Central Lancashire, Fylde Rd, Preston PR1
2HE, U.K.
| | - Neil T. Hunt
- Department
of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
9
|
Thiré N, Chatterjee G, Pertot Y, Albert O, Karras G, Zhang Y, Wyatt AS, Towrie M, Springate E, Greetham GM, Forget N. A versatile high-average-power ultrafast infrared driver tailored for high-harmonic generation and vibrational spectroscopy. Sci Rep 2023; 13:18874. [PMID: 37914852 PMCID: PMC10620204 DOI: 10.1038/s41598-023-46325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
We report on an ultrafast infrared optical parametric chirped-pulse amplifier (OPCPA), pumped by a 200-W thin-disk Yb-based regenerative amplifier at a repetition rate of 100 kHz. The OPCPA is tunable in the spectral range 1.4-3.9 [Formula: see text]m, generating up to 23 W of < 100-fs signal and 13 W of < 200-fs idler pulses for infrared spectroscopy, with additional spectral filtering capabilities for Raman spectroscopy. The OPCPA can also yield 19 W of 49-fs 1.75-[Formula: see text]m signal or 5 W of 62-fs 2.8-[Formula: see text]m idler pulses with active carrier-to-envelope-phase (CEP) stabilisation for high-harmonic generation (HHG). We illustrate the versatility of the laser design, catering to various experimental requirements for probing ultrafast science.
Collapse
Affiliation(s)
- Nicolas Thiré
- Fastlite, 165 route des cistes, 06600, Antibes, France.
| | - Gourab Chatterjee
- STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK.
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Yoann Pertot
- Fastlite, 165 route des cistes, 06600, Antibes, France
| | | | - Gabriel Karras
- STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Yu Zhang
- STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Adam S Wyatt
- STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Emma Springate
- STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Gregory M Greetham
- STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Nicolas Forget
- Fastlite, 165 route des cistes, 06600, Antibes, France
- CNRS UMR7010 INPHYNI, 1361 route des Lucioles, 06560, Valbonne, France
| |
Collapse
|
10
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
11
|
Harmon W, Robben K, Cheatum CM. Adding a second AgGaS 2 stage to Ti:sapphire/BBO/AgGaS 2 setups increases mid-infrared power twofold. OPTICS LETTERS 2023; 48:4797-4800. [PMID: 37707905 DOI: 10.1364/ol.496376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
We present a method for increasing the power of mid-infrared laser pulses generated by a conventional beta-barium borate (BBO) optical parametric amplifier (OPA) and AgGaS2 difference frequency generation (DFG) pumped by a Ti:sapphire amplifier. The method involves an additional stage of parametric amplification with a second AgGaS2 crystal pumped by selected outputs of the conventional DFG stage. This method does not require additional pump power from the Ti:sapphire laser source and improves the overall photon conversion efficiency for generating mid-infrared light. It merely requires an additional AgGaS2 crystal and dichroic mirrors. Following difference frequency generation, the method reuses near-infrared light (∼1.9 µm), typically discarded, to pump the additional AgGaS2 stage and amplifies the mid-infrared light twofold. We demonstrate and characterize the power, spectrum, duration, and noise of the mid-IR pulses before and after the second AgGaS2 stage. We observe small changes in center frequencies, bandwidth, and pulse duration for ∼150-fs pulses between 4 and 5 µm.
Collapse
|
12
|
Donaldson PM, Greetham GM, Middleton CT, Luther BM, Zanni MT, Hamm P, Krummel AT. Breaking Barriers in Ultrafast Spectroscopy and Imaging Using 100 kHz Amplified Yb-Laser Systems. Acc Chem Res 2023; 56:2062-2071. [PMID: 37429010 PMCID: PMC10809409 DOI: 10.1021/acs.accounts.3c00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 07/12/2023]
Abstract
ConspectusUltrafast spectroscopy and imaging have become tools utilized by a broad range of scientists involved in materials, energy, biological, and chemical sciences. Commercialization of ultrafast spectrometers including transient absorption spectrometers, vibrational sum frequency generation spectrometers, and even multidimensional spectrometers have put these advanced spectroscopy measurements into the hands of practitioners originally outside the field of ultrafast spectroscopy. There is now a technology shift occurring in ultrafast spectroscopy, made possible by new Yb-based lasers, that is opening exciting new experiments in the chemical and physical sciences. Amplified Yb-based lasers are not only more compact and efficient than their predecessors but also, most importantly, operate at many times the repetition rate with improved noise characteristics in comparison to the previous generation of Ti:sapphire amplifier technologies. Taken together, these attributes are enabling new experiments, generating improvements to long-standing techniques, and affording the transformation of spectroscopies to microscopies. This Account aims to show that the shift to 100 kHz lasers is a transformative step in nonlinear spectroscopy and imaging, much like the dramatic expansion that occurred with the commercialization of Ti:sapphire laser systems in the 1990s. The impact of this technology will be felt across a great swath of scientific communities. We first describe the technology landscape of amplified Yb-based laser systems used in conjunction with 100 kHz spectrometers operating with shot-to-shot pulse shaping and detection. We also identify the range of different parametric conversion and supercontinuum techniques which now provide a path to making pulses of light optimal for ultrafast spectroscopy. Second, we describe specific instances from our laboratories of how the amplified Yb-based light sources and spectrometers are transformative. For multiple probe time-resolved infrared and transient 2D IR spectroscopy, the gain in temporal span and signal-to-noise enables dynamical spectroscopy measurements from femtoseconds to seconds. These gains widen the applicability of time-resolved infrared techniques across a range of topics in photochemistry, photocatalysis, and photobiology as well as lower the technical barriers to implementation in a laboratory. For 2D visible spectroscopy and microscopy with white light, as well as 2D IR imaging, the high repetition rates of these new Yb-based light sources allow one to spatially map 2D spectra while maintaining high signal-to-noise in the data. To illustrate the gains, we provide examples of imaging applications in the study of photovoltaic materials and spectroelectrochemistry.
