1
|
Farmani M, Park W, Lee S, Choi CH. Tipping the ultrafast photochemical balance of cis-stilbene. Photochem Photobiol Sci 2025:10.1007/s43630-025-00737-4. [PMID: 40413294 DOI: 10.1007/s43630-025-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
Multi-state nonadiabatic molecular dynamics simulations combined with MRSF-TDDFT have revealed that the quantum yield of photoproducts in cis-stilbene is dependent on the initial temperature of the ground state, thereby resolving controversies regarding the competition between isomerization and ring-closure reactions. Specifically, 4,4-dihydrophenanthrene (DHP) is preferentially formed at low temperatures, while trans-stilbene is favored at high temperatures. The ethylenic torsional motions ( θ ) are particularly coupled with the initial thermal condition, tipping the balance of the competition.
Collapse
Affiliation(s)
- Maryam Farmani
- Department of Chemistry, Kyungpook National University, Daegu, 41566, South Korea
| | - Woojin Park
- Department of Chemistry, Kyungpook National University, Daegu, 41566, South Korea
| | - Seunghoon Lee
- Department of Chemistry, Seoul National University, Seoul, 151-747, South Korea
| | - Cheol Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Jíra T, Janoš J, Slavíček P. Sensitivity Analysis in Photodynamics: How Does the Electronic Structure Control cis-Stilbene Photodynamics? J Chem Theory Comput 2024; 20:10972-10985. [PMID: 39668373 DOI: 10.1021/acs.jctc.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The techniques of computational photodynamics are increasingly employed to unravel reaction mechanisms and interpret experiments. However, misinterpretations in nonadiabatic dynamics caused by inaccurate underlying potentials are often difficult to foresee. This work focuses on revealing the systematic errors in the nonadiabatic simulations due to the underlying potentials and suggests a thrifty approach to evaluate the sensitivity of the simulations to the potential. This issue is exemplified in the photochemistry of cis-stilbene, where similar experimental outcomes have been differently interpreted based on the electronic structure methods supporting nonadiabatic dynamics. We examine the predictions of cis-stilbene photochemistry using trajectory surface hopping methods coupled with various electronic structure methods (OM3-MRCISD, SA2-CASSCF, XMS-SA2-CASPT2, and XMS-SA3-CASPT2) and assess their ability to interpret experimental observations. While the excited-state lifetimes and calculated photoelectron spectra show consistency with experiments, the reaction quantum yields vary significantly: either completely suppressing cyclization or isomerization. Intriguingly, analyzing stationary points on the potential energy surface does not hint at any major discrepancy, making the electronic structure methods seemingly reliable when treated separately. We show that performing an ensemble of simulations with different potentials provides an estimate of the electronic structure sensitivity. However, this ensemble approach is costly. Thus, we propose running nonadiabatic simulations with an external bias at a resource-efficient underlying potential (semiempirical or machine-learned) for the sensitivity analysis. We demonstrate this approach using a semiempirical OM3-MRCISD method with a harmonic bias toward cyclization.
Collapse
Affiliation(s)
- Tomáš Jíra
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| |
Collapse
|
3
|
Nongspung DW, Panda AN. An ab initio study on the photoisomerization in 2-styrylpyridine. Phys Chem Chem Phys 2024. [PMID: 39588709 DOI: 10.1039/d4cp04082a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
We report results of a theoretical study on photoinduced processes in 2-styrylpyridine. The geometries and the relative energies of the possible conformers were investigated using the second-order Møller-Plesset (MP2) and algebraic diagrammatic construction to second-order (ADC(2)) methods and the cc-pVTZ basis set. The complete active space self consistent field (CASSCF) method is used for locating the minimum-energy conical intersection (MECI) geometries between the S0 and S1 states. In addition to the twisted-pyramidalized MECI points along the trans and cis isomerization pathways, S1/S0 cooperating-ring MECI and cyclized-ring MECI structures, lying on the cyclization pathways of cis-2-styrylpyridine, were also located. Except the twisted pyramidalized CI2 and cyclized Cyc-CI3, all the other MECI points are found to be accessible from either one or more Franck-Condon points. The possibilities for the cis-trans isomerization and cyclization processes are discussed along the image-dependent pair potential (IDPP) paths.
