1
|
Zainal-Abidin MH, Kristianto S, Esnin SN, Matmin J, Abdul Wahab R, Wan Mahmood WMA, Widodo WT. Green extraction of phenolics using deep eutectic solvents: a promising neoteric method. Nat Prod Res 2025; 39:1955-1967. [PMID: 38012848 DOI: 10.1080/14786419.2023.2285872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
There has been a growing emphasis on developing extraction methods that are not only efficient but also environmentally friendly and sustainable. One promising avenue is the exploration of deep eutectic solvents (DESs) as neoteric extraction media. This study aims to investigate the potential of DESs as neoteric extraction media for phenolics-rich flower clove extracts. Two DESs were synthesised by mixing choline chloride with glycerol and lactic acid at a molar ratio of 1:2. The thermal profiles of the mixture were analysed using differential scanning calorimetry, and the viscosity and density were measured at different temperatures. The phenolic compounds were quantitatively characterised for all of the extractants using high-performance liquid chromatography. The total phenolic content and the antioxidant activities of the extracts were determined. The results showed that DESs significantly improved the extraction of antioxidant compounds from clove, especially for the case of phenolic compounds, and also considerably enhanced the antioxidant activity of the extracts. The use of DESs offers a green, efficient method for extracting value-added products from natural sources.
Collapse
Affiliation(s)
| | - Sonny Kristianto
- Master in Forensic Sciences, Postgraduate School, Universitas Airlangga, 4-6 Airlangga Rd, Surabaya, Indonesia
- Human Genetic Laboratory, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Siti Nuresyanah Esnin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Wan M Asyraf Wan Mahmood
- Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil, Selangor, Malaysia
| | - Wimbuh Tri Widodo
- Master in Forensic Sciences, Postgraduate School, Universitas Airlangga, 4-6 Airlangga Rd, Surabaya, Indonesia
- Human Genetic Laboratory, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Ulfa DM, Bayu A, Rahmawati SI, Ahmadi P, Putra MY, Karnjanakom S, Guan G, Mun’im A. New Horizon in Selective Tocols Extraction from Deodorizer Distillates Under Mild Conditions by Using Deep Eutectic Solvents. Molecules 2025; 30:1217. [PMID: 40141994 PMCID: PMC11944782 DOI: 10.3390/molecules30061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Tocols are commonly known as vitamin E, which comprise tocopherols and tocotrienols. Although vegetable oils are natural sources of tocols, deodorizer distillates (DDs) are attractive feedstock due to their potential abundance from oil refining processes and economic price. Deep eutectic solvents (DESs) are a family of neoteric solvents that show promising performance for tocols extraction. Besides their characters occupying the green chemistry concept, this review presents the current research on the potential performances of DESs in extracting tocols selectively and efficiently from DDs. The application of DESs in tocols extraction is presented considering three different ways: mono-phasic, in situ DESs formation, and bi-phasic systems. The basic principles of intermolecular interactions (H-bond, van der Walls bond, and misfit interaction) between DESs or their components with tocols are discussed to understand the mechanism by which DESs selectively extract tocols from the mixture. This is mainly observed to be a function of the intrinsic properties of DESs and/or tocols, which could be beneficial for tuning the appropriate DESs for extracting tocols selectively and effectively under mild operation conditions. This review is expected to provide insight in the potential application of DESs in the extracting of natural compounds with a phenolic structure and also briefly discusses the toxicity of DESs.
Collapse
Affiliation(s)
- Dian Maria Ulfa
- Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia;
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia; (S.I.R.); (P.A.); (M.Y.P.)
- Health Polytechnic Jakarta II, South Jakarta 12540, Jakarta, Indonesia
| | - Asep Bayu
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia; (S.I.R.); (P.A.); (M.Y.P.)
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM 46, Cibinong, Bogor 16911, West Java, Indonesia
| | - Siti Irma Rahmawati
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia; (S.I.R.); (P.A.); (M.Y.P.)
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM 46, Cibinong, Bogor 16911, West Java, Indonesia
| | - Peni Ahmadi
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia; (S.I.R.); (P.A.); (M.Y.P.)
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM 46, Cibinong, Bogor 16911, West Java, Indonesia
| | - Masteria Yunovilsa Putra
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia; (S.I.R.); (P.A.); (M.Y.P.)
