1
|
Cappa M, Sciortino F, Rovigatti L. A phase-field model for solutions of DNA-made particles. J Chem Phys 2025; 162:194901. [PMID: 40371835 DOI: 10.1063/5.0257265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
We present a phase-field model based on the Cahn-Hilliard equation to investigate the properties of phase separation in DNA nanostar systems. Leveraging a realistic free-energy functional derived from Wertheim theory, our model captures the thermodynamic properties of self-assembling DNA nanostars under various conditions. This approach allows for the study of both one-component and multi-component systems, including mixtures of different nanostar species and cross-linkers. Through numerical simulations, we demonstrate the model's ability to replicate experimental observations, including liquid-liquid phase separation, surface tension variation, and the structural organization of multi-component systems. Our results highlight the versatility and predictive power of the Cahn-Hilliard framework, particularly for complex systems where detailed simulations are computationally prohibitive. This work provides a robust foundation for studying DNA-based materials and their potential applications in nanotechnology and biophysics, including liquid-liquid phase separation in cellular environments.
Collapse
Affiliation(s)
- Marco Cappa
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Udono H, Nomura SIM, Takinoue M. Remote-controlled mechanical and directional motions of photoswitchable DNA condensates. Nat Commun 2025; 16:4479. [PMID: 40368917 PMCID: PMC12078559 DOI: 10.1038/s41467-025-59100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Membrane-free synthetic DNA-based condensates enable programmable control of dynamic behaviors as shown by phase-separated condensates in biological cells. We demonstrate remote-controlled microflow using photocontrollable state transitions of DNA condensates, assembled from multi-branched DNA nanostructures via sticky-end (SE) hybridization. Introducing azobenzene into SEs enables their photoswitchable binding affinity, which underlies photoreversible fluidity of the resulting condensates that transition between gel/liquid/dissociated states in a wavelength-dependent manner. Leveraging base-sequence programmability, spatially coupled orthogonal DNA condensates with divergent photoresponsive capabilities perform multi-modal mechanical actions that depend on azobenzene insertion sites in the SE, including switching flows radially expanding and converging under photoswitching. Localizing photoswitching within a DNA liquid condensate generates two distinct directional motions, whose contrasting morphology, direction, and lifetime are determined by switching frequency. Numerical simulations reveal its regulatory role in weight-adjusting energy-exchanging and energy-dissipative interactions between the photoirradiated and unirradiated domains.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, School of Computing, Institute of Science Tokyo, Yokohama, Kanagawa, 226-8501, Japan
| | - Shin-Ichiro M Nomura
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Masahiro Takinoue
- Department of Computer Science, School of Computing, Institute of Science Tokyo, Yokohama, Kanagawa, 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research (IIR), Institute of Science Tokyo, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
3
|
Ohno H, Kijima J, Ochi Y, Shoji M, Taira J, Mabuchi T, Sato Y. Oligolysine Enhances and Inhibits DNA Condensate Formation. ACS OMEGA 2025; 10:15781-15789. [PMID: 40290937 PMCID: PMC12019750 DOI: 10.1021/acsomega.5c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
The formation of biomolecular condensates via phase separation relates to various cellular functions. Reconstituting these condensates with designed molecules facilitates the exploration of their mechanisms and potential applications. Sequence-designed DNA nanostructures enable the investigation of how structural design influences condensate formation and the construction of functional artificial condensates. Despite the high designability of DNA-based condensates, free nanostructures that do not assemble into condensates remain a challenge. Combining DNA nanostructures with other molecules, such as peptides, represents a promising approach to overcoming the limitations of DNA condensates and gaining a deeper understanding of molecular condensates. Herein, we report the effects of cationic oligolysines with several residues on DNA condensate formation assembled from Y-shaped DNA nanostructures. DNA condensate formation was enhanced by oligolysines at an appropriate L/P ratio, which refers to the ratio of positively charged amine groups in lysine (L) to negatively charged nucleic acid phosphate groups (P). Oligolysines with five residues enhanced condensate formation while maintaining the sequence-specific interaction of DNA. In contrast, oligolysines inhibited condensate formation depending on the L/P ratio and residue number. This was attributed to nanostructure deformation caused by oligolysines. These results suggest that the amount and length of cationic peptides significantly affect the self-assembly of branched DNA nanostructures. This study offers important insights into biomolecular condensates that can guide further development of DNA/peptide hybrid condensates to enhance the functions of artificial condensates for use in artificial cells and molecular robots.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Department
of Intelligent and Control Systems, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Junko Kijima
- Institute
of Fluid Science, Tohoku University 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yosuke Ochi
- Department
of Bioscience and Bioinformatics, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Masaaki Shoji
- Department
of Intelligent and Control Systems, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Junichi Taira
- Department
of Bioscience and Bioinformatics, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Takuya Mabuchi
- Institute
of Fluid Science, Tohoku University 2-1-1
Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yusuke Sato
- Department
of Intelligent and Control Systems, Kyushu
Institute of Technology 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
4
|
Xu S, Ouyang Y, Qin Y, Chen D, Duan Z, Song D, Harries D, Xia F, Willner I, Huang F. Spatiotemporal dynamic and catalytically mediated reconfiguration of compartmentalized cyanuric acid/polyadenine DNA microdroplet condensates. Nat Commun 2025; 16:3352. [PMID: 40204808 PMCID: PMC11982331 DOI: 10.1038/s41467-025-58650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Native cells possess membrane-bound subcompartments, organelles, such as mitochondria and lysosomes, that intercommunicate and regulate cellular functions. Extensive efforts are directed to develop synthetic cells, or protocells, that replicate these structures and functions. Among these approaches, phase-separated coacervate microdroplets composed of polymers, polysaccharides, proteins, or nucleic acids are gaining interest as cell-mimicking systems. Particularly, compartmentalization of the synthetic protocell assemblies and the integration of functional constituents in the containments allowing signaling, programmed transfer of chemical agents, and spatiotemporal controlled catalytic transformations across the protocell subdomains, are challenging goals in developing artificial cells. Here, we report the assembly of compartmentalized, phase-separated cyanuric acid/polyadenine coacervate microdroplets. Hierarchical, co-centric compartmentalization is achieved through the dynamic and competitive spatiotemporal occupation of pre-engineered barcode domains within the polyadenine microdroplet framework by invading DNA strands. By encoding structural and functional information within these DNA-invaded compartments, the light-triggered, switchable reconfiguration of compartments, switchable catalytic reconfiguration of containments, and reversible aggregation/deaggregation of the compartmentalized microdroplets are demonstrated.