Collapse
Affiliation(s)
- Paul M. Donaldson
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Greg M. Greetham
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Chris T. Middleton
- PhaseTech
Spectroscopy, Inc., 4916
East Broadway, Suite 125, Madison, Wisconsin 53716, United States
| | - Bradley M. Luther
- Colorado
State University, Department of Chemistry, 200 W. Lake Street, Fort Collins, Colorado 80523, United States
| | - Martin T. Zanni
- University
of Wisconsin, Department of Chemistry, Room 8361, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Peter Hamm
- University
of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amber T. Krummel
- Colorado
State University, Department of Chemistry, 200 W. Lake Street, Fort Collins, Colorado 80523, United States
| |
Collapse
|
13
|
Abstract
Optimization of pump-probe signal requires a complete understanding of how signal scales with experimental factors. In simple systems, signal scales quadratically with molar absorptivity, and linearly with fluence, concentration, and path length. In practice, scaling factors weaken beyond certain thresholds (e.g., OD > 0.1) due to asymptotic limits related to optical density, fluence and path length. While computational models can accurately account for subdued scaling, quantitative explanations often appear quite technical in the literature. This Perspective aims to present a simpler understanding of the subject with concise formulas for estimating absolute magnitudes of signal under both ordinary and asymptotic scaling conditions. This formulation may be more appealing for spectroscopists seeking rough estimates of signal or relative comparisons. We identify scaling dependencies of signal with respect to experimental parameters and discuss applications for improving signal under broad conditions. We also review other signal enhancement methods, such as local-oscillator attenuation and plasmonic enhancement, and discuss respective benefits and challenges regarding asymptotic limits that signal cannot exceed.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
14
|
Pfukwa NBC, Rautenbach M, Hunt NT, Olaoye OO, Kumar V, Parker AW, Minnes L, Neethling PH. Temperature-Induced Effects on the Structure of Gramicidin S. J Phys Chem B 2023; 127:3774-3786. [PMID: 37125750 DOI: 10.1021/acs.jpcb.2c06115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on the structure of Gramicidin S (GS) in a model membrane mimetic environment represented by the amphipathic solvent 1-octanol using one-dimensional (1D) and two-dimensional (2D) IR spectroscopy. To explore potential structural changes of GS, we also performed a series of spectroscopic measurements at differing temperatures. By analyzing the amide I band and using 2D-IR spectral changes, results could be associated to the disruption of aggregates/oligomers, as well as structural and conformational changes happening in the concentrated solution of GS. The ability of 2D-IR to enable differentiation in melting transitions of oligomerized GS structures is attributed to the sensitivity of the technique to vibrational coupling. Two melting transition temperatures were identified; at Tm1 in the range 41-47 °C where the GS aggregates/oligomers disassemble and at Tm2 = 57 ± 2 °C where there is significant change involving GS β-sheet-type hydrogen bonds, whereby it is proposed that there is loss of interpeptide hydrogen bonds and we are left with mainly intrapeptide β-sheet and β-turn hydrogen bonds of the smaller oligomers. Further analysis with quantum mechanical/molecular mechanics (QM/MM) simulations and second derivative results highlighted the participation of active GS side chains. Ultimately, this work contributes toward understanding the GS structure and the formulation of GS analogues with improved bioactivity.
Collapse
Affiliation(s)
- Ngaatendwe B C Pfukwa
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Olufemi O Olaoye
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Vikas Kumar
- BIOPEP Peptide Group, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Anthony W Parker
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Research Complex at Harwell, Rutherford Appleton Laboratory, STFC Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Lucy Minnes
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, U.K
| | - Pieter H Neethling
- Department of Physics, Laser Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
15
|
Donaldson PM, Howe RF, Hawkins AP, Towrie M, Greetham GM. Ultrafast 2D-IR spectroscopy of intensely optically scattering pelleted solid catalysts. J Chem Phys 2023; 158:114201. [PMID: 36948842 DOI: 10.1063/5.0139103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Solid, powdered samples are often prepared for infrared (IR) spectroscopy analysis in the form of compressed pellets. The intense scattering of incident light by such samples inhibits applications of more advanced IR spectroscopic techniques, such as two-dimensional (2D)-IR spectroscopy. We describe here an experimental approach that enables the measurement of high-quality 2D-IR spectra from scattering pellets of zeolites, titania, and fumed silica in the OD-stretching region of the spectrum under flowing gas and variable temperature up to ∼500 ◦C. In addition to known scatter suppression techniques, such as phase cycling and polarization control, we demonstrate how a bright probe laser beam comparable in strength with the pump beam provides effective scatter suppression. The possible nonlinear signals arising from this approach are discussed and shown to be limited in consequence. In the intense focus of 2D-IR laser beams, a free-standing solid pellet may become elevated in temperature compared with its surroundings. The effects of steady state and transient laser heating effects on practical applications are discussed.
Collapse
Affiliation(s)
- Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Russell F Howe
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Alexander P Hawkins
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Mike Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
16
|
Rutherford SH, Baker MJ, Hunt NT. 2D-IR spectroscopy of proteins in H 2O-A Perspective. J Chem Phys 2023; 158:030901. [PMID: 36681646 DOI: 10.1063/5.0129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardization of 2D-IR data collection, and signal quantification. Ultimately, we visualize a direction of travel toward the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis.