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM 46, Cibinong, Bogor 16911, West Java, Indonesia
| | - Surachai Karnjanakom
- Department of Chemistry, Faculty of Science, Rangsit University, Pathumthani 12000, Thailand;
| | - Guoqing Guan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan;
| | - Abdul Mun’im
- Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia;
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Cluster of Health Sciences Building, Universitas Indonesia, Depok 16424, West Java, Indonesia; (S.I.R.); (P.A.); (M.Y.P.)
| |
Collapse
|
3
|
Kalantri S, Vora A. Eutectic solutions for healing: a comprehensive review on therapeutic deep eutectic solvents (TheDES). Drug Dev Ind Pharm 2024; 50:387-400. [PMID: 38634708 DOI: 10.1080/03639045.2024.2345131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE TheDES are formed by mixing a Hydrogen Bond Donor (HBD) and a Hydrogen Bond Acceptor (HBA) in appropriate molar ratios. These solvents have been shown to enhance drug solubility, permeability, and delivery. The main objective of the present article is to review these advantages of TheDES. SIGNIFICANCE TheDES show unique properties, such as low toxicity, biodegradability, improved bioavailability and enhanced drug delivery of poorly soluble active pharmaceutical ingredients. They are also biocompatible in nature which makes them a promising candidate for various therapeutic applications, including drug formulations, drug delivery and other biomedical uses. The development and utilization of TheDES shows significant advancement in pharmaceutical research, providing new opportunities for improving drug delivery. METHODS The current study was carried out by conducting a systematic literature review that identified relevant papers from indexed databases. Numerous studies and research are cited and quoted in this article to demonstrate the effectiveness of TheDES in enhancing drug solubility, permeability, and delivery. All chosen articles were selected considering their significance, quality, and approach to addressing issues. RESULT As a result, various TheDES were identified that can be formulated in different ways: one component can act as a vehicle for an API, either HBD or HBA can be an API, both HBD and HBA can be APIs, or the individual components of DES are not therapeutically active but the resulting DES possesses therapeutic activity. Additionally, TheDES were also recognized to enhance drug delivery and solubility for different APIs, including NSAIDs, anesthetic drugs, antifungals, and others.
Collapse
Affiliation(s)
- Sudhanshu Kalantri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
4
|
Sharma A, Lee BS. Toxicity test profile for deep eutectic solvents: A detailed review and future prospects. CHEMOSPHERE 2024; 350:141097. [PMID: 38171392 DOI: 10.1016/j.chemosphere.2023.141097] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Deep eutectic solvents (DESs) are preferable in terms of starting materials, storage and synthesis, simplicity, and component material affordability. In several industries ranging from chemical, electrochemical, biological, biotechnology, material science, etc., DES has demonstrated remarkable potential. Despite all these accomplishments, the safety issue with DES must be adequately addressed. Different DES interacts with the cellular membranes differently. It is not possible to classify all DES as easily biodegradable. By expanding the current understanding of the toxicity and biodegradation of DES, interactions between organisms and cellular membranes can be linked. The DES toxicity profile varies according to their concentration, the nature of the individual components, and how they interact with living things. Therefore, the results of this review can serve as a baseline for DES development in the future.
Collapse
Affiliation(s)
- Anshu Sharma
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea.
| | - Bong-Seop Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea.
| |
Collapse
|
5
|
Silva F, Veiga F, Paulo Jorge Rodrigues S, Cardoso C, Cláudia Paiva-Santos A. COSMO Models for the Pharmaceutical Development of Parenteral Drug Formulations. Eur J Pharm Biopharm 2023; 187:156-165. [PMID: 37120066 DOI: 10.1016/j.ejpb.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
The aqueous solubility of active pharmaceutical ingredients is one of the most important features to be considered during the development of parenteral formulations in the pharmaceutical industry. Computational modelling has become in the last years an integral part of pharmaceutical development. In this context, ab initio computational models, such as COnductor-like Screening MOdel (COSMO), have been proposed as promising tools for the prediction of results without the effective use of resources. Nevertheless, despite the clear evaluation of computational resources, some authors had not achieved satisfying results and new calculations and algorithms have been proposed over the years to improve the outcomes. In the development and production of aqueous parenteral formulations, the solubility of Active Pharmaceutical Ingredients (APIs) in an aqueous and biocompatible vehicle is a decisive step. This work aims to study the hypothesis that COSMO models could be useful in the development of new parenteral formulations, mainly aqueous ones.