Collapse
Affiliation(s)
- Derreck W Nongspung
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India.
| | - Aditya N Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India.
| |
Collapse
|
4
|
Yoshinaga M, Toldo JM, Rocha WR, Barbatti M. Photoisomerization pathways of trans-resveratrol. Phys Chem Chem Phys 2024; 26:24179-24188. [PMID: 39254634 PMCID: PMC11385707 DOI: 10.1039/d4cp02373k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Resveratrol is well-known for promoting health benefits due to its antioxidant, anti-aging, anti-carcinogenic, and other beneficial activities. Understanding the photophysics of resveratrol is essential for determining its applicability to pharmaceutical innovations. In the present work, we used an explore-then-assess strategy to map the internal conversion pathways of trans-resveratrol. This strategy consists of exploring the multidimensional configurational space with nonadiabatic dynamics simulations based on a semiempirical multireference method, followed by a feasibility assessment of reduced-dimensionality pathways at a high ab initio theoretical level. The exploration step revealed that internal conversion to the ground state may occur near five distinct conical intersections. The assessment step showed that the main photoisomerization pathway involves a twisted-pyramidalized S1/S0 conical intersection, yielding either trans or cis isomers. However, a secondary path was identified, where cis-trans isomerization happens in the excited state and internal conversion occurs at a cyclic conical intersection, yielding a closed-ring resveratrol derivative. This derivative, which can be formed through this direct path or an indirect photoexcitation, may be connected to the production of oxygen-reactive species previously reported and have implications in photodynamic therapy.
Collapse
Affiliation(s)
- Mariana Yoshinaga
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | - Willian R Rocha
- Laboratório de Estudos Computacionais em Sistemas Moleculares, eCsMo, Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
5
|
Pandey A, Poirier B, Liang R. Development of Parallel On-the-Fly Crystal Algorithm for Global Exploration of Conical Intersection Seam Space. J Chem Theory Comput 2024; 20:4778-4789. [PMID: 38775818 DOI: 10.1021/acs.jctc.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Conical intersection (CI) seams are configuration spaces of a molecular system where two or more (spin) adiabatic electronic states are degenerate in energy. They play essential roles in photochemistry because nonradiative decays often occur near the minima of the seam, i.e., the minimum energy CIs (MECIs). Thus, it is important to explore the CI seams and discover the MECIs. Although various approaches exist for CI seam exploration, most of them are local in nature, requiring reasonable initial guesses of geometries and nuclear gradients during the search. Global search algorithms, on the other hand, are powerful because they can fully sample the configurational space and locate important MECIs missed by local algorithms. However, global algorithms are often computationally expensive for large systems due to their poor scalability with respect to the number of degrees of freedom. To overcome this challenge, we develop the parallel on-the-fly Crystal algorithm to globally explore the CI seam space, taking advantage of its superior scaling behavior. Specifically, Crystal is coupled with on-the-fly evaluations of the excited and ground state energies using multireference electronic structure methods. Meanwhile, the algorithm is parallelized to further boost its computational efficiency. The effectiveness of this new algorithm is tested for three types of molecular photoswitches of significant importance in material and biomedical sciences: photostatin (PST), stilbene, and butadiene. A rudimentary implementation of the algorithm is applied to PST and stilbene, resulting in the discovery of all previously identified MECIs and several new ones. A refined version of the algorithm, combined with a systematic clustering technique, is applied to butadiene, resulting in the identification of an unprecedented number of energetically accessible MECIs. The results demonstrate that the parallel on-the-fly Crystal algorithm is a powerful tool for automated global CI seam exploration.
Collapse
Affiliation(s)
- Ankit Pandey
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Bill Poirier
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
6
|
Roy P, Sardjan AS, Browne WR, Feringa BL, Meech SR. Excited State Dynamics in Unidirectional Photochemical Molecular Motors. J Am Chem Soc 2024; 146:12255-12270. [PMID: 38656968 PMCID: PMC11082934 DOI: 10.1021/jacs.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Unidirectional photochemically driven molecular motors (PMMs) convert the energy of absorbed light into continuous rotational motion. As such they are key components in the design of molecular machines. The prototypical and most widely employed class of PMMs is the overcrowded alkenes, where rotational motion is driven by successive photoisomerization and thermal helix inversion steps. The efficiency of such PMMs depends upon the speed of rotation, determined by the rate of ground state thermal helix inversion, and the quantum yield of photoisomerization, which is dependent on the excited state energy landscape. The former has been optimized by synthetic modification across three generations of overcrowded alkene PMMs. These improvements have often been at the expense of photoisomerization yield, where there remains room for improvement. In this perspective we review the application of ultrafast spectroscopy to characterize the excited state dynamics in PMMs. These measurements lead to a general mechanism for all generations of PMMs, involving subpicosecond decay of a Franck-Condon excited state to populate a dark excited state which decays within picoseconds via conical intersections with the electronic ground state. The model is discussed in the context of excited state dynamics calculations. Studies of PMM photochemical dynamics as a function of solvent suggest exploitation of intramolecular charge transfer and solvent polarity as a route to controlling photoisomerization yield. A test of these ideas for a first generation motor reveals a high degree of solvent control over isomerization yield. These results suggest a pathway to fine control over the performance of future PMMs.
