1
|
Xu FX, Rathbone EG, Fu D. Simultaneous Dual-Band Hyperspectral Stimulated Raman Scattering Microscopy with Femtosecond Optical Parametric Oscillators. J Phys Chem B 2023; 127:2187-2197. [PMID: 36883604 PMCID: PMC10144064 DOI: 10.1021/acs.jpcb.2c09105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy is a label-free quantitative optical technique for imaging molecular distributions in cells and tissues by probing their intrinsic vibrational frequencies. Despite its usefulness, existing SRS imaging techniques have limited spectral coverage due to either a wavelength tuning constraint or narrow spectral bandwidth. High-wavenumber SRS imaging is commonly used to map lipid and protein distribution in biological cells and visualize cell morphology. However, to detect small molecules or Raman tags, imaging in the fingerprint region or "silent" region, respectively, is often required. For many applications, it is desirable to collect SRS images in two Raman spectral regions simultaneously for visualizing the distribution of specific molecules in cellular compartments or providing accurate ratiometric analysis. In this work, we present an SRS microscopy system using three beams generated by a femtosecond oscillator to acquire hyperspectral SRS image stacks in two arbitrary vibrational frequency bands, between 650-3280 cm-1, simultaneously. We demonstrate potential biomedical applications of the system in investigating fatty acid metabolism, cellular drug uptake and accumulation, and lipid unsaturation level in tissues. We also show that the dual-band hyperspectral SRS imaging system can be adapted for the broadband fingerprint region hyperspectral imaging (1100-1800 cm-1) by simply adding a modulator.
Collapse
Affiliation(s)
- Fiona Xi Xu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Emily G Rathbone
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Wu C, Zhang X, Zhou J, Zou L, Yan R. Relationship between the sensitivity and beam splitting ratio, conversion efficiency, and local oscillator power in balanced detection. APPLIED OPTICS 2022; 61:5538-5544. [PMID: 36255779 DOI: 10.1364/ao.458104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Balanced detection, which is becoming increasingly essential for wireless communication and optical fiber communication, has been extensively studied in recent years. However, the relationships between the sensitivity and the other parameters have not yet been comprehensively ascertained. In this work, the relationship between the sensitivity and the local oscillator power Plo, consistency parameter Δα, and beam splitting ratio ε in balanced detection is explored through numerical and communication system simulations. If ε decreases, the sensitivity increases, and the corresponding Plo decreases. With the increase or decrease in Δα, ε corresponding to the minimum sensitivity shifts toward the right or left, respectively. This shift increases with the increase in the absolute value of Δα, and the minimum value of the sensitivity increases. When the absolute values of Δα are equal, their curves are almost symmetrical. As ε approaches 0.5, the tolerable maximum of Plo becomes higher. At any instant, the average value of the quantum efficiency of the two photodiodes is more critical than the maximum quantum efficiency and balance. This work facilitates thorough understanding of the sensitivity of balanced detection, which can be beneficial for future optical communication design.
Collapse
|
3
|
Choi DS, Lim S, Park JS, Kim CH, Rhee H, Cho M. Label-Free Live-Cell Imaging of Internalized Microplastics and Cytoplasmic Organelles with Multicolor CARS Microscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3045-3055. [PMID: 35133146 DOI: 10.1021/acs.est.1c06255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the bioaccumulation of microplastics (MPs) is considered as a potential health risk, many efforts have been made to understand the cellular dynamics and cytotoxicity of MPs. Here, we demonstrate that label-free multicolor coherent anti-Stokes Raman scattering (CARS) microscopy enables separate vibrational imaging of internalized MPs and lipid droplets (LDs) with indistinguishable shapes and sizes in live cells. By simultaneously obtaining polystyrene (PS)- and lipid-specific CARS images at two very different frequencies, 1000 and 2850 cm-1, respectively, we successfully identify the local distribution of ingested PS beads and native LDs in Caenorhabditis elegans. We further show that the movements of PS beads and LDs in live cells can be separately tracked in real time, which allows us to characterize their individual intracellular dynamics. We thus anticipate that our multicolor CARS imaging method could be of great use to investigate the cellular transport and cytotoxicity of MPs without additional efforts for pre-labeling to MPs.