Collapse
Affiliation(s)
- Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Matthew J Baker
- School of Medicine, Faculty of Clinical Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
17
|
Donaldson PM. Spectrophotometric Concentration Analysis Without Molar Absorption Coefficients by Two-Dimensional-Infrared and Fourier Transform Infrared Spectroscopy. Anal Chem 2022; 94:17988-17999. [PMID: 36516397 PMCID: PMC9798376 DOI: 10.1021/acs.analchem.2c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
A spectrophotometric method for determining relative concentrations of infrared (IR)-active analytes with unknown concentration and unknown molar absorption coefficient is explored. This type of method may be useful for the characterization of complex/heterogeneous liquids or solids, the study of transient species, and for other scenarios where it might be difficult to gain concentration information by other means. Concentration ratios of two species are obtained from their IR absorption and two-dimensional (2D)-IR diagonal bleach signals using simple ratiometric calculations. A simple calculation framework for deriving concentration ratios from spectral data is developed, extended to IR-pump-probe signals, and applied to the calculation of transition dipole ratios. Corrections to account for the attenuation of the 2D-IR signal caused by population relaxation, spectral overlap, wavelength-dependent pump absorption, inhomogeneous broadening, and laser intensity variations are described. A simple formula for calculating the attenuation of the 2D-IR signal due to sample absorption is deduced and by comparison with 2D-IR signals at varying total sample absorbance found to be quantitatively accurate. 2D-IR and Fourier transform infrared spectroscopy of two carbonyl containing species acetone and N-methyl-acetamide dissolved in D2O are used to experimentally confirm the validity of the ratiometric calculations. Finally, to address ambiguities over units and scaling of 2D-IR signals, a physical unit of 2D-IR spectral amplitude in mOD/c m - 1 is proposed.
Collapse
Affiliation(s)
- Paul M. Donaldson
- Central Laser Facility, RCaH, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, DidcotOX11 0QX, U.K.
| |
Collapse
|
18
|
Gallop NP, Ye J, Greetham GM, Jansen TLC, Dai L, Zelewski SJ, Arul R, Baumberg JJ, Hoye RLZ, Bakulin AA. The effect of caesium alloying on the ultrafast structural dynamics of hybrid organic-inorganic halide perovskites. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:22408-22418. [PMID: 36352854 PMCID: PMC9624371 DOI: 10.1039/d2ta05207e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Hybrid inorganic-organic perovskites have attracted considerable attention over recent years as promising processable electronic materials. In particular, the rich structural dynamics of these 'soft' materials has become a subject of investigation and debate due to their direct influence on the perovskites' optoelectronic properties. Significant effort has focused on understanding the role and behaviour of the organic cations within the perovskite, as their rotational dynamics may be linked to material stability, heterogeneity and performance in (opto)electronic devices. To this end, we use two-dimensional IR spectroscopy (2DIR) to understand the effect of partial caesium alloying on the rotational dynamics of the methylammonium cation in the archetypal hybrid perovskite CH3NH3PbI3. We find that caesium incorporation primarily inhibits the slower 'reorientational jump' modes of the organic cation, whilst a smaller effect on the fast 'wobbling time' may be due to distortions and rigidisation of the inorganic cuboctahedral cage. 2DIR centre-line-slope analysis further reveals that while static disorder increases with caesium substitution, the dynamic disorder (reflected in the phase memory of the N-H stretching mode of methylammonium) is largely independent of caesium addition. Our results contribute to the development of a unified model of cation dynamics within organohalide perovskites.
Collapse
Affiliation(s)
- Nathaniel P Gallop
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 83 Wood Lane London W12 0BZ UK
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Gregory M Greetham
- Central Laser Facility, Rutherford Appleton Laboratory Harwell Campus Didcot OX11 0QX UK
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Szymon J Zelewski
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Rakesh Arul
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Jeremy J Baumberg
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Artem A Bakulin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 83 Wood Lane London W12 0BZ UK
| |
Collapse
|
19
|
Bournet Q, Jonusas M, Zheng A, Guichard F, Natile M, Zaouter Y, Joffre M, Bonvalet A, Druon F, Hanna M, Georges P. Inline amplification of mid-infrared intrapulse difference frequency generation. OPTICS LETTERS 2022; 47:4885-4888. [PMID: 36181142 DOI: 10.1364/ol.467792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate an ultrafast mid-infrared source architecture that implements both intrapulse difference frequency generation (iDFG) and further optical parametric amplification (OPA), in an all-inline configuration. The source is driven by a nonlinearly compressed high-energy Yb-doped-fiber amplifier delivering 7.4 fs pulses at a central wavelength of 1030 nm, at a repetition rate of 250 kHz. It delivers 1 µJ, 73 fs pulses at a central wavelength of 8 µm, tunable over more than one octave. By enrolling all the pump photons in the iDFG process and recycling the long wavelength pump photons amplified in the iDFG in the subsequent OPA, we obtain an unprecedented overall optical efficiency of 2%. These performances, combining high energy and repetition rate in a very simple all-inline setup, make this technique ideally suited for a growing number of applications, such as high harmonic generation in solids or two-dimensional infrared spectroscopy experiments.
Collapse
|
20
|
Al-Mualem ZA, Baiz CR. Generative Adversarial Neural Networks for Denoising Coherent Multidimensional Spectra. J Phys Chem A 2022; 126:3816-3825. [PMID: 35668543 DOI: 10.1021/acs.jpca.2c02605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrafast spectroscopy often involves measuring weak signals and long data acquisition times. Spectra are typically collected as a "pump-probe" spectrum by measuring differences in intensity across laser shots. Shot-to-shot intensity fluctuations are most often the primary source of noise in ultrafast spectroscopy. Here, we present a novel approach for denoising ultrafast two-dimensional infrared (2D IR) spectra using conditional generative adversarial neural networks (cGANNs). The cGANN approach is able to eliminate shot-to-shot noise and reconstruct the line shapes present in the noisy input spectrum. We present a general approach for training the cGANN using matched pairs of noisy and clean synthetic 2D IR spectra based on the Kubo-line shape model for a three-level system. Experimental shot-to-shot laser noise is added to synthetic spectra to recreate the noise profile present in measured experimental spectra. The cGANNs can recover line shapes from synthetic 2D IR spectra with signal-to-noise ratios as low as 2:1, while largely preserving the key features such as center frequencies, line widths, and diagonal elongation. In addition, we benchmark the performance of the cGANN using experimental 2D IR spectra of an ester carbonyl vibrational probe and demonstrate that, by applying the cGANN denoising approach, we can extract the frequency-frequency time correlation function (FFCF) from reconstructed spectra using a nodal-line slope analysis. Finally, we provide a set of practical guidelines for extending the denoising method to other coherent multidimensional spectroscopies.