Collapse
Affiliation(s)
- Palas Roy
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Andy S. Sardjan
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Ben L. Feringa
- Centre
for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| |
Collapse
|
7
|
Borne KD, Cooper JC, Ashfold MNR, Bachmann J, Bhattacharyya S, Boll R, Bonanomi M, Bosch M, Callegari C, Centurion M, Coreno M, Curchod BFE, Danailov MB, Demidovich A, Di Fraia M, Erk B, Faccialà D, Feifel R, Forbes RJG, Hansen CS, Holland DMP, Ingle RA, Lindh R, Ma L, McGhee HG, Muvva SB, Nunes JPF, Odate A, Pathak S, Plekan O, Prince KC, Rebernik P, Rouzée A, Rudenko A, Simoncig A, Squibb RJ, Venkatachalam AS, Vozzi C, Weber PM, Kirrander A, Rolles D. Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane. Nat Chem 2024; 16:499-505. [PMID: 38307994 PMCID: PMC10997510 DOI: 10.1038/s41557-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
Collapse
Affiliation(s)
- Kurtis D Borne
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Joseph C Cooper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Julien Bachmann
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Surjendu Bhattacharyya
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Matteo Bonanomi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Michael Bosch
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marcello Coreno
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
- Istituto di Struttura della Materia (ISM-CNR), CNR, Trieste, Italy
| | | | | | | | | | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Davide Faccialà
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ruaridh J G Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Christopher S Hansen
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Rebecca A Ingle
- Department of Chemistry, University College London, London, UK
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Henry G McGhee
- Department of Chemistry, University College London, London, UK
| | - Sri Bhavya Muvva
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Asami Odate
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Shashank Pathak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Oksana Plekan
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | | | | | | | - Artem Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Richard J Squibb
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | - Caterina Vozzi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
8
|
Savchenko EV, Kostjukov VV. 4a,4b-Dihydrophenanthrene → cis-stilbene photoconversion: TD-DFT/DFT study. J Mol Model 2024; 30:24. [PMID: 38183494 DOI: 10.1007/s00894-023-05824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
CONTEXT DHP → CS photoconversion was analyzed in terms of electron density redistribution for the first time. The following explanation for the non-recovery of the C4a-C4b bond upon CS relaxation is proposed: during this process, the Coulomb repulsion energy between these pairs of atoms increases by almost one and a half times, and their bonding by an electron at LUMO is insufficient to recover the C4a-C4b bond. According to calculations, upon CS relaxation, the linker connecting the benzene rings undergoes significant structural changes. In this case, the distance between the C4a and C4b atoms increases from 3.00 Å to 3.28 Å. Calculations showed that the C4a-C4b vibration of the DHP bond has a very low intensity. Therefore, thermal motion does not contribute to the rupture of this bond. METHODS All calculations were performed using the Gaussian16 software package at the B3LYP/6-311 + + G(d,p)/IEFPCM theory level. B3LYP was the only hybrid functional supported by Gaussian16, which ensured the cleavage of the C4a-C4b bond of DHP while optimizing its S1 excited state. A quantitative description of the redistribution of electron density in the studied conformers was carried out using the analysis of the NPA of atomic charges. Cyclohexane was used as an implicitly specified non-polar solvent. Visualization of molecular orbitals, and electron densities, as well as plotting of calculated IR spectra, were performed using the Gaussview6 software package.