Collapse
Affiliation(s)
- Dae Sik Choi
- Technology Human Resource Support for SMEs Center, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
- R&D Center, Uniotech, Daejeon 34013, Republic of Korea
| | - Sohee Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Chang-Ho Kim
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul 04107, Republic of Korea
| | - Hanju Rhee
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Ni H, Lin P, Zhu Y, Zhang M, Tan Y, Zhan Y, Wang Z, Cheng JX. Multiwindow SRS Imaging Using a Rapid Widely Tunable Fiber Laser. Anal Chem 2021; 93:15703-15711. [PMID: 34787995 PMCID: PMC9713687 DOI: 10.1021/acs.analchem.1c03604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spectroscopic stimulated Raman scattering (SRS) imaging has become a useful tool finding a broad range of applications. Yet, wider adoption is hindered by the bulky and environmentally sensitive solid-state optical parametric oscillator (OPO) in a current SRS microscope. Moreover, chemically informative multiwindow SRS imaging across C-H, C-D, and fingerprint Raman regions is challenging due to the slow wavelength tuning speed of the solid-state OPO. In this work, we present a multiwindow SRS imaging system based on a compact and robust fiber laser with rapid and wide tuning capability. To address the relative intensity noise intrinsic to a fiber laser, we implemented autobalanced detection, which enhances the signal-to-noise ratio of stimulated Raman loss imaging by 23 times. We demonstrate high-quality SRS metabolic imaging of fungi, cancer cells, and Caenorhabditis elegans across the C-H, C-D, and fingerprint Raman windows. Our results showcase the potential of the compact multiwindow SRS system for a broad range of applications.
Collapse
Affiliation(s)
- Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA, 02215, USA
| | - Peng Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA, 02215, USA
| | - Yifan Zhu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Meng Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA
| | - Zian Wang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary’s St., Boston, MA, 02215, USA
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA
- Photonics Centre, Boston University, 8 St. Mary’s St., Boston, MA, 02215, USA
| |
Collapse
|
5
|
Abstract
The performance of light microscopes is limited by the stochastic nature of light, which exists in discrete packets of energy known as photons. Randomness in the times that photons are detected introduces shot noise, which fundamentally constrains sensitivity, resolution and speed1. Although the long-established solution to this problem is to increase the intensity of the illumination light, this is not always possible when investigating living systems, because bright lasers can severely disturb biological processes2-4. Theory predicts that biological imaging may be improved without increasing light intensity by using quantum photon correlations1,5. Here we experimentally show that quantum correlations allow a signal-to-noise ratio beyond the photodamage limit of conventional microscopy. Our microscope is a coherent Raman microscope that offers subwavelength resolution and incorporates bright quantum correlated illumination. The correlations allow imaging of molecular bonds within a cell with a 35 per cent improved signal-to-noise ratio compared with conventional microscopy, corresponding to a 14 per cent improvement in concentration sensitivity. This enables the observation of biological structures that would not otherwise be resolved. Coherent Raman microscopes allow highly selective biomolecular fingerprinting in unlabelled specimens6,7, but photodamage is a major roadblock for many applications8,9. By showing that the photodamage limit can be overcome, our work will enable order-of-magnitude improvements in the signal-to-noise ratio and the imaging speed.
Collapse
|
6
|
Genchi L, Bucci A, Laptenok SP, Giammona A, Liberale C. Hadamard-transform spectral acquisition with an acousto-optic tunable filter in a broadband stimulated Raman scattering microscope. OPTICS EXPRESS 2021; 29:2378-2386. [PMID: 33726433 DOI: 10.1364/oe.415752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present a novel configuration for high spectral resolution multiplexing acquisition based on the Hadamard transform in stimulated Raman scattering (SRS) microscopy. The broadband tunable output of a dual-beam femtosecond laser is filtered by a fast, narrowband, and multi-channel acousto-optic tunable filter (AOTF). By turning on and off different subsets of its 8 independent channels, the AOTF generates the spectral masks given by the Hadamard matrix. We demonstrate a seamless and automated operation in the Raman fingerprint and CH-stretch regions. In the presence of additive noise, the spectral measurements using the multiplexed method show the same signal-to-noise ratio of conventional single-wavenumber acquisitions performed with 4 times longer integration time.
Collapse
|