1
|
Latham AP, Zhu L, Sharon DA, Ye S, Willard AP, Zhang X, Zhang B. Microphase separation produces interfacial environment within diblock biomolecular condensates. eLife 2025; 12:RP90750. [PMID: 40136009 PMCID: PMC11942181 DOI: 10.7554/elife.90750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, that is, the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELPs). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Longchen Zhu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake UniversityHangzhouChina
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake UniversityHangzhouChina
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
2
|
Zou R, Wang Y, Zhang X, Zhou Y, Liu Y, Ding M. Benchmark of Coacervate Formation and Mechanism Exploration Using the Martini Force Field. J Chem Theory Comput 2025; 21:2723-2735. [PMID: 39999285 DOI: 10.1021/acs.jctc.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Peptide-based coacervates are crucial for drug delivery due to their biocompatibility, versatility, high drug loading capacity, and cell penetration rates; however, their stability mechanism and phase behavior are not fully understood. Additionally, although Martini is one of the most famous force fields capable of describing coacervate formation with molecular details, a comprehensive benchmark of its accuracy has not been conducted. This research utilized the Martini 3.0 force field and machine learning algorithms to explore representative peptide-based coacervates, including those composed of polyaspartate (PAsp)/polyarginine (PArg), rmfp-1, sticker-and-spacer small molecules, and HBpep molecules. We identified key coacervate formation driving forces such as Coulomb, cation-π, and π-π interactions and established three criteria for determining coacervate formation in simulations. The results also indicate that while Martini 3.0 accurately captures coacervate formation trends, it tends to underestimate Coulomb interactions and overestimate π-π interactions. What is more, our study on drug encapsulation of HBpep and its derivative coacervates suggested that most loaded drugs were distributed on surfaces of HBpep clusters, awaiting experimental validation. This study employs simulation to enhance understanding of peptide-based coacervate phase behavior and stability mechanisms while also benchmarking Martini 3.0, thereby providing fundamental insights for future experimental and simulation investigations.
Collapse
Affiliation(s)
- Rongrong Zou
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Yiwei Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Xiu Zhang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Hess N, Joseph JA. Structured protein domains enter the spotlight: modulators of biomolecular condensate form and function. Trends Biochem Sci 2025; 50:206-223. [PMID: 39827079 DOI: 10.1016/j.tibs.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates are membraneless organelles that concentrate proteins and nucleic acids. One of the primary components of condensates is multidomain proteins, whose domains can be broadly classified as structured and disordered. While structured protein domains are ubiquitous within biomolecular condensates, the physical ramifications of their unique properties have been relatively underexplored. Therefore, this review synthesizes current literature pertaining to structured protein domains within the context of condensates. We examine how the propensity of structured domains for high interaction specificity and low conformational heterogeneity contributes to the formation, material properties, and functions of biomolecular condensates. Finally, we propose unanswered questions on the behavior of structured protein domains within condensates, the answers of which will contribute to a more complete understanding of condensate biophysics.
Collapse
Affiliation(s)
- Nathaniel Hess
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jerelle A Joseph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Fu Y, Yang X, Li S, Ma C, An Y, Cheng T, Liang Y, Sun S, Cheng T, Zhao Y, Wang J, Wang X, Xu P, Yin Y, Liang H, Liu N, Zou W, Chen B. Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation. Nat Commun 2025; 16:1640. [PMID: 39952932 PMCID: PMC11828908 DOI: 10.1038/s41467-025-56735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
CRISPR activation (CRISPRa) is a powerful tool for endogenous gene activation, yet the mechanisms underlying its optimal transcriptional activation remain unclear. By monitoring real-time transcriptional bursts, we find that CRISPRa modulates both burst duration and amplitude. Our quantitative imaging reveals that CRISPR-SunTag activators, with three tandem VP64-p65-Rta (VPR), form liquid-like transcriptional condensates and exhibit high activation potency. Although visible CRISPRa condensates are associated with some RNA bursts, the overall levels of phase separation do not correlate with transcriptional bursting or activation strength in individual cells. When the number of SunTag scaffolds is increased to 10 or more, solid-like condensates form, sequestering co-activators such as p300 and MED1. These condensates display low dynamicity and liquidity, resulting in ineffective gene activation. Overall, our studies characterize various phase-separated CRISPRa systems for gene activation, highlighting the foundational principles for engineering CRISPR-based programmable synthetic condensates with appropriate properties to effectively modulate gene expression.