Collapse
Affiliation(s)
- Elizaveta V Savchenko
- Sevastopol State University, Universitetskaya Str., 33, Sevastopol, 299053, Crimea, Ukraine
| | - Victor V Kostjukov
- Sevastopol State University, Universitetskaya Str., 33, Sevastopol, 299053, Crimea, Ukraine.
| |
Collapse
|
9
|
Kuramochi H, Tsutsumi T, Saita K, Wei Z, Osawa M, Kumar P, Liu L, Takeuchi S, Taketsugu T, Tahara T. Ultrafast Raman observation of the perpendicular intermediate phantom state of stilbene photoisomerization. Nat Chem 2024; 16:22-27. [PMID: 38182762 DOI: 10.1038/s41557-023-01397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
Trans-cis photoisomerization is generally described by a model in which the reaction proceeds via a common intermediate having a perpendicular conformation around the rotating bond, irrespective of from which isomer the reaction starts. Nevertheless, such an intermediate has yet to be identified unambiguously, and it is often called the 'phantom' state. Here we present the structural identification of the common, perpendicular intermediate of stilbene photoisomerization using ultrafast Raman spectroscopy. Our results reveal ultrafast birth and decay of an identical, short-lived transient that exhibits a vibrational signature characteristic of the perpendicular state upon photoexcitation of the trans and cis forms. In combination with ab initio molecular dynamics simulations, it is shown that the photoexcited trans and cis forms are funnelled off to the ground state through the same, perpendicular intermediate.
Collapse
Affiliation(s)
- Hikaru Kuramochi
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), Wako, Japan
- JST, PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Kenichiro Saita
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Zhengrong Wei
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Japan
- Department of Physics, Hubei University, Wuhan, China
| | - Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Miyashiro-Machi, Japan
| | - Pardeep Kumar
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), Wako, Japan
- Spiden AG, Pfäffikon, Switzerland
| | - Li Liu
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Japan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), Wako, Japan
- Graduate School of Science, University of Hyogo, Kamigori, Ako, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, Wako, Japan.
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), Wako, Japan.
| |
Collapse
|
10
|
Bonilla V, Freixas VM, Fernandez-Alberti S, Galindo JF. Impact of the core on the inter-branch exciton exchange in dendrimers. Phys Chem Chem Phys 2023; 25:12097-12106. [PMID: 37133823 DOI: 10.1039/d2cp06009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organic dendrimers with π conjugated systems are capable of capturing solar energy as a renewable source for human use. Nonetheless, further study regarding the relationship between the structure and the energy transfer mechanism in these types of molecules is still necessary. In this work, nonadiabatic excited state molecular dynamics (NEXMD) were carried out to study the intra- and inter-branch exciton migration in two tetra-branched dendrimers, C(dSSB)4 and Ad(BuSSB)4, which differ in their respective carbon and adamantane core. Both systems undergo a ladder decay mechanism between excited states, with back-and-forth transitions between S1 and S2. Despite presenting very similar absorption-emission spectra, differences in the photoinduced energy relaxation are observed. The size of the core impacts the inter-branch energy exchange and transient exciton localization/delocalization, which ultimately condition the relative energy relaxation rates, being faster in Ad(BuSSB)4 with respect to C(dSSB)4. Nevertheless, the photoinduced processes lead to a progressive final exciton-self-trapping in one of the branches of both dendrimers, which is a desirable feature in organic photovoltaic applications. Our results can inspire the design of more efficient dendrimers with the desired magnitude of inter-branch exciton exchange and localization/delocalization according to changes in their core.
Collapse
Affiliation(s)
- Valeria Bonilla
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, 111321, Bogotá, Colombia.
| | - Victor M Freixas
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | | | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, 111321, Bogotá, Colombia.
| |
Collapse
|
11
|
Karashima S, Miao X, Kanayama A, Yamamoto YI, Nishitani J, Kavka N, Mitric R, Suzuki T. Ultrafast Ring Closure Reaction of Gaseous cis-Stilbene from S 1(ππ*). J Am Chem Soc 2023; 145:3283-3288. [PMID: 36745770 DOI: 10.1021/jacs.2c12266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
cis-Stilbene (cis-St) is a well-known benchmark system for cis-trans photoisomerization. cis-St also produces 4a,4b-dihydrophenanthrene (DHP) in solution with a quantum yield of less than 0.19. The ring closure reaction, however, has never been identified for gaseous cis-St, and a recent computational simulation predicted the quantum yield of DHP to be only 0.04. In the present study, we identified an ultrafast ring closure reaction of gaseous cis-St for the first time using extreme ultraviolet time-resolved photoelectron spectroscopy. Surface hopping trajectory calculations at the SA3-XMS-CASPT2(2,2) level of theory reproduce the features of the observed time-resolved photoelectron spectra and predict the cis-St:DHP:trans-St branching ratio to be 0.55:0.41:0.04, in contrast with previous estimates. The results indicate that photoexcited cis-St favors ring closure over cis-trans isomerization under the isolated condition.