Collapse
Affiliation(s)
- Shijun Xu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yunlong Qin
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danlong Chen
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Zhijuan Duan
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Dongxing Song
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan, China.
| | - Daniel Harries
- Institute of Chemistry, The Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Fujian Huang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
| |
Collapse
|
5
|
Palombo G, Weir S, Michieletto D, Gutiérrez Fosado YA. Topological linking determines elasticity in limited valence networks. NATURE MATERIALS 2025; 24:454-461. [PMID: 39890878 PMCID: PMC11879876 DOI: 10.1038/s41563-024-02091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/26/2024] [Indexed: 02/03/2025]
Abstract
Understanding the relationship between the microscopic structure and topology of a material and its macroscopic properties is a fundamental challenge across a wide range of systems. Here we investigate the viscoelasticity of DNA nanostar hydrogels-a model system for physical networks with limited valence-by coupling rheology measurements, confocal imaging and molecular dynamics simulations. We discover that these networks display a large degree of interpenetration and that loops within the network are topologically linked, forming a percolating network-within-network structure. Below the overlapping concentration, the fraction of branching points and the pore size determine the high-frequency elasticity of these physical gels. At higher concentrations, we discover that this elastic response is dictated by the abundance of topological links between looped motifs in the gel. Our findings highlight the emergence of 'topological elasticity' as a previously overlooked mechanism in generic network-forming liquids and gels and inform the design of topologically controllable material behaviours.
Collapse
Affiliation(s)
- Giorgia Palombo
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Simon Weir
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
6
|
Oki O, Noguchi S, Nakayama S, Yamagishi H, Kuwabara J, Kanbara T, Yamamoto Y. Spontaneous Formation of π-Conjugated Polymeric Colloidal Molecules Through Stepwise Coacervation and Symmetric Compartmentalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404934. [PMID: 39385637 PMCID: PMC11798348 DOI: 10.1002/smll.202404934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Coacervation, the phase separation of liquid induced by polymeric solutes, sometimes results in the formation of oligomeric clusters of droplets. The morphology of the clusters is non-uniform because the clustering is a consequence of the random collisions of the drifting droplets. Here we report distinctively organized coacervation, yielding colloidal molecules with monodisperse size, morphological symmetry, and compositional heterogeneity. We investigate the coacervation of a mixture of two types of synthetic polymers and find that one of the polymers coacervates first and serves as a core droplet, on which the other polymer coacervates subsequently to form satellite droplets. The satellite droplets arrange themselves symmetrically around the core and solidify without losing the morphology. The number of satellites and their symmetry are modulable depending on the chemical affinity and the diameter of the droplets. This finding highlights the capability of coacervation as a non-templated and non-covalent pathway to form aspherical colloidal materials with structural and functional complexity.
Collapse
Affiliation(s)
- Osamu Oki
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
- Institute for Complex Molecular Systems and Laboratory of Macro‐molecular and Organic ChemistryEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Shun‐ichiro Noguchi
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Sota Nakayama
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Hiroshi Yamagishi
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Junpei Kuwabara
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Takaki Kanbara
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| | - Yohei Yamamoto
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 Tennodai, IbarakiTsukuba305‐8573Japan
| |
Collapse
|
7
|
Bucci J, Malouf L, Tanase DA, Farag N, Lamb JR, Rubio-Sánchez R, Gentile S, Del Grosso E, Kaminski CF, Di Michele L, Ricci F. Enzyme-Responsive DNA Condensates. J Am Chem Soc 2024; 146:31529-31537. [PMID: 39503320 PMCID: PMC11583213 DOI: 10.1021/jacs.4c08919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Membrane-less compartments and organelles are widely acknowledged for their role in regulating cellular processes, and there is an urgent need to harness their full potential as both structural and functional elements of synthetic cells. Despite rapid progress, synthetically recapitulating the nonequilibrium, spatially distributed responses of natural membrane-less organelles remains elusive. Here, we demonstrate that the activity of nucleic-acid cleaving enzymes can be localized within DNA-based membrane-less compartments by sequestering the respective DNA or RNA substrates. Reaction-diffusion processes lead to complex nonequilibrium patterns, dependent on enzyme concentration. By arresting similar dynamic patterns, we spatially organize different substrates in concentric subcompartments, which can be then selectively addressed by different enzymes, demonstrating spatial distribution of enzymatic activity. Besides expanding our ability to engineer advanced biomimetic functions in synthetic membrane-less organelles, our results may facilitate the deployment of DNA-based condensates as microbioreactors or platforms for the detection and quantitation of enzymes and nucleic acids.
Collapse
Affiliation(s)
- Juliette Bucci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Layla Malouf
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Diana A Tanase
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Nada Farag
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Jacob R Lamb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Roger Rubio-Sánchez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Serena Gentile
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
8
|
Kengmana E, Ornelas-Gatdula E, Chen KL, Schulman R. Spatial Control over Reactions via Localized Transcription within Membraneless DNA Nanostar Droplets. J Am Chem Soc 2024. [PMID: 39565729 DOI: 10.1021/jacs.4c07274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Biomolecular condensates control where and how fast many chemical reactions occur in cells by partitioning reactants and catalysts, enabling simultaneous reactions in different spatial locations of a cell. Even without a membrane or physical barrier, the partitioning of the reactants can affect the rates of downstream reaction cascades in ways that depend on reaction location. Such effects can enable systems of biomolecular condensates to spatiotemporally orchestrate chemical reaction networks in cells to facilitate complex behaviors such as ribosome assembly. Here, we develop a system for developing such control in synthetic systems. We localize different transcription templates within different phase-separated, membraneless DNA nanostar (NS) droplets─programmable, in vitro liquid-liquid phase separation systems for partitioning of substrates and localization of reactions to membraneless droplets. When RNA produced within such droplets is also degraded in the bulk, droplet-localized transcription creates RNA concentration gradients. Consistent with the formation of these gradients, toehold-mediated strand displacement reactions involving transcripts are 2-fold slower far from the site of transcription than when nearby. We then demonstrate how multiple such gradients can form and be maintained independently by simultaneous transcription reactions occurring in tandem, each localized to different NS droplet types. Our results provide a means for constructing reaction systems in which different reactions are spatially localized and controlled without the need for physical membranes. This system also provides a means for generally studying how localized reactions and the exchange of reaction products might occur between protocells.