Collapse
Affiliation(s)
- Ziareena A Al-Mualem
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Budriūnas R, Jurkus K, Vengris M, Varanavičius A. Long seed, short pump: converting Yb-doped laser radiation to multi-µJ few-cycle pulses tunable through 2.5-15 µm. OPTICS EXPRESS 2022; 30:13009-13023. [PMID: 35472924 DOI: 10.1364/oe.455180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
We present a setup for generating broadband (up to 1050 cm-1) and broadly tunable (2.5-15 µm) mid-infrared pulses using an Yb-doped femtosecond laser as the pump source. Our scheme, comprising two parametric amplifiers and a mixing stage, exploits favorable group velocity matching conditions in GaSe pumped at 2 µm to directly produce sub-70 fs pulses throughout the tuning range without any additional dispersion compensation, while 30-50 fs pulse durations are achieved with simple dispersion compensation by propagation through thin bulk media. The generated pulses have sub-1% short- and long-term energy noise, as well as stable spectral parameters, while delivering 0.5-2 W average mid-IR power. We expect the source to be useful for various spectroscopic applications in the mid-IR.
Collapse
|
22
|
Rutherford SH, Greetham GM, Towrie M, Parker AW, Kharratian S, Krauss TF, Nordon A, Baker MJ, Hunt NT. Detection of paracetamol binding to albumin in blood serum using 2D-IR spectroscopy. Analyst 2022; 147:3464-3469. [DOI: 10.1039/d2an00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-Dimensional Infrared (2D-IR) spectroscopy is used to detect binding of paracetamol with proteins in blood serum. Quantitative peak patterns are observed indicating structural changes of the albumins' secondary structure when paracetamol bound.
Collapse
Affiliation(s)
- Samantha H. Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory M. Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Anthony W. Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Soheila Kharratian
- Department of Chemistry and York Biomedical Institute, University of York, Heslington, York, YO10 5DD, UK
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Thomas F. Krauss
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Alison Nordon
- WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Matthew J. Baker
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
- Dxcover Ltd, Suite RC534, 204 George Street, Glasgow, G1 1XL, UK
| | - Neil T. Hunt
- Department of Chemistry and York Biomedical Institute, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
23
|
Robben KC, Cheatum CM. Least-Squares Fitting of Multidimensional Spectra to Kubo Line-Shape Models. J Phys Chem B 2021; 125:12876-12891. [PMID: 34783568 PMCID: PMC8630800 DOI: 10.1021/acs.jpcb.1c08764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We report a comprehensive
study of the efficacy of least-squares
fitting of multidimensional spectra to generalized Kubo line-shape
models and introduce a novel least-squares fitting metric, termed
the scale invariant gradient norm (SIGN), that enables a highly reliable
and versatile algorithm. The precision of dephasing parameters is
between 8× and 50× better for nonlinear model fitting compared
to that for the centerline-slope (CLS) method, which effectively increases
data acquisition efficiency by 1–2 orders of magnitude. Whereas
the CLS method requires sequential fitting of both the nonlinear and
linear spectra, our model fitting algorithm only requires nonlinear
spectra but accurately predicts the linear spectrum. We show an experimental
example in which the CLS time constants differ by 60% for independent
measurements of the same system, while the Kubo time constants differ
by only 10% for model fitting. This suggests that model fitting is
a far more robust method of measuring spectral diffusion than the
CLS method, which is more susceptible to structured residual signals
that are not removable by pure solvent subtraction. Statistical analysis
of the CLS method reveals a fundamental oversight in accounting for
the propagation of uncertainty by Kubo time constants in the process
of fitting to the linear absorption spectrum. A standalone desktop
app and source code for the least-squares fitting algorithm are freely
available, with example line-shape models and data. We have written
the MATLAB source code in a generic framework where users may supply
custom line-shape models. Using this application, a standard desktop
fits a 12-parameter generalized Kubo model to a 106 data-point
spectrum in a few minutes.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
24
|
Kübel J, Westenhoff S, Maj M. Giving voice to the weak: Application of active noise reduction in transient infrared spectroscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Stingel AM, Petersen PB. Full spectrum 2D IR spectroscopy reveals below-gap absorption and phonon dynamics in the mid-IR bandgap semiconductor InAs. J Chem Phys 2021; 155:104202. [PMID: 34525815 DOI: 10.1063/5.0056217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the mid-infrared spectral region spans more than 3000 cm-1, ultrafast mid-IR spectroscopies are normally limited to the spectral bandwidth that can be generated in optical parametric amplifiers-typically a few hundred cm-1. As such, the spectral coverage in conventional two dimensional infrared (2D IR) spectroscopy captures only about 1% of the full potential 2D mid-IR spectrum. Here, we present 2D IR spectra using a continuum source as both the excitation and probe pulses, thus capturing close to the full 2D IR spectrum. While the continuum pulses span the entire mid-IR range, they are currently too weak to efficiently excite molecular vibrational modes but strong enough to induce electronic responses and excite phonons in semiconductors. We demonstrate the full spectrum 2D IR spectroscopy of the mid-IR bandgap semiconductor indium arsenide with a bandgap at 2855 cm-1. The measured response extends far below the bandgap and is due to field-induced band-shifting, causing probe absorption below the bandgap. While the band-shifting induces an instantaneous response that exists only during pulse overlap, the 2D IR spectra reveal additional off-diagonal features that decay on longer timescales. These longer-lived off-diagonal features result from coherent phonons excited via a Raman-like process at specific excitation frequencies. This study illustrates that the full spectrum 2D IR spectroscopy of electronic states in the mid-IR is possible with current continuum pulse technology and is effective in characterizing semiconductor properties.