Collapse
Affiliation(s)
- Shutaro Karashima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Akio Kanayama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yo-Ichi Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Nikita Kavka
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Tsutsumi T, Ono Y, Taketsugu T. Multi-state Energy Landscape for Photoreaction of Stilbene and Dimethyl-stilbene. J Chem Theory Comput 2022; 18:7483-7495. [PMID: 36351076 DOI: 10.1021/acs.jctc.2c00560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have recently developed the reaction space projector (ReSPer) method, which constructs a reduced-dimensionality reaction space uniquely determined from reference reaction paths for a polyatomic molecular system and projects classical trajectories into the same reaction space. In this paper, we extend ReSPer to the analysis of photoreaction dynamics and relaxation processes of stilbene and present the concept of a "multi-state energy landscape," incorporating the ground- and excited-state reaction subspaces. The multi-state energy landscape successfully explains the previously established photoreaction processes of cis-stilbene, such as the cis-trans photoisomerization and photocyclization. In addition, we discuss the difference in the excited-state reaction dynamics between stilbene and 1,1'-dimethyl stilbene based on a common reaction subspace determined from the framework part of reference structures with different number of atoms. This approach allows us to target any molecule with a common framework, greatly expanding the applicability of the ReSPer analysis. The multi-state energy landscape provides fruitful insight into photochemical reactions, exploring the excited- and ground-state potential energy surfaces, as well as comprehensive reaction processes with nonradiative transitions between adiabatic states, within the stage of a reduced-dimensionality reaction space.
Collapse
Affiliation(s)
- Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan.,L-Station, Creative Research Institution (CRI), Hokkaido University, Sapporo060-0812, Japan
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
13
|
Sudarkova SM, Ioffe IN. E/ Z photoisomerization pathway in pristine and fluorinated di(3-furyl)ethenes. Phys Chem Chem Phys 2022; 24:23749-23757. [PMID: 36156663 DOI: 10.1039/d2cp02563a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an XMCQDPT2 study of the E/Z photoisomerization in a series of fluorinated di(3-furyl)ethenes (3DFEs). Upon excitation, pristine and low-fluorinated 3DFE show conventional behavior of many diarylethenes: unhindered twisting motion toward the pyramidalized zwitterionic state where relaxation to the ground state occurs. However, deep fluorination of 3DFEs can hamper E-to-Z isomerization by giving rise to an alternative excited-state relaxation pathway: an out-of-plane motion of a ring fluorine atom. Importantly, the case of fluorinated 3DFEs reveals serious deficiencies of the popular TDDFT approach. With some commonly used exchange-correlation functionals, the alternative relaxation pathway is not reproduced and, moreover, an irrelevant ring rotation coordinate is predicted instead. Nevertheless, TDDFT remains qualitatively adequate for the E-to-Z twisting coordinate taken alone.
Collapse
Affiliation(s)
- Svetlana M Sudarkova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Ilya N Ioffe
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
14
|
Pracht P, Bannwarth C. Fast Screening of Minimum Energy Crossing Points with Semiempirical Tight-Binding Methods. J Chem Theory Comput 2022; 18:6370-6385. [PMID: 36121838 DOI: 10.1021/acs.jctc.2c00578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The investigation of photochemical processes is a highly active field in computational chemistry. One research direction is the automated exploration and identification of minimum energy conical intersection (MECI) geometries. However, due to the immense technical effort required to calculate nonadiabatic potential energy landscapes, the routine application of such computational protocols is severely limited. In this study, we will discuss the prospect of combining adiabatic potential energy surfaces from semiempirical quantum mechanical calculations with specialized confinement potential and metadynamics simulations to identify S0/T1 minimum energy crossing point (MECP) geometries. It is shown that MECPs calculated at the GFN2-xTB level can provide suitable approximations to high-level S0/S1ab initio conical intersection geometries at a fraction of the computational cost. Reference MECIs of benzene are studied to illustrate the basic concept. An example application of the presented protocol is demonstrated for a set of photoswitch molecules.