Collapse
Affiliation(s)
- Yujuan Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoxuan Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Sihui Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Chenyang Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao An
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Shengbai Sun
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Cheng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yongyang Zhao
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianghu Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xiaoyue Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Pengfei Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqing Liang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Insititute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Baohui Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| |
Collapse
|
5
|
Priyanka G, Raj EJ, Prabhu NP. Liquid-liquid phase separation of intrinsically disordered proteins: Effect of osmolytes and crowders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 211:249-269. [PMID: 39947751 DOI: 10.1016/bs.pmbts.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The formation of membraneless organelles is vital for the intracellular organization of macromolecules and in regulating many cellular processes. The membraneless organelles are formed by liquid-liquid phase separation (LLPS) mainly constituted of proteins and polynucleotides. The primary factor driving the liquid demixing into two phases is the multivalency of the proteins involved, a general characteristic of intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs). This chapter discusses the role of IDP/IDRs in biomolecular condensate formation and the physical characteristics of these states. Further, the LLPS formation of individual proteins induced by molecular crowding and its relevance to physiological conditions are presented. The studies on the effects of small molecular osmolytes and a hydrotrope, ATP on the phase separation temperature, protein concentration, and reentrant behavior are discussed. The advancements and limitations of the computational methods to predict the phase separation behavior of IDPs, and to analyze the interactions and dynamics of the proteins in condensates are presented. The roles of phase separation in cancer, neurological disorders, and cardiovascular diseases are highlighted.
Collapse
Affiliation(s)
- G Priyanka
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - E Jawahar Raj
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
6
|
Wan L, Ke J, Zhu Y, Zhang W, Mu W. Recent advances in engineering synthetic biomolecular condensates. Biotechnol Adv 2024; 77:108452. [PMID: 39271032 DOI: 10.1016/j.biotechadv.2024.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Biomolecular condensates are intriguing entities found within living cells. These structures possess the ability to selectively concentrate specific components through phase separation, thereby playing a crucial role in the spatiotemporal regulation of a wide range of cellular processes and metabolic activities. To date, extensive studies have been dedicated to unraveling the intricate connections between molecular features, physical properties, and cellular functions of condensates. This collective effort has paved the way for deliberate engineering of tailor-made condensates with specific applications. In this review, we comprehensively examine the underpinnings governing condensate formation. Next, we summarize the material states of condensates and delve into the design of synthetic intrinsically disordered proteins with tunable phase behaviors and physical properties. Subsequently, we review the diverse biological functions demonstrated by synthetic biomolecular condensates, encompassing gene regulation, cellular behaviors, modulation of biochemical reactions, and manipulation of endogenous protein activities. Lastly, we discuss future challenges and opportunities in constructing synthetic condensates with tunable physical properties and customized cellular functions, which may shed light on the development of new types of sophisticated condensate systems with distinct functions applicable to various scenarios.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Sundaravadivelu Devarajan D, Mittal J. Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology. JACS AU 2024; 4:4394-4405. [PMID: 39610751 PMCID: PMC11600178 DOI: 10.1021/jacsau.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
Many biomolecular condensates act as viscoelastic complex fluids with distinct cellular functions. Deciphering the viscoelastic behavior of biomolecular condensates can provide insights into their spatiotemporal organization and physiological roles within cells. Although there is significant interest in defining the role of condensate dynamics and rheology in physiological functions, the quantification of their time-dependent viscoelastic properties is limited and is mostly done through experimental rheological methods. Here, we demonstrate that a computational passive probe microrheology technique, coupled with continuum mechanics, can accurately characterize the linear viscoelasticity of condensates formed by intrinsically disordered proteins (IDPs). Using a transferable coarse-grained protein model, we first provide a physical basis for choosing optimal values that define the attributes of the probe particle, namely, its size and interaction strength with the residues in an IDP chain. We show that the technique captures the sequence-dependent viscoelasticity of heteropolymeric IDPs that differ in either sequence charge patterning or sequence hydrophobicity. We also illustrate the technique's potential in quantifying the spatial dependence of viscoelasticity in heterogeneous IDP condensates. The computational microrheology technique has important implications for investigating the time-dependent rheology of complex biomolecular architectures, resulting in the sequence-rheology-function relationship for condensates.
Collapse
Affiliation(s)
| | - Jeetain Mittal
- Artie McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
9
|
Zhu YJ, Huang SC, Xia XX, Qian ZG. Noncanonical Amino Acid Incorporation Modulates Condensate States of Intrinsically Disordered Proteins in Escherichia coli Cells. Biomacromolecules 2024; 25:7191-7201. [PMID: 39390911 DOI: 10.1021/acs.biomac.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biomolecular condensates are distinct subcellular structures with on-demand material states and dynamics in living cells. However, strategies for modulating their material states and physicochemical properties are lacking. Here, we report a chemical strategy for modulating the condensate states of intrinsically disordered proteins in bacterial Escherichia coli cells. This is achieved by noncanonical amino acid (DOPA) incorporation into model resilin-like proteins (RLPs) to endow autonomous oxidative and coordinative cross-linking mechanisms. Biogenesis of spherical gel-like condensates is achieved upon heterologous expression of the DOPA-incorporated RLP in the cells at 30 °C. We reveal that liquid-liquid phase separation underlies the formation of liquid condensates, and this liquid-like state is metastable and its dynamics is compromised by the oxidative and coordinative cross-linkings that ultimately drive the liquid-to-gel transition. Therefore, this study has deepened our understanding of biomolecular condensation and offers a new chemical strategy to expand the landscape of condensation phenotypes of living cells.