Collapse
Affiliation(s)
- Fernando Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Sérgio Paulo Jorge Rodrigues
- Coimbra Chemistry Centre, Chemistry Department, Faculty of Sciences and Technology of the University of Coimbra of the University of Coimbra, Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Li B, Li Q, Wang Q, Yan X, Shi M, Wu C. Deep eutectic solvent for spent lithium-ion battery recycling: comparison with inorganic acid leaching. Phys Chem Chem Phys 2022; 24:19029-19051. [PMID: 35938373 DOI: 10.1039/d1cp05968h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DESs) as novel green solvents are potential options to replace inorganic acids for hydrometallurgy. Compared with inorganic acids, the physicochemical properties of DESs and their applications in recycling of spent lithium-ion batteries were summarized. The viscosity, metal solubility, toxicological properties and biodegradation of DESs depend on the hydrogen bond donor (HBD) and acceptor (HBA). The viscosity of ChCl-based DESs increased according to the HBD in the following order: alcohols < carboxylic acids < sugars < inorganic salts. The strongly coordinating HBDs increased the solubility of metal oxide via surface complexation reactions followed by ligand exchange for chloride in the bulk solvent. Interestingly, the safety and degradability of DESs reported in the literature are superior to those of inorganic acids. Both DESs and inorganic acids have excellent metal leaching efficiencies (>99%). However, the reaction kinetics of DESs are 2-3 orders of magnitude slower than those of inorganic acids. A significant advantage of DESs is that they can be regenerated and recycled multiple times after recovering metals by electrochemical deposition or precipitation. In the future, the development of efficient and selective DESs still requires a lot of attention.
Collapse
Affiliation(s)
- Bensheng Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China. .,Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.,Water Pollution Control Technology Key Lab of Hunan Province, Changsha, 410083, China
| | - Xuelei Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Chao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| |
Collapse
|
7
|
Probing Small-Angle Molecular Motions with EPR Spectroscopy: Dynamical Transition and Molecular Packing in Disordered Solids. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disordered molecular solids present a rather broad class of substances of different origin—amorphous polymers, materials for photonics and optoelectronics, amorphous pharmaceutics, simple molecular glass formers, and others. Frozen biological media in many respects also may be referred to this class. Theoretical description of dynamics and structure of disordered solids still does not exist, and only some phenomenological models can be developed to explain results of particular experiments. Among different experimental approaches, electron paramagnetic resonance (EPR) applied to spin probes and labels also can deliver useful information. EPR allows probing small-angle orientational molecular motions (molecular librations), which intrinsically are inherent to all molecular solids. EPR is employed in its conventional continuous wave (CW) and pulsed—electron spin echo (ESE)—versions. CW EPR spectra are sensitive to dynamical librations of molecules while ESE probes stochastic molecular librations. In this review, different manifestations of small-angle motions in EPR of spin probes and labels are discussed. It is shown that CW-EPR-detected dynamical librations provide information on dynamical transition in these media, similar to that explored with neutron scattering, and ESE-detected stochastic librations allow elucidating some features of nanoscale molecular packing. The possible EPR applications are analyzed for gel-phase lipid bilayers, for biological membranes interacting with proteins, peptides and cryoprotectants, for supercooled ionic liquids (ILs) and supercooled deep eutectic solvents (DESs), for globular proteins and intrinsically disordered proteins (IDPs), and for some other molecular solids.