Collapse
Affiliation(s)
- Philipp Pracht
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056Aachen, Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056Aachen, Germany
| |
Collapse
|
15
|
Different timescales during ultrafast stilbene isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy. Nat Chem 2022; 14:1126-1132. [PMID: 35953643 PMCID: PMC7613649 DOI: 10.1038/s41557-022-01012-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/28/2022] [Indexed: 11/08/2022]
Abstract
Directly contrasting ultrafast excited-state dynamics in the gas and liquid phases is crucial to understanding the influence of complex environments. Previous studies have often relied on different spectroscopic observables, rendering direct comparisons challenging. Here, we apply extreme-ultraviolet time-resolved photoelectron spectroscopy to both gaseous and liquid cis-stilbene, revealing the coupled electronic and nuclear dynamics that underlie its isomerization. Our measurements track the excited-state wave packets from excitation along the complete reaction path to the final products. We observe coherent excited-state vibrational dynamics in both phases of matter that persist to the final products, enabling the characterization of the branching space of the S1-S0 conical intersection. We observe a systematic lengthening of the relaxation timescales in the liquid phase and a red shift of the measured excited-state frequencies that is most pronounced for the complex reaction coordinate. These results characterize in detail the influence of the liquid environment on both electronic and structural dynamics during a complete photochemical transformation.
Collapse
|
16
|
Abraham V, Mayhall NJ. Coupled Electron Pair-Type Approximations for Tensor Product State Wave Functions. J Chem Theory Comput 2022; 18:4856-4864. [PMID: 35878319 DOI: 10.1021/acs.jctc.2c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Size extensivity, defined as the correct scaling of energy with system size, is a desirable property for any many-body method. Traditional configuration interaction (CI) methods are not size extensive, hence the error increases as the system gets larger. Coupled electron pair approximation (CEPA) methods can be constructed as simple extensions of a truncated CI that ensures size extensivity. One of the major issues with the CEPA and its variants is that singularities arise in the amplitude equations when the system starts to be strongly correlated. In this work, we extend the traditional Slater determinant based coupled electron pair approaches like CEPA-0, averaged coupled-pair functional, and average quadratic coupled-cluster to a new formulation based on tensor product states (TPS). We show that a TPS basis can often be chosen such that it removes the singularities that commonly destroy the accuracy of CEPA based methods. A suitable TPS representation can be formed by partitioning the system into separate disjoint clusters and forming the final wave function as the tensor product of the many body states of these clusters. We demonstrate the application of these methods on simple bond breaking systems such as CH4 and F2 where determinant based CEPA methods fail. We further apply the TPS-CEPA approach to stillbene isomerization and few planar π-conjugated systems. Overall, the results show that the TPS-CEPA method can remove the singularities and provide improved numerical results compared to common electronic structure methods.
Collapse
Affiliation(s)
- Vibin Abraham
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
17
|
Raucci U, Weir H, Bannwarth C, Sanchez DM, Martínez TJ. Chiral photochemistry of achiral molecules. Nat Commun 2022; 13:2091. [PMID: 35440559 PMCID: PMC9019051 DOI: 10.1038/s41467-022-29662-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Chirality is a molecular property governed by the topography of the potential energy surface (PES). Thermally achiral molecules interconvert rapidly when the interconversion barrier between the two enantiomers is comparable to or lower than the thermal energy, in contrast to thermally stable chiral configurations. In principle, a change in the PES topography on the excited electronic state may diminish interconversion, leading to electronically prochiral molecules that can be converted from achiral to chiral by electronic excitation. Here we report that this is the case for two prototypical examples – cis-stilbene and cis-stiff stilbene. Both systems exhibit unidirectional photoisomerization for each enantiomer as a result of their electronic prochirality. We simulate an experiment to demonstrate this effect in cis-stilbene based on its interaction with circularly polarized light. Our results highlight the drastic change in chiral behavior upon electronic excitation, opening up the possibility for asymmetric photochemistry from an effectively nonchiral starting point. The authors report non-adiabatic first principles molecular dynamics to show how an achiral molecule can be converted to a chiral one upon photoexcitation. These results demonstrate the possibility of asymmetric photochemistry starting from achiral reactants.