Collapse
Affiliation(s)
- Ashley M Stingel
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Poul B Petersen
- Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Sneha M, Bhattacherjee A, Lewis-Borrell L, Clark IP, Orr-Ewing AJ. Structure-Dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine, and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization. J Phys Chem B 2021; 125:7840-7854. [PMID: 34237215 DOI: 10.1021/acs.jpcb.1c05069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organic photocatalysts (PCs) are gaining popularity in applications of photoredox catalysis, but few studies have explored their modus operandi. We report a detailed mechanistic investigation of the electron transfer activation step of organocatalyzed atom transfer radical polymerization (O-ATRP) involving electronically excited organic PCs and a radical initiator, methyl 2-bromopropionate (MBP). This study compares nine N-aryl modified PCs possessing dihydrophenazine, phenoxazine, or phenothiazine core chromophores. Transient electronic and vibrational absorption spectroscopies over subpicosecond to nanosecond and microsecond time intervals, respectively, track spectroscopic signatures of both the reactants and products of photoinduced electron transfer in N,N-dimethylformamide, dichloromethane, and toluene solutions. The rate coefficients for electron transfer exhibit a range of values up to ∼1010 M-1 s-1 influenced systematically by the PC structures. These rate coefficients are an order of magnitude smaller for catalysts with charge transfer character in their first excited singlet (S1) or triplet (T1) states than for photocatalysts with locally excited character. The latter species show nearly diffusion-limited rate coefficients for the electron transfer to MBP. The derived kinetic parameters are used to model the contributions to electron transfer from the S1 state of each PC for different concentrations of MBP. Comparisons of singlet and triplet reactivity for one of the phenoxazine PCs reveal that the rate coefficient kET(T1) = (2.7 ± 0.3) × 107 M-1 s-1 for electron transfer from the T1 state is 2 orders of magnitude lower than that from the S1 state, kET(S1) = (2.6 ± 0.4) × 109 M-1 s-1. The trends in bimolecular electron transfer rate coefficients are accounted for using a modified Marcus theory for dissociative electron transfer.
Collapse
Affiliation(s)
- Mahima Sneha
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Aditi Bhattacherjee
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Luke Lewis-Borrell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
27
|
Johnson CA, Parker AW, Donaldson PM, Garrett-Roe S. An ultrafast vibrational study of dynamical heterogeneity in the protic ionic liquid ethyl-ammonium nitrate. I. Room temperature dynamics. J Chem Phys 2021; 154:134502. [PMID: 33832238 DOI: 10.1063/5.0044822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using ultrafast two-dimensional infrared spectroscopy (2D-IR), a vibrational probe (thiocyanate, SCN-) was used to investigate the hydrogen bonding network of the protic ionic liquid ethyl-ammonium nitrate (EAN) in comparison to H2O. The 2D-IR experiments were performed in both parallel (⟨ZZZZ⟩) and perpendicular (⟨ZZXX⟩) polarizations at room temperature. In EAN, the non-Gaussian lineshape in the FTIR spectrum of SCN- suggests two sub-ensembles. Vibrational relaxation rates extracted from the 2D-IR spectra provide evidence of the dynamical differences between the two sub-ensembles. We support the interpretation of two sub-ensembles with response function simulations of two overlapping bands with different vibrational relaxation rates and, otherwise, similar dynamics. The measured rates for spectral diffusion depend on polarization, indicating reorientation-induced spectral diffusion (RISD). A model of restricted molecular rotation (wobbling in a cone) fully describes the observed spectral diffusion in EAN. In H2O, both RISD and structural spectral diffusion contribute with similar timescales. This complete characterization of the dynamics at room temperature provides the basis for the temperature-dependent measurements in Paper II of this series.
Collapse
Affiliation(s)
- Clinton A Johnson
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Anthony W Parker
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | - Paul M Donaldson
- Central Laser Facility, STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, United Kingdom
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
28
|
Affiliation(s)
- Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
29
|
Rutherford SH, Greetham GM, Donaldson PM, Towrie M, Parker AW, Baker MJ, Hunt NT. Detection of Glycine as a Model Protein in Blood Serum Using 2D-IR Spectroscopy. Anal Chem 2021; 93:920-927. [PMID: 33295755 DOI: 10.1021/acs.analchem.0c03567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine (Gly) is used as a model system to evaluate the ability of ultrafast two-dimensional infrared (2D-IR) spectroscopy to detect and quantify the low-molecular-weight proteinaceous components of blood serum. Combining data acquisition schemes to suppress absorption bands of H2O that overlap with the protein amide I band with analysis of peak patterns appearing in the off-diagonal region of the 2D-IR spectrum allows separation of the Gly spectral signature from that of the dominant protein fraction of serum in a transmission-mode 2D-IR measurement without any sample manipulation, e.g., filtration or drying. 2D-IR spectra of blood serum samples supplemented with varying concentrations of Gly were obtained, and a range of data analysis methods compared, leading to a detection limit of ∼3 mg/mL for Gly. The reported methodology provides a platform for a critical assessment of the sensitivity of 2D-IR for measuring the concentrations of amino acids, peptides, and low-molecular-weight proteins present in serum samples. We conclude that, in the case of several clinically relevant diagnostic molecules and their combinations, the potential exists for 2D-IR to complement IR absorption methods as the benefits of the second frequency dimension offered by 2D-IR spectroscopy outweigh the added technical complexity of the measurement.