Collapse
Affiliation(s)
- Eli Kengmana
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Elysse Ornelas-Gatdula
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuan-Lin Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Wei M, Wang X, Qiao Y. Multiphase coacervates: mimicking complex cellular structures through liquid-liquid phase separation. Chem Commun (Camb) 2024; 60:13169-13178. [PMID: 39439431 DOI: 10.1039/d4cc04533e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coacervate microdroplets, arising from liquid-liquid phase separation, have emerged as promising models for primary cells, demonstrating the ability to regulate biomolecular enrichment, create chemical gradients, accelerate confined reactions, and even express proteins. Notably, multiphase coacervation provides a robust framework to replicate hierarchically complex cellular structures, offering valuable insights into cellular organization and function. In this review, we explore the recent advancements in the study of multiphase coacervates, focusing on design strategies, underlying mechanisms, structural control, and their applications in biomimetics. These developments highlight the potential of multiphase coacervates as powerful tools in the field of synthetic biology and material science.
Collapse
Affiliation(s)
- Minghao Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Fabrini G, Farag N, Nuccio SP, Li S, Stewart JM, Tang AA, McCoy R, Owens RM, Rothemund PWK, Franco E, Di Antonio M, Di Michele L. Co-transcriptional production of programmable RNA condensates and synthetic organelles. NATURE NANOTECHNOLOGY 2024; 19:1665-1673. [PMID: 39080489 PMCID: PMC11567899 DOI: 10.1038/s41565-024-01726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 11/17/2024]
Abstract
Condensation of RNA and proteins is central to cellular functions, and the ability to program it would be valuable in synthetic biology and synthetic cell science. Here we introduce a modular platform for engineering synthetic RNA condensates from tailor-made, branched RNA nanostructures that fold and assemble co-transcriptionally. Up to three orthogonal condensates can form simultaneously and selectively accumulate fluorophores through embedded fluorescent light-up aptamers. The RNA condensates can be expressed within synthetic cells to produce membrane-less organelles with a controlled number and relative size, and showing the ability to capture proteins using selective protein-binding aptamers. The affinity between otherwise orthogonal nanostructures can be modulated by introducing dedicated linker constructs, enabling the production of bi-phasic RNA condensates with a prescribed degree of interphase mixing and diverse morphologies. The in situ expression of programmable RNA condensates could underpin the spatial organization of functionalities in both biological and synthetic cells.
Collapse
Affiliation(s)
- Giacomo Fabrini
- Department of Chemistry, Imperial College London, London, UK
- fabriCELL, Imperial College London, London, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Nada Farag
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Shiyi Li
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Lorenzo Di Michele
- Department of Chemistry, Imperial College London, London, UK.
- fabriCELL, Imperial College London, London, UK.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Dizani M, Sorrentino D, Agarwal S, Stewart JM, Franco E. Protein Recruitment to Dynamic DNA-RNA Host Condensates. J Am Chem Soc 2024; 146:29344-29354. [PMID: 39418394 DOI: 10.1021/jacs.4c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We describe the design and characterization of artificial nucleic acid condensates that are engineered to recruit and locally concentrate proteins of interest in vitro. These condensates emerge from the programmed interactions of nanostructured motifs assembling from three DNA strands and one RNA strand that can include an aptamer domain for the recruitment of a target protein. Because condensates are designed to form regardless of the presence of target protein, they function as "host" compartments. As a model protein, we consider Streptavidin (SA) due to its widespread use in binding assays. In addition to demonstrating protein recruitment, we describe two approaches to control the onset of condensation and protein recruitment. The first approach uses UV irradiation, a physical stimulus that bypasses the need for exchanging molecular inputs and is particularly convenient to control condensation in emulsion droplets. The second approach uses RNA transcription, a ubiquitous biochemical reaction that is central to the development of the next generation of living materials. We then show that the combination of RNA transcription and degradation leads to an autonomous dissipative system in which host condensates and protein recruitment occur transiently and that the host condensate size as well as the time scale of the transition can be controlled by the level of RNA-degrading enzyme. We conclude by demonstrating that biotinylated beads can be recruited to SA-host condensates, which may therefore find immediate use for the physical separation of a variety of biotin-tagged components.
Collapse
Affiliation(s)
- Mahdi Dizani
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Daniela Sorrentino
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Siddharth Agarwal
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Jaimie Marie Stewart
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Elisa Franco
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Yamashita N, Sato Y, Suzuki Y, Ishikawa D, Takinoue M. DNA-Origami-Armored DNA Condensates. Chembiochem 2024; 25:e202400468. [PMID: 39075031 DOI: 10.1002/cbic.202400468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
DNA condensates, formed by liquid-liquid phase separation (LLPS), emerge as promising soft matter assemblies for creating artificial cells. The advantages of DNA condensates are their molecular permeability through the surface due to their membrane-less structure and their fluidic property. However, they face challenges in the design of their surface, e. g., unintended fusion and less regulation of permeable molecules. Addressing them, we report surface modification of DNA condensates with DNA origami nanoparticles, employing a Pickering-emulsion strategy. We successfully constructed core-shell structures with DNA origami coatings on DNA condensates and further enhanced the condensate stability toward fusion via connecting DNA origamis by responding to DNA input strands. The 'armoring' prevented the fusion of DNA condensates, enabling the formation of multicellular-like structures of DNA condensates. Moreover, the permeability was altered through the state change from coating to armoring the DNA condensates. The armored DNA condensates have significant potential for constructing artificial cells, offering increased surface stability and selective permeability for small molecules while maintaining compartmentalized space and multicellular organization.
Collapse
Affiliation(s)
- Nagi Yamashita
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Yuki Suzuki
- Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | - Daisuke Ishikawa
- Department of Precision Biomedical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masahiro Takinoue
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
13
|
Maruyama T, Gong J, Takinoue M. Temporally controlled multistep division of DNA droplets for dynamic artificial cells. Nat Commun 2024; 15:7397. [PMID: 39191726 DOI: 10.1038/s41467-024-51299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Synthetic droplets mimicking bio-soft matter droplets formed via liquid-liquid phase separation (LLPS) in living cells have recently been employed in nanobiotechnology for artificial cells, molecular robotics, molecular computing, etc. Temporally controlling the dynamics of synthetic droplets is essential for developing such bio-inspired systems because living systems maintain their functions based on the temporally controlled dynamics of biomolecular reactions and assemblies. This paper reports the temporal control of DNA-based LLPS droplets (DNA droplets). We demonstrate the timing-controlled division of DNA droplets via time-delayed division triggers regulated by chemical reactions. Controlling the release order of multiple division triggers results in order control of the multistep droplet division, i.e., pathway-controlled division in a reaction landscape. Finally, we apply the timing-controlled division into a molecular computing element to compare microRNA concentrations. We believe that temporal control of DNA droplets will promote the design of dynamic artificial cells/molecular robots and sophisticated biomedical applications.