Collapse
Affiliation(s)
- Umberto Raucci
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA, 94305, USA.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Italian Institute of Technology, Genova, GE, Italy
| | - Hayley Weir
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA, 94305, USA.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Christoph Bannwarth
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA, 94305, USA.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
| | - David M Sanchez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA, 94305, USA.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Design Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA, 94305, USA. .,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
18
|
Uratani H, Nakai H. Scalable Ehrenfest Molecular Dynamics Exploiting the Locality of Density-Functional Tight-Binding Hamiltonian. J Chem Theory Comput 2021; 17:7384-7396. [PMID: 34860019 DOI: 10.1021/acs.jctc.1c00950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To explore the science behind excited-state dynamics in high-complexity chemical systems, a scalable nonadiabatic molecular dynamics (MD) technique is indispensable. In this study, by treating the electronic degrees of freedom at the density-functional tight-binding level, we developed and implemented a reduced scaling and multinode-parallelizable Ehrenfest MD method. To achieve this goal, we introduced a concept called patchwork approximation (PA), where the effective Hamiltonian for real-time propagation of the electronic density matrix is partitioned into a set of local parts. Numerical results for giant icosahedral fullerenes, which comprise up to 6000 atoms, suggest that the scaling of the present PA-based method is less than quadratic, which yields a significant advantage over the conventional cubic scaling method in terms of computational time. The acceleration by the parallelization on multiple nodes was also assessed. Furthermore, the electronic and structural dynamics resulting from the perturbation by the external electric field were accurately reproduced with the PA, even when the electronic excitation was spatially delocalized.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
19
|
Williams M, Forbes R, Weir H, Veyrinas K, MacDonell RJ, Boguslavskiy AE, Schuurman MS, Stolow A, Martinez TJ. Unmasking the cis-Stilbene Phantom State via Vacuum Ultraviolet Time-Resolved Photoelectron Spectroscopy and Ab Initio Multiple Spawning. J Phys Chem Lett 2021; 12:6363-6369. [PMID: 34231356 DOI: 10.1021/acs.jpclett.1c01227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present the first vacuum ultraviolet time-resolved photoelectron spectroscopy (VUV-TRPES) study of photoisomerization dynamics in the paradigmatic molecule cis-stilbene. A key reaction intermediate in its dynamics, known as the phantom state, has often been invoked but never directly detected in the gas phase. We report direct spectral signatures of the phantom state in isolated cis-stilbene, observed and characterized through a combination of VUV-TRPES and ab initio multiple spawning (AIMS) nonadiabatic dynamics simulations of the channel-resolved observable. The high VUV probe photon energy tracks the complete excited-state dynamics via multiple photoionization channels, from initial excitation to its return to the "hot" ground state. The TRPES was compared with AIMS simulations of the dynamics from initial excitation, to the phantom-state intermediate (an S1 minimum), through to the ultimate electronic decay to the ground state. This combination revealed the unique spectral signatures and time-dependent dynamics of the phantom-state intermediate, permitting us to report here its direct observation.
Collapse
Affiliation(s)
- Monika Williams
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Ruaridh Forbes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| | - Hayley Weir
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Kévin Veyrinas
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| | - Ryan J MacDonell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Andrey E Boguslavskiy
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Joint Centre for Extreme Photonics, NRC-University of Ottawa, Ottawa, ON K1A 0R6, Canada
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Albert Stolow
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
- Joint Centre for Extreme Photonics, NRC-University of Ottawa, Ottawa, ON K1A 0R6, Canada
| | - Todd J Martinez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
20
|
Mandal A, Hunt KLC. Quantum transition probabilities due to overlapping electromagnetic pulses: Persistent differences between Dirac's form and nonadiabatic perturbation theory. J Chem Phys 2021; 154:024116. [PMID: 33445917 DOI: 10.1063/5.0020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The probability of transition to an excited state of a quantum system in a time-dependent electromagnetic field determines the energy uptake from the field. The standard expression for the transition probability has been given by Dirac. Landau and Lifshitz suggested, instead, that the adiabatic effects of a perturbation should be excluded from the transition probability, leaving an expression in terms of the nonadiabatic response. In our previous work, we have found that these two approaches yield different results while a perturbing field is acting on the system. Here, we prove, for the first time, that differences between the two approaches may persist after the perturbing fields have been completely turned off. We have designed a pair of overlapping pulses in order to establish the possibility of lasting differences, in a case with dephasing. Our work goes beyond the analysis presented by Landau and Lifshitz, since they considered only linear response and required that a constant perturbation must remain as t → ∞. First, a "plateau" pulse populates an excited rotational state and produces coherences between the ground and excited states. Then, an infrared pulse acts while the electric field of the first pulse is constant, but after dephasing has occurred. The nonadiabatic perturbation theory permits dephasing, but dephasing of the perturbed part of the wave function cannot occur within Dirac's method. When the frequencies in both pulses are on resonance, the lasting differences in the calculated transition probabilities may exceed 35%. The predicted differences are larger for off-resonant perturbations.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Katharine L C Hunt