Collapse
Affiliation(s)
- Samantha H Rutherford
- Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, U.K
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Paul M Donaldson
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Matthew J Baker
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
30
|
Farrell KM, Ostrander JS, Jones AC, Yakami BR, Dicke SS, Middleton CT, Hamm P, Zanni MT. Shot-to-shot 2D IR spectroscopy at 100 kHz using a Yb laser and custom-designed electronics. OPTICS EXPRESS 2020; 28:33584-33602. [PMID: 33115018 PMCID: PMC7679191 DOI: 10.1364/oe.409360] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 05/29/2023]
Abstract
The majority of 2D IR spectrometers operate at 1-10 kHz using Ti:Sapphire laser technology. We report a 2D IR spectrometer designed around Yb:KGW laser technology that operates shot-to-shot at 100 kHz. It includes a home-built OPA, a mid-IR pulse shaper, and custom-designed electronics with optional on-chip processing. We report a direct comparison between Yb:KGW and Ti:Sapphire based 2D IR spectrometers. Even though the mid-IR pulse energy is much lower for the Yb:KGW driven system, there is an 8x improvement in signal-to-noise over the 1 kHz Ti:Sapphire driven spectrometer to which it is compared. Experimental data is shown for sub-millimolar concentrations of amides. Advantages and disadvantages of the design are discussed, including thermal background that arises at high repetition rates. This fundamental spectrometer design takes advantage of newly available Yb laser technology in a new way, providing a straightforward means of enhancing sensitivity.
Collapse
Affiliation(s)
- Kieran M. Farrell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Josh S. Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Currently with the Department of Chemistry, Indiana Wesleyan University, Marion, Indiana 46953, USA
| | - Andrew C. Jones
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Currently with the Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, New Mexico 87185, USA
| | - Baichhabi R. Yakami
- PhaseTech Spectroscopy, 2810 Crossroads Drive, Suite 4000 Madison, Wisconsin 53718, USA
| | - Sidney S. Dicke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Chris T. Middleton
- PhaseTech Spectroscopy, 2810 Crossroads Drive, Suite 4000 Madison, Wisconsin 53718, USA
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
31
|
Chuntonov L, Rubtsov IV. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas. J Chem Phys 2020; 153:050902. [DOI: 10.1063/5.0013956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Igor V. Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
32
|
Donaldson PM. Photon echoes and two dimensional spectra of the amide I band of proteins measured by femtosecond IR - Raman spectroscopy. Chem Sci 2020; 11:8862-8874. [PMID: 34123140 PMCID: PMC8163424 DOI: 10.1039/d0sc02978e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infrared (IR) and Raman spectroscopy are fundamental techniques in chemistry, allowing the convenient determination of bond specific chemical composition and structure. Over the last decades, ultrafast multidimensional IR approaches using sequences of femtosecond IR pulses have begun to provide a new means of gaining additional information on molecular vibrational couplings, distributions of molecular structures and ultrafast molecular structural dynamics. In this contribution, new approaches to measuring multidimensional spectra involving IR and Raman processes are presented and applied to the study of the amide I band of proteins. Rephasing of the amide I band is observed using dispersed IR-Raman photon echoes and frequency domain 2D-IR-Raman spectra are measured by use of a mid-IR pulse shaper or over a broader spectral range using a tuneable picosecond laser. A simple pulse shaping approach to performing heterodyned time-domain Fourier Transform 2D-IR-Raman spectroscopy is introduced, revealing that the 2D-IR-Raman spectra distinguish homogeneous and inhomogeneous broadening in the same way as the well-established methods of 2D-IR spectroscopy. Across all datasets, the unique dependence of the amide I data on the IR and Raman strengths, vibrational anharmonicities and inhomogeneous broadening provides a fascinating spectroscopic view of the amide I band. New ultrafast 2D-IR-Raman photon echo spectroscopy techniques are introduced and applied to the structural analysis of proteins.![]()
Collapse
Affiliation(s)
- Paul M Donaldson
- Central Laser Facility, RCaH, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus Didcot OX11 0QX UK
| |
Collapse
|
33
|
Fritzsch R, Hume S, Minnes L, Baker MJ, Burley GA, Hunt NT. Two-dimensional infrared spectroscopy: an emerging analytical tool? Analyst 2020; 145:2014-2024. [PMID: 32051976 DOI: 10.1039/c9an02035g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ultrafast two-dimensional infrared (2D-IR) spectroscopy has provided valuable insights into biomolecular structure and dynamics, but recent progress in laser technology and data analysis methods have demonstrated the potential for high throughput 2D-IR measurements and analytical applications. Using 2D-IR as an analytical tool requires a different approach to data collection and analysis compared to pure research applications however and, in this review, we highlight progress towards usage of 2D-IR spectroscopy in areas relevant to biomedical, pharmaceutical and analytical molecular science. We summarise the technical and methodological advances made to date and discuss the challenges that still face 2D-IR spectroscopy as it attempts to transition from the state-of-the-art laser laboratory to the standard suite of analytical tools.