Collapse
Affiliation(s)
- Tomoya Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Masahiro Takinoue
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
14
|
Stewart JM, Li S, Tang AA, Klocke MA, Gobry MV, Fabrini G, Di Michele L, Rothemund PWK, Franco E. Modular RNA motifs for orthogonal phase separated compartments. Nat Commun 2024; 15:6244. [PMID: 39080253 PMCID: PMC11289419 DOI: 10.1038/s41467-024-50003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.
Collapse
Affiliation(s)
- Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Shiyi Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Melissa Ann Klocke
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Martin Vincent Gobry
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Giacomo Fabrini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Department of Bioengineering, California Institute of Technology, Pasadena, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, USA.
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Udono H, Fan M, Saito Y, Ohno H, Nomura SIM, Shimizu Y, Saito H, Takinoue M. Programmable Computational RNA Droplets Assembled via Kissing-Loop Interaction. ACS NANO 2024; 18:15477-15486. [PMID: 38831645 PMCID: PMC11191694 DOI: 10.1021/acsnano.3c12161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
DNA droplets, artificial liquid-like condensates of well-engineered DNA sequences, allow the critical aspects of phase-separated biological condensates to be harnessed programmably, such as molecular sensing and phase-state regulation. In contrast, their RNA-based counterparts remain less explored despite more diverse molecular structures and functions ranging from DNA-like to protein-like features. Here, we design and demonstrate computational RNA droplets capable of two-input AND logic operations. We use a multibranched RNA nanostructure as a building block comprising multiple single-stranded RNAs. Its branches engaged in RNA-specific kissing-loop (KL) interaction enables the self-assembly into a network-like microstructure. Upon two inputs of target miRNAs, the nanostructure is programmed to break up into lower-valency structures that are interconnected in a chain-like manner. We optimize KL sequences adapted from viral sequences by numerically and experimentally studying the base-wise adjustability of the interaction strength. Only upon receiving cognate microRNAs, RNA droplets selectively show a drastic phase-state change from liquid to dispersed states due to dismantling of the network-like microstructure. This demonstration strongly suggests that the multistranded motif design offers a flexible means to bottom-up programming of condensate phase behavior. Unlike submicroscopic RNA-based logic operators, the macroscopic phase change provides a naked-eye-distinguishable readout of molecular sensing. Our computational RNA droplets can be applied to in situ programmable assembly of computational biomolecular devices and artificial cells from transcriptionally derived RNA within biological/artificial cells.
Collapse
Affiliation(s)
- Hirotake Udono
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minzhi Fan
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoko Saito
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hirohisa Ohno
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shin-ichiro M. Nomura
- Department
of Robotics, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yoshihiro Shimizu
- Laboratory
for Cell-Free Protein Synthesis, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Hirohide Saito
- Department
of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative
Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
16
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
17
|
Abraham GR, Chaderjian AS, N Nguyen AB, Wilken S, Saleh OA. Nucleic acid liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066601. [PMID: 38697088 DOI: 10.1088/1361-6633/ad4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
The confluence of recent discoveries of the roles of biomolecular liquids in living systems and modern abilities to precisely synthesize and modify nucleic acids (NAs) has led to a surge of interest in liquid phases of NAs. These phases can be formed primarily from NAs, as driven by base-pairing interactions, or from the electrostatic combination (coacervation) of negatively charged NAs and positively charged molecules. Generally, the use of sequence-engineered NAs provides the means to tune microsopic particle properties, and thus imbue specific, customizable behaviors into the resulting liquids. In this way, researchers have used NA liquids to tackle fundamental problems in the physics of finite valence soft materials, and to create liquids with novel structured and/or multi-functional properties. Here, we review this growing field, discussing the theoretical background of NA liquid phase separation, quantitative understanding of liquid material properties, and the broad and growing array of functional demonstrations in these materials. We close with a few comments discussing remaining open questions and challenges in the field.
Collapse
Affiliation(s)
- Gabrielle R Abraham
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Aria S Chaderjian
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Anna B N Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
| | - Sam Wilken
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| | - Omar A Saleh
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
18
|
Liu W, Deng J, Song S, Sethi S, Walther A. A facile DNA coacervate platform for engineering wetting, engulfment, fusion and transient behavior. Commun Chem 2024; 7:100. [PMID: 38693272 PMCID: PMC11063173 DOI: 10.1038/s42004-024-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Biomolecular coacervates are emerging models to understand biological systems and important building blocks for designer applications. DNA can be used to build up programmable coacervates, but often the processes and building blocks to make those are only available to specialists. Here, we report a simple approach for the formation of dynamic, multivalency-driven coacervates using long single-stranded DNA homopolymer in combination with a series of palindromic binders to serve as a synthetic coacervate droplet. We reveal details on how the length and sequence of the multivalent binders influence coacervate formation, how to introduce switching and autonomous behavior in reaction circuits, as well as how to engineer wetting, engulfment and fusion in multi-coacervate system. Our simple-to-use model DNA coacervates enhance the understanding of coacervate dynamics, fusion, phase transition mechanisms, and wetting behavior between coacervates, forming a solid foundation for the development of innovative synthetic and programmable coacervates for fundamental studies and applications.
Collapse
Affiliation(s)
- Wei Liu
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jie Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Soumya Sethi
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
19
|
Agarwal S, Osmanovic D, Dizani M, Klocke MA, Franco E. Dynamic control of DNA condensation. Nat Commun 2024; 15:1915. [PMID: 38429336 PMCID: PMC10907372 DOI: 10.1038/s41467-024-46266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Artificial biomolecular condensates are emerging as a versatile approach to organize molecular targets and reactions without the need for lipid membranes. Here we ask whether the temporal response of artificial condensates can be controlled via designed chemical reactions. We address this general question by considering a model problem in which a phase separating component participates in reactions that dynamically activate or deactivate its ability to self-attract. Through a theoretical model we illustrate the transient and equilibrium effects of reactions, linking condensate response and reaction parameters. We experimentally realize our model problem using star-shaped DNA motifs known as nanostars to generate condensates, and we take advantage of strand invasion and displacement reactions to kinetically control the capacity of nanostars to interact. We demonstrate reversible dissolution and growth of DNA condensates in the presence of specific DNA inputs, and we characterize the role of toehold domains, nanostar size, and nanostar valency. Our results will support the development of artificial biomolecular condensates that can adapt to environmental changes with prescribed temporal dynamics.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Bioengineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Osmanovic
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahdi Dizani
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Melissa A Klocke
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Elisa Franco
- Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Bioengineering, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
21
|
Testa A, Spanke HT, Jambon-Puillet E, Yasir M, Feng Y, Küffner AM, Arosio P, Dufresne ER, Style RW, Rebane AA. Surface Passivation Method for the Super-repellence of Aqueous Macromolecular Condensates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14626-14637. [PMID: 37797324 PMCID: PMC10586374 DOI: 10.1021/acs.langmuir.3c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.