Collapse
|
8
|
Azougagh O, Essayeh S, Achalhi N, El Idrissi A, Amhamdi H, Loutou M, El Ouardi Y, Salhi A, Abou-Salama M, El Barkany S. New benzyltriethylammonium/urea deep eutectic solvent: Quantum calculation and application to hyrdoxylethylcellulose modification. Carbohydr Polym 2022; 276:118737. [PMID: 34823773 DOI: 10.1016/j.carbpol.2021.118737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022]
Abstract
In this paper, a new deep eutectic solvent (DES) has been successfully synthesized that is based on benzyltriethylammonium bromide as a hydrogen bond acceptor (HBA) and urea as a hydrogen bond donor (HBD). However, its usability in modifying cellulose derivatives, especially acylating hydroxyethylcellulose (HEC) was investigated. The chemical modification (acetylation) of HEC was carried out in BTEAB/urea DES system without any additional conventional solvent or catalyst. However, the proposed structure of acetylated HEC (HECA) was confirmed according to the structural spectra analyses FTIR-ATR, 1H, 13C, and APT-NMR. The crystalline behavior of acetylated and unmodified HEC in the DES system has been evaluated using XRD patterns, where the thermal stability was evaluated basing on the TD-TGA thermograms. Hence, SEM images and EDX spectra were recorded to prove the changes that are expected at the morphological level and elemental profile. Yet, the nanometric sheets aspect was observed. The Functional Density Theory (DFT) was investigated as a useful computational tool to understand mechanism and donor-acceptor interactions. The topological parameters (electron density Laplacian, kinetic energy density, potential energy density, and energy density) at the bond critical points (BCP), between TBEAB and urea, are deducted according to Quantum Bader's theory, and Atoms-in-molecules (AIM). The non-covalent interactions and steric effect in the DES system were studied using the reduced density gradient isosurface (RDG). Theoretical and computational calculations revealed that the H-bonds and the electrostatic coexist, as predominant interactions in the BTEAB-based DES resulting chemical structure, and mechanism formation. The physical interactions between the component entities of DES lead to a new equilibrium that is more stable than that of HBA and HBD in their separate states.
Collapse
Affiliation(s)
- Omar Azougagh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco.
| | - Soumya Essayeh
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Nafea Achalhi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohamed 1st University, 60000 Oujda, Morocco
| | - Abderrahmane El Idrissi
- Laboratory Applied Chemistry and Environmental (LCAE-URAC18), Faculty of Sciences of Oujda, Mohamed 1st University, 60000 Oujda, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Mohamed Loutou
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Youssef El Ouardi
- LIMOME Laboratory, Dhar El Mehraz Faculty of Sciences, Sidi Mohamed Ben Abdellah University, B.P. 1796, Atlas, Fes 30000, Morocco; Laboratory of Separation Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Amin Salhi
- Applied Chemistry Unit, Sciences and Technologies Faculty, Abdelmalek Essaadi University, 32 003 Al Hoceima, Morocco
| | - Mohamed Abou-Salama
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco
| | - Soufian El Barkany
- Laboratory of Molecular Chemistry, Materials and Environment (LMCME), Department of Chemistry, Faculty Multidisciplinary Nador, Mohamed 1st University, P. B. 300, Nador 62700, Morocco.
| |
Collapse
|
9
|
Huang C, Chen X, Wei C, Wang H, Gao H. Deep Eutectic Solvents as Active Pharmaceutical Ingredient Delivery Systems in the Treatment of Metabolic Related Diseases. Front Pharmacol 2022; 12:794939. [PMID: 35002726 PMCID: PMC8740069 DOI: 10.3389/fphar.2021.794939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic related diseases such as cancer, diabetes mellitus and atherosclerosis are major challenges for human health and safety worldwide due to their associations with high morbidity and mortality. It is of great significance to develop the effective active pharmaceutical ingredient (API) delivery systems for treatment of metabolic diseases. With their unique merits like easy preparation, high adjustability, low toxicity, low cost, satisfactory stability and biodegradation, deep eutectic solvents (DESs) are unarguably green and sustainable API delivery systems that have been developed to improve drug solubility and treat metabolic related diseases including cancer, diabetes mellitus and atherosclerosis. Many reports about DESs as API delivery systems in the therapy of cancer, diabetes mellitus and atherosclerosis exist but no systematic overview of these results is available, which motivated the current work.
Collapse
Affiliation(s)
- Cixin Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,Medical College, Qingdao University, Qingdao, China
| | - Xiunian Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,Medical College, Qingdao University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.,School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Hongwei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.,School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of Ophthalmology, Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Golysheva E, Maslennikova N, Baranov DS, Dzuba S. Structural properties of supercooled deep eutectic solvents: choline chloride–thiourea compared to reline. Phys Chem Chem Phys 2022; 24:5974-5981. [DOI: 10.1039/d1cp05162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DESs) are eutectic mixtures of hydrogen bond acceptors and hydrogen bond donors which melt at much lower temperatures than the individual components. DESs attract growing interest because...
Collapse
|
11
|
Gurkan BE, Maginn EJ, Pentzer EB. Deep Eutectic Solvents: A New Class of Versatile Liquids. J Phys Chem B 2020; 124:11313-11315. [PMID: 33327722 DOI: 10.1021/acs.jpcb.0c10099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Burcu E Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame
| | - Emily B Pentzer
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University
| |
Collapse
|