Collapse
Affiliation(s)
- Robby Fritzsch
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
| | | | | | | | | | | |
Collapse
|
34
|
Robben KC, Cheatum CM. Edge-pixel referencing suppresses correlated baseline noise in heterodyned spectroscopies. J Chem Phys 2020; 152:094201. [PMID: 33480715 DOI: 10.1063/1.5134987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Referencing schemes are commonly used in heterodyned spectroscopies to mitigate correlated baseline noise arising from shot-to-shot fluctuations of the local oscillator. Although successful, these methods rely on careful pixel-to-pixel matching between the two spectrographs. A recent scheme introduced by Feng et al. [Opt. Express 27(15), 20323-20346 (2019)] employed a correlation matrix to allow free mapping between dissimilar spectrographs, leading to the first demonstration of floor noise limited detection on a multichannel array used in heterodyned spectroscopy. In addition to their primary results using a second reference spectrometer, Feng et al. briefly demonstrated the flexibility of their method by referencing to same-array pixels at the two spectral edges (i.e., edge-pixel referencing). We present a comprehensive study of this approach, which we term edge-pixel referencing, including optimization of the approach, assessment of the performance, and determination of the effects of background responses. We show that, within some limitations, the distortions due to background signals will not affect the 2D IR line shape or amplitude and can be mitigated by band narrowing of the pump beams. We also show that the performance of edge-pixel referencing is comparable to that of referencing to a second spectrometer in terms of noise suppression and that the line shapes and amplitudes of the spectral features are, within the measurement error, identical. Altogether, these results demonstrate that edge-pixel referencing is a powerful approach for noise suppression in heterodyned spectroscopies, which requires no new hardware and, so, can be implemented as a software solution for anyone performing heterodyned spectroscopy with multichannel array detectors already.
Collapse
Affiliation(s)
- Kevin C Robben
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
35
|
Hume S, Greetham GM, Donaldson PM, Towrie M, Parker AW, Baker MJ, Hunt NT. 2D-Infrared Spectroscopy of Proteins in Water: Using the Solvent Thermal Response as an Internal Standard. Anal Chem 2020; 92:3463-3469. [PMID: 31985198 PMCID: PMC7145279 DOI: 10.1021/acs.analchem.9b05601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Ultrafast
two-dimensional infrared (2D-IR) spectra can now be obtained
in a matter of seconds, opening up the possibility of high-throughput
screening applications of relevance to the biomedical and pharmaceutical
sectors. Determining quantitative information from 2D-IR spectra recorded
on different samples and different instruments is however made difficult
by variations in beam alignment, laser intensity, and sample conditions.
Recently, we demonstrated that 2D-IR spectroscopy of the protein amide
I band can be performed in aqueous (H2O) rather than deuterated
(D2O) solvents, and we now report a method that uses the
magnitude of the associated thermal response of H2O as
an internal normalization standard for 2D-IR spectra. Using the water
response, which is temporally separated from the protein signal, to
normalize the spectra allows significant reduction of the impact of
measurement-to-measurement fluctuations on the data. We demonstrate
that this normalization method enables creation of calibration curves
for measurement of absolute protein concentrations and facilitates
reproducible difference spectroscopy methodologies. These advances
make significant progress toward the robust data handling strategies
that will be essential for the realization of automated spectral analysis
tools for large scale 2D-IR screening studies of protein-containing
solutions and biofluids.
Collapse
Affiliation(s)
- Samantha Hume
- Department of Physics, SUPA , University of Strathclyde , 107 Rottenrow East , Glasgow G4 0NG , U.K
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Paul M Donaldson
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Anthony W Parker
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus, Didcot OX11 0QX , U.K
| | - Matthew J Baker
- WestCHEM, Department of Pure and Applied Chemistry , University of Strathclyde , Technology and Innovation Centre, 99 George Street , Glasgow G1 1RD , U.K
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute , University of York , Heslington, York YO10 5DD , U.K
| |
Collapse
|
36
|
Kendrick WJ, Jirásek M, Peeks MD, Greetham GM, Sazanovich IV, Donaldson PM, Towrie M, Parker AW, Anderson HL. Mechanisms of IR amplification in radical cation polarons. Chem Sci 2020; 11:2112-2120. [PMID: 34123299 PMCID: PMC8150116 DOI: 10.1039/c9sc05717j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
Break down of the Born-Oppenheimer approximation is caused by mixing of electronic and vibrational transitions in the radical cations of some conjugated polymers, resulting in unusually intense vibrational bands known as infrared active vibrations (IRAVs). Here, we investigate the mechanism of this amplification, and show that it provides insights into intramolecular charge migration. Spectroelectrochemical time-resolved infrared (TRIR) and two-dimensional infrared (2D-IR) spectroscopies were used to investigate the radical cations of two butadiyne-linked conjugated porphyrin oligomers, a linear dimer and a cyclic hexamer. The 2D-IR spectra reveal strong coupling between all the IRAVs and the electronic π-π* polaron band. Intramolecular vibrational energy redistribution (IVR) and vibrational relaxation occur within ∼0.1-7 ps. TRIR spectra show that the transient ground state bleach (GSB) and excited state absorption (ESA) signals have anisotropies of 0.31 ± 0.07 and 0.08 ± 0.04 for the linear dimer and cyclic hexamer cations, respectively. The small TRIR anisotropy for the cyclic hexamer radical cation indicates that the vibrationally excited polaron migrates round the nanoring on a time scale faster than the measurement, i.e. within 0.5 ps, at 298 K. Density functional theory (DFT) calculations qualitatively reproduce the emergence of the IRAVs. The first singlet (S1) excited states of the neutral porphyrin oligomers exhibit similar IRAVs to the radical cations, implying that the excitons have similar electronic structures to polarons. Our results show that IRAVs originate from the strong coupling of charge redistribution to nuclear motion, and from the similar energies of electronic and vibrational transitions.
Collapse
Affiliation(s)
- William J Kendrick
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Michael Jirásek
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Martin D Peeks
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council Didcot OX11 0QX UK
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| |
Collapse
|
37
|
Jones AC, Kunz MB, Tigges-Green I, Zanni MT. Dual spectral phase and diffraction angle compensation of a broadband AOM 4-f pulse-shaper for ultrafast spectroscopy. OPTICS EXPRESS 2019; 27:37236-37247. [PMID: 31878507 DOI: 10.1364/oe.27.037236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
AOM-based pulse shaping as a method has been shown to provide many advantages in the field of ultrafast spectroscopy, in particular for the creation of phase matched pulse pairs for two-dimensional IR and electronic spectroscopy. In this paper we demonstrate the capabilities of a quartz-based AOM pulse-shaper to provide fine control over the phase and spatial dispersion of ultrafast supercontinuum pulses. We show that by using the Bragg condition, we can define a mask function for our AOM such that the angle of diffraction is constant for all frequencies. By summing all the contributions to spectral phase due to normal and anomalous dispersion of our optical components, and taking into account the intrinsic frequency dependent phase as a result of the acoustic sine wave propagating through the AOM, we can determine an optimal mask function that meets the Bragg condition for all frequencies, and generates compressed (∼50 fs) supercontinuum pulses.