Collapse
Affiliation(s)
- Andrea Testa
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Etienne Jambon-Puillet
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- LadHyX,
CNRS, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau 91120, France
| | - Mohammad Yasir
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanxia Feng
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas M. Küffner
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Robert W. Style
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksander A. Rebane
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Life
Molecules and Materials Laboratory, Programs in Chemistry and in Physics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
22
|
Agarwal S, Dizani M, Osmanovic D, Franco E. Light-controlled growth of DNA organelles in synthetic cells. Interface Focus 2023; 13:20230017. [PMID: 37577006 PMCID: PMC10415744 DOI: 10.1098/rsfs.2023.0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Living cells regulate many of their vital functions through dynamic, membraneless compartments that phase separate (condense) in response to different types of stimuli. In synthetic cells, responsive condensates could similarly play a crucial role in sustaining their operations. Here we use DNA nanotechnology to design and characterize artificial condensates that respond to light. These condensates form via the programmable interactions of star-shaped DNA subunits (nanostars), which are engineered to include photo-responsive protection domains. In the absence of UV irradiation, the nanostar interactions are not conducive to the formation of condensates. UV irradiation cleaves the protection domains, increases the nanostar valency and enables condensation. We demonstrate that this approach makes it possible to tune precisely the kinetics of condensate formation by dosing UV exposure time. Our experimental observations are complemented by a computational model that characterizes phase transitions of mixtures of particles of different valency, under changes in the mixture composition and bond interaction energy. In addition, we illustrate how UV activation is a useful tool to control the formation and size of DNA condensates in emulsion droplets, as a prototype organelle in a synthetic cell. This research expands our capacity to remotely control the dynamics of DNA-based components via physical stimuli and is particularly relevant to the development of minimal artificial cells and responsive biomaterials.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Mahdi Dizani
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Dino Osmanovic
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
23
|
Takinoue M. DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems. Interface Focus 2023; 13:20230021. [PMID: 37577000 PMCID: PMC10415743 DOI: 10.1098/rsfs.2023.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Living systems are molecular assemblies whose dynamics are maintained by non-equilibrium chemical reactions. To date, artificial cells have been studied from such physical and chemical viewpoints. This review briefly gives a perspective on using DNA droplets in constructing artificial cells. A DNA droplet is a coacervate composed of DNA nanostructures, a novel category of synthetic DNA self-assembled systems. The DNA droplets have programmability in physical properties based on DNA base sequence design. The aspect of DNA as an information molecule allows physical and chemical control of nanostructure formation, molecular assembly and molecular reactions through the design of DNA base pairing. As a result, the construction of artificial cells equipped with non-equilibrium behaviours such as dynamical motions, phase separations, molecular sensing and computation using chemical energy is becoming possible. This review mainly focuses on such dynamical DNA droplets for artificial cell research in terms of computation and non-equilibrium chemical reactions.
Collapse
Affiliation(s)
- Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
24
|
Tschurikow X, Gadzekpo A, Tran MP, Chatterjee R, Sobucki M, Zaburdaev V, Göpfrich K, Hilbert L. Amphiphiles Formed from Synthetic DNA-Nanomotifs Mimic the Stepwise Dispersal of Transcriptional Clusters in the Cell Nucleus. NANO LETTERS 2023; 23:7815-7824. [PMID: 37586706 PMCID: PMC10510709 DOI: 10.1021/acs.nanolett.3c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Stem cells exhibit prominent clusters controlling the transcription of genes into RNA. These clusters form by a phase-separation mechanism, and their size and shape are controlled via an amphiphilic effect of transcribed genes. Here, we construct amphiphile-nanomotifs purely from DNA, and we achieve similar size and shape control for phase-separated droplets formed from fully synthetic, self-interacting DNA-nanomotifs. Increasing amphiphile concentrations induce rounding of droplets, prevent droplet fusion, and, at high concentrations, cause full dispersal of droplets. Super-resolution microscopy data obtained from zebrafish embryo stem cells reveal a comparable transition for transcriptional clusters with increasing transcription levels. Brownian dynamics and lattice simulations further confirm that the addition of amphiphilic particles is sufficient to explain the observed changes in shape and size. Our work reproduces key aspects of transcriptional cluster formation in biological cells using relatively simple DNA sequence-programmable nanostructures, opening novel ways to control the mesoscopic organization of synthetic nanomaterials.
Collapse
Affiliation(s)
- Xenia Tschurikow
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Aaron Gadzekpo
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Mai P. Tran
- Center
for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Rakesh Chatterjee
- Max
Planck Zentrum für Physik und Medizin, Erlangen 91058, Germany
- Chair
of Mathematics in Life Sciences, Friedrich-Alexander
Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Marcel Sobucki
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Vasily Zaburdaev
- Max
Planck Zentrum für Physik und Medizin, Erlangen 91058, Germany
- Chair
of Mathematics in Life Sciences, Friedrich-Alexander
Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Kerstin Göpfrich
- Center
for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Lennart Hilbert
- Institute
of Biological and Chemical Systems, Karlsruhe
Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Zoological
Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| |
Collapse
|
25
|
Saleh OA, Wilken S, Squires TM, Liedl T. Vacuole dynamics and popping-based motility in liquid droplets of DNA. Nat Commun 2023; 14:3574. [PMID: 37328453 PMCID: PMC10275875 DOI: 10.1038/s41467-023-39175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
Liquid droplets of biomolecules play key roles in organizing cellular behavior, and are also technologically relevant, yet physical studies of dynamic processes of such droplets have generally been lacking. Here, we investigate and quantify the dynamics of formation of dilute internal inclusions, i.e., vacuoles, within a model system consisting of liquid droplets of DNA 'nanostar' particles. When acted upon by DNA-cleaving restriction enzymes, these DNA droplets exhibit cycles of appearance, growth, and bursting of internal vacuoles. Analysis of vacuole growth shows their radius increases linearly in time. Further, vacuoles pop upon reaching the droplet interface, leading to droplet motion driven by the osmotic pressure of restriction fragments captured in the vacuole. We develop a model that accounts for the linear nature of vacuole growth, and the pressures associated with motility, by describing the dynamics of diffusing restriction fragments. The results illustrate the complex non-equilibrium dynamics possible in biomolecular condensates.