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
21
|
Pang J, Deng Z, Sun S, Huang G, Zhang G, Islam A, Dang L, Phillips DL, Li MD. Unprecedentedly Ultrafast Dynamics of Excited States of C═C Photoswitching Molecules in Nanocrystals and Microcrystals. J Phys Chem Lett 2021; 12:41-48. [PMID: 33296591 DOI: 10.1021/acs.jpclett.0c03232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The C═C photoswitching molecules [1,2-di(4-pyridyl)ethylene (DPE), 4-styrylpyridine (SP), and trans-1,2-stilbene (TS)] show favorable photoisomerization characteristics. Although the solid states of photoswitching molecules are usually used in optical devices, their excited state's evolution has been little explored. Here, the excited state's relaxation of DPE, SP, and TS in nanocrystal/microcrystal suspensions as well as in solution phase was studied to uncover the early events of their excited states. The dynamics of nanocrystal/microcrystal suspensions was tremendously accelerated in comparison to the kinetics obtained in the solution for these molecules under excitation. DPE exhibits the slowest decay rate, while SP shows the fastest decay rate in nanocrystal suspensions or solution, suggesting SP may be the best candidate for the photoswitching device. The intermolecular interactions and space restriction of the crystal lead to the acceleration of the excited state's evolution for DPE, SP, and TS. This provides new insight into the design of optical materials.
Collapse
Affiliation(s)
- Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ziqi Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shanshan Sun
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Guanheng Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Guohui Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Amjad Islam
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - David Lee Phillips
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
22
|
Fedorov DA, Seritan S, Fales BS, Martínez TJ, Levine BG. PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics. J Chem Theory Comput 2020; 16:5485-5498. [PMID: 32687710 DOI: 10.1021/acs.jctc.0c00575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ab initio multiple spawning (AIMS) method enables nonadiabatic quantum molecular dynamics simulations in an arbitrary number of dimensions, with potential energy surfaces provided by electronic structure calculations performed on-the-fly. However, the intricacy of the AIMS algorithm complicates software development, deployment on modern shared computer resources, and postsimulation data analysis. PySpawn is a nonadiabatic molecular dynamics software package that addresses these issues. The program is designed to be easily interfaced with electronic structure software, and an interface to the TeraChem software package is described here. PySpawn introduces a task-based reorganization of the AIMS algorithm, allowing fine-grained restart capability and setting the stage for efficient parallelization in a future release. PySpawn includes a user-friendly and interactive Python analysis module that will enable novice users to painlessly adopt AIMS. As a demonstration of PySpawn's simulation capability and analysis module, we report complete active space self-consistent field-based AIMS simulations of the 1,2-dithienyl-1,2-dicyanoethene molecule, a promising molecular photoswitch.
Collapse
Affiliation(s)
- Dmitry A Fedorov
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stefan Seritan
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - B Scott Fales
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
23
|
Seritan S, Bannwarth C, Fales BS, Hohenstein EG, Isborn CM, Kokkila‐Schumacher SIL, Li X, Liu F, Luehr N, Snyder JW, Song C, Titov AV, Ufimtsev IS, Wang L, Martínez TJ. TeraChem
: A graphical processing unit
‐accelerated
electronic structure package for
large‐scale
ab initio molecular dynamics. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1494] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Seritan
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Christoph Bannwarth
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Bryan S. Fales
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Edward G. Hohenstein
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| | - Christine M. Isborn
- Department of Chemistry University of California Merced Merced California USA
| | | | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Stockholm Sweden
| | - Fang Liu
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA
| | | | | | - Chenchen Song
- Department of Physics University of California Berkeley Berkeley California USA
- Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California USA
| | | | - Ivan S. Ufimtsev
- Department of Structural Biology Stanford University School of Medicine Stanford California USA
| | - Lee‐Ping Wang
- Department of Chemistry University of California Davis Davis California USA
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute Stanford University Stanford California USA
- SLAC National Accelerator Laboratory Menlo Park California USA
| |
Collapse
|