Collapse
|
38
|
Hume S, Hithell G, Greetham GM, Donaldson PM, Towrie M, Parker AW, Baker MJ, Hunt NT. Measuring proteins in H 2O with 2D-IR spectroscopy. Chem Sci 2019; 10:6448-6456. [PMID: 31341597 PMCID: PMC6611063 DOI: 10.1039/c9sc01590f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The amide I infrared band of proteins is highly sensitive to secondary structure, but studies under physiological conditions are prevented by strong, overlapping water absorptions, motivating the widespread use of deuterated solutions. H/D exchange raises fundamental questions regarding the impact of increased mass on protein dynamics, while deuteration is impractical for biomedical or commercial applications of protein IR spectroscopy. We show that 2D-IR spectroscopy can avoid this problem because the 2D-IR amide I signature of proteins dominates that of water even at sub-millimolar protein concentrations. Using equine blood serum as a test system, we investigate the significant implications of being able to measure the spectroscopy and dynamics of proteins in water, demonstrating relevance in areas ranging from fundamental science to the clinic. Measurements of vibrational relaxation dynamics of serum proteins reveals that deuteration slows down the rate of amide I vibrational relaxation by >10%, indicating a dynamic impact of isotopic exchange in some proteins. The unique link between protein secondary structure and 2D-IR amide I lineshape allows differentiation of signals due to albumin and globulin protein fractions in serum leading to measurements of the biomedically-important albumin to globulin ratio (AGR) with an accuracy of ±4% across a clinically-relevant range. Furthermore, we demonstrate that 2D-IR spectroscopy enables differentiation of the structurally similar globulin proteins IgG, IgA and IgM, opening up a straightforward spectroscopic approach to measuring levels of serum proteins that are currently only accessible via biomedical laboratory testing.
Collapse
Affiliation(s)
- Samantha Hume
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK
| | - Gordon Hithell
- Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK
| | - Gregory M Greetham
- STFC Central Laser Facility , Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX , UK
| | - Paul M Donaldson
- STFC Central Laser Facility , Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX , UK
| | - Michael Towrie
- STFC Central Laser Facility , Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX , UK
| | - Anthony W Parker
- STFC Central Laser Facility , Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX , UK
| | - Matthew J Baker
- WestCHEM , Department of Pure and Applied Chemistry , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , UK
| | - Neil T Hunt
- Department of Chemistry , York Biomedical Research Institute , University of York , Heslington , York , YO10 5DD , UK .
| |
Collapse
|
39
|
Humston JJ, Bhattacharya I, Jacob M, Cheatum CM. Optimized reconstructions of compressively sampled two-dimensional infrared spectra. J Chem Phys 2019; 150:234202. [PMID: 31228910 DOI: 10.1063/1.5097946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compressive sampling has the potential to dramatically accelerate the pace of data collection in two-dimensional infrared (2D IR) spectroscopy. We have previously introduced the Generic Iteratively Reweighted Annihilating Filter (GIRAF) reconstruction algorithm to solve the reconstruction in 2D IR compressive sampling. Here, we report a thorough assessment of this method and comparison to our earlier efforts using the Total Variation (TV) algorithm. We show that the GIRAF algorithm has some distinct advantages over TV. Although it is no better or worse in terms of ameliorating the impacts of compressive sampling on the measured 2D IR line shape, we find that the nature of those effects is different for GIRAF than they were for TV. In addition to assessing the impacts on the line shape of a single oscillator, we also test the ability of the algorithm to reconstruct spectra that have transitions from more than one oscillator, such as the coupled carbonyl oscillators in rhodium dicarbonyl. Finally, and perhaps most importantly, we show that the GIRAF algorithm has a distinct denoising effect on the signal-to-noise ratio (SNR) of the 2D IR spectra that can increase the SNR by as much as 4× without any additional signal averaging and collecting fewer data points, which should further enhance the acceleration of data collection that can be achieved using compressive sampling and enable even more challenging experimental measurements.
Collapse
Affiliation(s)
| | - Ipshita Bhattacharya
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
40
|
Heiner Z, Wang L, Petrov V, Mero M. Broadband vibrational sum-frequency generation spectrometer at 100 kHz in the 950-1750 cm -1 spectral range utilizing a LiGaS 2 optical parametric amplifier. OPTICS EXPRESS 2019; 27:15289-15297. [PMID: 31163726 DOI: 10.1364/oe.27.015289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
We present a 100 kHz broadband vibrational sum-frequency generation (VSFG) spectrometer operating in the 5.7-10.5 µm (950-1750 cm-1) wavelength range. The mid-infrared beam of the system is obtained from a collinear, type-I LiGaS2-crystal-based optical parametric amplifier seeded by a supercontinuum and pumped directly by 180 fs, ~32 µJ, 1.03 µm pulses from an Yb:KGd(WO4)2 laser system. Up to 0.5 µJ mid-infrared pulses with durations below 100 fs were obtained after dispersion compensation utilizing bulk materials. We demonstrate the utility of the spectrometer by recording high-resolution, low-noise vibrational spectra of Langmuir-Blodgett supported lipid monolayers on CaF2. The presented VSFG spectrometer scheme offers superior signal-to-noise ratios and constitutes a high-efficiency, low-cost, easy-to-use alternative to traditional schemes relying on optical parametric amplification followed by difference frequency generation.
Collapse
|