Collapse
Affiliation(s)
- Omar A Saleh
- Materials Department and Physics Department, University of California, Santa Barbara, CA, 93106, USA.
| | - Sam Wilken
- Materials Department and Physics Department, University of California, Santa Barbara, CA, 93106, USA
| | - Todd M Squires
- Chemical Engineering Department, University of California, Santa Barbara, CA, 93106, USA
| | - Tim Liedl
- Physics Department, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
26
|
Sato Y, Takinoue M. Sequence-dependent fusion dynamics and physical properties of DNA droplets. NANOSCALE ADVANCES 2023; 5:1919-1925. [PMID: 36998664 PMCID: PMC10044877 DOI: 10.1039/d3na00073g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 06/19/2023]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymer molecules generates liquid-like droplets. Physical properties such as viscosity and surface tension play important roles in the functions of these droplets. DNA-nanostructure-based LLPS systems provide useful model tools to investigate the influence of molecular design on the physical properties of the droplets, which has so far remained unclear. Herein, we report changes in the physical properties of DNA droplets by sticky end (SE) design in DNA nanostructures. We used a Y-shaped DNA nanostructure (Y-motif) with three SEs as a model structure. Seven different SE designs were used. The experiments were performed at the phase transition temperature where the Y-motifs self-assembled into droplets. We found that the DNA droplets assembled from the Y-motifs with longer SEs exhibited a longer coalescence period. In addition, the Y-motifs with the same length but different sequence SEs showed slight variations in the coalescence period. Our results suggest that the SE length greatly affected the surface tension at the phase transition temperature. We believe that these findings will accelerate our understanding of the relationship between molecular design and the physical properties of droplets formed via LLPS.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Department of Intelligent and Control Systems, Kyushu Institute of Technology 680-4 Kawazu, IIzuka Fukuoka 820-8502 Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan
| |
Collapse
|
27
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
28
|
Tran MP, Chatterjee R, Dreher Y, Fichtler J, Jahnke K, Hilbert L, Zaburdaev V, Göpfrich K. A DNA Segregation Module for Synthetic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202711. [PMID: 35971190 DOI: 10.1002/smll.202202711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The bottom-up construction of an artificial cell requires the realization of synthetic cell division. Significant progress has been made toward reliable compartment division, yet mechanisms to segregate the DNA-encoded informational content are still in their infancy. Herein, droplets of DNA Y-motifs are formed by liquid-liquid phase separation. DNA droplet segregation is obtained by cleaving the linking component between two populations of DNA Y-motifs. In addition to enzymatic cleavage, photolabile sites are introduced for spatio-temporally controlled DNA segregation in bulk as well as in cell-sized water-in-oil droplets and giant unilamellar lipid vesicles (GUVs). Notably, the segregation process is slower in confinement than in bulk. The ionic strength of the solution and the nucleobase sequences are employed to regulate the segregation dynamics. The experimental results are corroborated in a lattice-based theoretical model which mimics the interactions between the DNA Y-motif populations. Altogether, engineered DNA droplets, reconstituted in GUVs, can represent a strategy toward a DNA segregation module within bottom-up assembled synthetic cells.
Collapse
Affiliation(s)
- Mai P Tran
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Rakesh Chatterjee
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Yannik Dreher
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Julius Fichtler
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| | - Lennart Hilbert
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Zoological Institute, Department of Systems Biology / Bioinformatics, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
29
|
Tekin E, Salditt A, Schwintek P, Wunnava S, Langlais J, Saenz J, Tang D, Schwille P, Mast C, Braun D. Prebiotic Foam Environments to Oligomerize and Accumulate RNA. Chembiochem 2022; 23:e202200423. [PMID: 36354762 PMCID: PMC10100173 DOI: 10.1002/cbic.202200423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Indexed: 11/12/2022]
Abstract
When water interacts with porous rocks, its wetting and surface tension properties create air bubbles in large number. To probe their relevance as a setting for the emergence of life, we microfluidically created foams that were stabilized with lipids. A persistent non-equilibrium setting was provided by a thermal gradient. The foam's large surface area triggers capillary flows and wet-dry reactions that accumulate, aggregate and oligomerize RNA, offering a compelling habitat for RNA-based early life as it offers both wet and dry conditions in direct neighborhood. Lipids were screened to stabilize the foams. The prebiotically more probable myristic acid stabilized foams over many hours. The capillary flow created by the evaporation at the water-air interface provided an attractive force for molecule localization and selection for molecule size. For example, self-binding oligonucleotide sequences accumulated and formed micrometer-sized aggregates which were shuttled between gas bubbles. The wet-dry cycles at the foam bubble interfaces triggered a non-enzymatic RNA oligomerization from 2',3'-cyclic CMP and GMP which despite the small dry reaction volume was superior to the corresponding dry reaction. The found characteristics make heated foams an interesting, localized setting for early molecular evolution.
Collapse
Affiliation(s)
- Emre Tekin
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Annalena Salditt
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Philipp Schwintek
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Sreekar Wunnava
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Juliette Langlais
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - James Saenz
- Center for Molecular BioengineeringTechnische Universität DresdenHelmholtzstrasse 1001069DresdenGermany
| | - Dora Tang
- Dynamic Protocellular SystemsMax-Planck Institute for Molecular Cell Biology and GeneticsPfotenhauerstrasse 10801307DresdenGermany
| | - Petra Schwille
- Cellular and Molecular BiophysicsMax-Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Christof Mast
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| | - Dieter Braun
- Systems BiophysicsCenter for Nano-Science and Origins Cluster Initiative Department of PhysicsLudwig-Maximilians-Universität MünchenAmalienstrasse 5480799MünchenGermany
| |
Collapse
|
30
|
Do S, Lee C, Lee T, Kim DN, Shin Y. Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities. SCIENCE ADVANCES 2022; 8:eabj1771. [PMID: 36240277 PMCID: PMC9565806 DOI: 10.1126/sciadv.abj1771] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/29/2022] [Indexed: 05/21/2023]
Abstract
Biomolecular condensates participate in diverse cellular processes, ranging from gene regulation to stress survival. Bottom-up engineering of synthetic condensates advances our understanding of the organizing principle of condensates. It also enables the synthesis of artificial systems with novel functions. However, building synthetic condensates with a predictable organization and function remains challenging. Here, we use DNA as a building block to create synthetic condensates that are assembled through phase separation. The programmability of intermolecular interactions between DNA molecules enables the control over various condensate properties including assembly, composition, and function. Similar to the way intracellular condensates are organized, DNA clients are selectively partitioned into cognate condensates. We demonstrate that the synthetic condensates can accelerate DNA strand displacement reactions and logic gate operation by concentrating specific reaction components. We envision that the DNA-based condensates could help the realization of the high-order functions required to build more life-like artificial systems.
Collapse
Affiliation(s)
- Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Taehyun Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (Y.S.); (D.-N.K.)
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
- Corresponding author. (Y.S.); (D.-N.K.)
| |
Collapse
|
31
|
Agarwal S, Osmanovic D, Klocke MA, Franco E. The Growth Rate of DNA Condensate Droplets Increases with the Size of Participating Subunits. ACS NANO 2022; 16:11842-11851. [PMID: 35867936 DOI: 10.1021/acsnano.2c00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid-liquid phase separation (LLPS) is a common phenomenon underlying the formation of dynamic membraneless organelles in biological cells, which are emerging as major players in controlling cellular functions and health. The bottom-up synthesis of biomolecular liquid systems with simple constituents, like nucleic acids and peptides, is useful to understand LLPS in nature as well as to develop programmable means to build new amorphous materials with properties matching or surpassing those observed in natural condensates. In particular, understanding which parameters determine condensate growth kinetics is essential for the synthesis of condensates with the capacity for active, dynamic behaviors. Here we use DNA nanotechnology to study artificial liquid condensates through programmable star-shaped subunits, focusing on the effects of changing subunit size. First, we show that LLPS is achieved in a 6-fold range of subunit size. Second, we demonstrate that the rate of growth of condensate droplets scales with subunit size. Our investigation is supported by a general model that describes how coarsening and coalescence are expected to scale with subunit size under ideal assumptions. Beyond suggesting a route toward achieving control of LLPS kinetics via design of subunit size in synthetic liquids, our work suggests that particle size may be a key parameter in biological condensation processes.
Collapse
Affiliation(s)
- Siddharth Agarwal
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Dino Osmanovic
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Melissa A Klocke
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90024, United States
- Bioengineering, University of California at Los Angeles, Los Angeles, California 90024, United States
| |
Collapse
|
32
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022; 61:e202117500. [PMID: 35090078 DOI: 10.1002/anie.202117500] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 01/26/2023]
Abstract
Spatiotemporal organization of distinct biological processes in cytomimetic compartments is a crucial step towards engineering functional artificial cells. Mimicking controlled bi-directional molecular communication inside artificial cells remains a considerable challenge. Here we present photoswitchable molecular transport between programmable membraneless organelle-like DNA coacervates in a synthetic microcompartment. We use droplet microfluidics to fabricate membraneless non-fusing DNA coacervates by liquid-liquid phase separation in a water-in-oil droplet, and employ the interior DNA coacervates as artificial organelles to imitate intracellular communication via photo-regulated uni- and bi-directional transfer of biomolecules. Our results highlight a promising new route to assembly of multicompartment artificial cells with functional networks.
Collapse
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fang-Hao Cao
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wilhelm T S Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Nan-Nan Deng
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
33
|
Yao S, Liao Y, Pan R, Zhu W, Xu Y, Yang Y, Qian X. Programmed co-assembly of DNA-peptide hybrid microdroplets by phase separation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Zhao QH, Cao FH, Luo ZH, Huck WTS, Deng NN. Photoswitchable Molecular Communication between Programmable DNA‐based Artificial Membraneless Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi-Hong Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Fang-Hao Cao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhen-Hong Luo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wilhelm T. S. Huck
- Radboud University Institute for Molecules and Materials: Radboud Universiteit Institute for Molecules and Materials Institue for Molecules and Materials NETHERLANDS
| | - Nan-Nan Deng
- Shanghai Jiao Tong University Chemistry and Chemical Engineering 800 Dongchuan RD. Minhang District 200240 Shanghai CHINA
| |
Collapse
|
35
|
Sato Y, Takinoue M. Capsule-like DNA Hydrogels with Patterns Formed by Lateral Phase Separation of DNA Nanostructures. JACS AU 2022; 2:159-168. [PMID: 35098232 PMCID: PMC8790810 DOI: 10.1021/jacsau.1c00450] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 05/03/2023]
Abstract
Phase separation is a key phenomenon in artificial cell construction. Recent studies have shown that the liquid-liquid phase separation of designed-DNA nanostructures induces the formation of liquid-like condensates that eventually become hydrogels by lowering the solution temperature. As a compartmental capsule is an essential artificial cell structure, many studies have focused on the lateral phase separation of artificial lipid vesicles. However, controlling phase separation using a molecular design approach remains challenging. Here, we present the lateral liquid-liquid phase separation of DNA nanostructures that leads to the formation of phase-separated capsule-like hydrogels. We designed three types of DNA nanostructures (two orthogonal and a linker nanostructure) that were adsorbed onto an interface of water-in-oil (W/O) droplets via electrostatic interactions. The phase separation of DNA nanostructures led to the formation of hydrogels with bicontinuous, patch, and mix patterns, due to the immiscibility of liquid-like DNA during the self-assembly process. The frequency of appearance of these patterns was altered by designing DNA sequences and altering the mixing ratio of the nanostructures. We constructed a phase diagram for the capsule-like DNA hydrogels by investigating pattern formation under various conditions. The phase-separated DNA hydrogels did not only form on the W/O droplet interface but also on the inner leaflet of lipid vesicles. Notably, the capsule-like hydrogels were extracted into an aqueous solution, maintaining the patterns formed by the lateral phase separation. In addition, the extracted hydrogels were successfully combined with enzymatic reactions, which induced their degradation. Our results provide a method for the design and control of phase-separated hydrogel capsules using sequence-designed DNAs. We envision that by incorporating various DNA nanodevices into DNA hydrogel capsules, the capsules will gain molecular sensing, chemical-information processing, and mechanochemical actuating functions, allowing the construction of functional molecular systems.
Collapse
Affiliation(s)
- Yusuke Sato
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi 980-8579, Japan
- Department
of Computer Science, Tokyo Institute of
Technology, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department
of Computer Science, Tokyo Institute of
Technology, Kanagawa 226-8502, Japan
| |
Collapse
|
36
|
Poudyal RR, Sieg JP, Portz B, Keating CD, Bevilacqua PC. RNA sequence and structure control assembly and function of RNA condensates. RNA (NEW YORK, N.Y.) 2021; 27:1589-1601. [PMID: 34551999 PMCID: PMC8594466 DOI: 10.1261/rna.078875.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Intracellular condensates formed through liquid-liquid phase separation (LLPS) primarily contain proteins and RNA. Recent evidence points to major contributions of RNA self-assembly in the formation of intracellular condensates. As the majority of previous studies on LLPS have focused on protein biochemistry, effects of biological RNAs on LLPS remain largely unexplored. In this study, we investigate the effects of crowding, metal ions, and RNA structure on formation of RNA condensates lacking proteins. Using bacterial riboswitches as a model system, we first demonstrate that LLPS of RNA is promoted by molecular crowding, as evidenced by formation of RNA droplets in the presence of polyethylene glycol (PEG 8K). Crowders are not essential for LLPS, however. Elevated Mg2+ concentrations promote LLPS of specific riboswitches without PEG. Calculations identify key RNA structural and sequence elements that potentiate the formation of PEG-free condensates; these calculations are corroborated by key wet-bench experiments. Based on this, we implement structure-guided design to generate condensates with novel functions including ligand binding. Finally, we show that RNA condensates help protect their RNA components from degradation by nucleases, suggesting potential biological roles for such higher-order RNA assemblies in controlling gene expression through RNA stability. By utilizing both natural and artificial RNAs, our study provides mechanistic insight into the contributions of intrinsic RNA properties and extrinsic environmental conditions to the formation and regulation of condensates comprised of RNAs.
Collapse
Affiliation(s)
- Raghav R Poudyal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jacob P Sieg
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
37
|
Tom JK, Deniz AA. Complex dynamics of multicomponent biological coacervates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Keating CD, Pappu RV. Liquid-Liquid Phase Separation: A Widespread and Versatile Way to Organize Aqueous Solutions. J Phys Chem B 2021; 125:12399-12400. [PMID: 34788996 DOI: 10.1021/acs.jpcb.1c08831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christine D Keating
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biolgical Systems Engineering Campus, Washington University in Saint Louis, Box 1097, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
39
|
Keating CD, Pappu RV. Liquid-Liquid Phase Separation: A Widespread and Versatile Way to Organize Aqueous Solutions. J Phys Chem Lett 2021; 12:10994-10995. [PMID: 34788997 DOI: 10.1021/acs.jpclett.1c03352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Christine D Keating
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biolgical Systems Engineering Campus, Washington University in Saint Louis, Box 1097, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
40
|
Lee T, Do S, Lee JG, Kim DN, Shin Y. The flexibility-based modulation of DNA nanostar phase separation. NANOSCALE 2021; 13:17638-17647. [PMID: 34664044 DOI: 10.1039/d1nr03495b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phase separation of biomolecules plays key roles in physiological compartmentalization as well as pathological aggregation. A deeper understanding of biomolecular phase separation requires dissection of a relation between intermolecular interactions and resulting phase behaviors. DNA nanostars, multivalent DNA assemblies of which sticky ends define attractive interactions, represent an ideal system to probe this fundamental relation governing phase separation processes. Here, we use DNA nanostars to systematically study how structural flexibility exhibited by interacting species impacts their phase behaviors. We design multiple nanostars with a varying degree of flexibility using single-stranded gaps of different lengths in the arm of each nanostar unit. We find that structural flexibility drastically alters the phase diagram of DNA nanostars in such a way that the phase separation of more flexible structures is strongly inhibited. This result is not due to self-inhibition from the loss of valency but rather ascribed to a generic flexibility-driven change in the thermodynamics of the system. Our work provides not only potential regulatory mechanisms cells may exploit to dynamically control intracellular phase separation but also a route to build synthetic systems of which assembly can be controlled in a signal dependent manner.
Collapse
Affiliation(s)
- Taehyun Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae Gyung Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Masukawa MK, Okuda Y, Takinoue M. Aqueous Triple-Phase System in Microwell Array for Generating Uniform-Sized DNA Hydrogel Particles. Front Genet 2021; 12:705022. [PMID: 34367260 PMCID: PMC8343185 DOI: 10.3389/fgene.2021.705022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
DNA hydrogels are notable for their biocompatibility and ability to incorporate DNA information and computing properties into self-assembled micrometric structures. These hydrogels are assembled by the thermal gelation of DNA motifs, a process which requires a high salt concentration and yields polydisperse hydrogel particles, thereby limiting their application and physicochemical characterization. In this study, we demonstrate that single, uniform DNA hydrogel particles can form inside aqueous/aqueous two-phase systems (ATPSs) assembled in a microwell array. In this process, uniform dextran droplets are formed in a microwell array inside a microfluidic device. The dextran droplets, which contain DNA motifs, are isolated from each other by an immiscible PEG solution containing magnesium ions and spermine, which enables the DNA hydrogel to undergo gelation. Upon thermal annealing of the device, we observed the formation of an aqueous triple-phase system in which uniform DNA hydrogel particles (the innermost aqueous phase) resided at the interface of the aqueous two-phase system of dextran and PEG. We expect ATPS microdroplet arrays to be used to manufacture other hydrogel microparticles and DNA/dextran/PEG aqueous triple-phase systems to serve as a highly parallel model for artificial cells and membraneless organelles.
Collapse
Affiliation(s)
| | | | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
42
|
Sato Y, Suzuki Y. DNA nanotechnology provides an avenue for the construction of programmable dynamic molecular systems. Biophys Physicobiol 2021; 18:116-126. [PMID: 34123692 PMCID: PMC8164909 DOI: 10.2142/biophysico.bppb-v18.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/23/2021] [Indexed: 12/01/2022] Open
Abstract
Self-assembled supramolecular structures in living cells and their dynamics underlie various cellular events, such as endocytosis, cell migration, intracellular transport, cell metabolism, and gene expression. Spatiotemporally regulated association/dissociation and generation/degradation of assembly components is one of the remarkable features of biological systems. The significant advancement in DNA nanotechnology over the last few decades has enabled the construction of various-shaped nanostructures via programmed self-assembly of sequence-designed oligonucleotides. These nanostructures can further be assembled into micrometer-sized structures, including ordered lattices, tubular structures, macromolecular droplets, and hydrogels. In addition to being a structural material, DNA is adopted to construct artificial molecular circuits capable of activating/inactivating or producing/decomposing target DNA molecules based on strand displacement or enzymatic reactions. In this review, we provide an overview of recent studies on artificially designed DNA-based self-assembled systems that exhibit dynamic features, such as association/dis-sociation of components, phase separation, stimulus responsivity, and DNA circuit-regulated structural formation. These biomacromolecule-based, bottom-up approaches for the construction of artificial molecular systems will not only throw light on bio-inspired nano/micro engineering, but also enable us to gain insights into how autonomy and adaptability of living systems can be realized.
Collapse
Affiliation(s)
- Yusuke Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|