Collapse
Affiliation(s)
- Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
10
|
Mondal M, Gao YQ. Atomistic Insights into Sequence-Mediated Spontaneous Association of Short RNA Chains. Biochemistry 2024; 63:2916-2936. [PMID: 39377398 DOI: 10.1021/acs.biochem.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
RNA-RNA association and phase separation appear to be essential for the assembly of stress granules and underlie RNA foci formation in repeat expansion disorders. RNA molecules are found to play a significant role in gene-regulatory functions via condensate formation among themselves or with RNA-binding proteins. The interplay between driven versus spontaneous processes is likely to be an important factor for controlling the formation of RNA-mediated biomolecular condensate. However, the sequence-specific interactions and molecular mechanisms that drive the spontaneous RNA-RNA association and help to form RNA-mediated phase-separated condensate remain unclear. With microseconds-long atomistic molecular simulations here, we report how essential aspects of RNA chains, namely, base composition, metal ion binding, and hydration properties, contribute to the association of the series of simplest biologically relevant homopolymeric and heteropolymeric short RNA chains. We show that spontaneous processes make the key contributions governed by the sequence-intrinsic properties of RNA chains, where the definite roles of base-specific hydrogen bonding and stacking interactions are prominent in the association of the RNA chains. Purine versus pyrimidine contents of RNA chains can directly influence the association properties of RNA chains by modulating hydrogen bonding and base stacking interactions. This study determines the impact of ionic environment in sequence-specific spontaneous association of short RNA chains, hydration features, and base-specific interactions of Na+, K+, and Mg2+ ions with RNA chains.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
- Changping Laboratory, Beijing 102200, China
| |
Collapse
|
11
|
Fabrini G, Farag N, Nuccio SP, Li S, Stewart JM, Tang AA, McCoy R, Owens RM, Rothemund PWK, Franco E, Di Antonio M, Di Michele L. Co-transcriptional production of programmable RNA condensates and synthetic organelles. NATURE NANOTECHNOLOGY 2024; 19:1665-1673. [PMID: 39080489 PMCID: PMC11567899 DOI: 10.1038/s41565-024-01726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 11/17/2024]
Abstract
Condensation of RNA and proteins is central to cellular functions, and the ability to program it would be valuable in synthetic biology and synthetic cell science. Here we introduce a modular platform for engineering synthetic RNA condensates from tailor-made, branched RNA nanostructures that fold and assemble co-transcriptionally. Up to three orthogonal condensates can form simultaneously and selectively accumulate fluorophores through embedded fluorescent light-up aptamers. The RNA condensates can be expressed within synthetic cells to produce membrane-less organelles with a controlled number and relative size, and showing the ability to capture proteins using selective protein-binding aptamers. The affinity between otherwise orthogonal nanostructures can be modulated by introducing dedicated linker constructs, enabling the production of bi-phasic RNA condensates with a prescribed degree of interphase mixing and diverse morphologies. The in situ expression of programmable RNA condensates could underpin the spatial organization of functionalities in both biological and synthetic cells.
Collapse
Affiliation(s)
- Giacomo Fabrini
- Department of Chemistry, Imperial College London, London, UK
- fabriCELL, Imperial College London, London, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Nada Farag
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Shiyi Li
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Reece McCoy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Elisa Franco
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Lorenzo Di Michele
- Department of Chemistry, Imperial College London, London, UK.
- fabriCELL, Imperial College London, London, UK.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Chen H, Bao Y, Li X, Chen F, Sugimura R, Zeng X, Xia J. Cell Surface Engineering by Phase-Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy. Angew Chem Int Ed Engl 2024; 63:e202410566. [PMID: 39103291 DOI: 10.1002/anie.202410566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024]
Abstract
Cell therapies such as CAR-T have demonstrated significant clinical successes, driving the investigation of immune cell surface engineering using natural and synthetic materials to enhance their therapeutic performance. However, many of these materials do not fully replicate the dynamic nature of the extracellular matrix (ECM). This study presents a cell surface engineering strategy that utilizes phase-separated peptide coacervates to decorate the surface of immune cells. We meticulously designed a tripeptide, Fmoc-Lys-Gly-Dopa-OH (KGdelta; Fmoc=fluorenylmethyloxycarbonyl; delta=Dopa, dihydroxyphenylalanine), that forms coacervates in aqueous solution via phase separation. These coacervates, mirroring the phase separation properties of ECM proteins, coat the natural killer (NK) cell surface with the assistance of Fe3+ ions and create an outer layer capable of encapsulating monoclonal antibodies (mAb), such as Trastuzumab. The antibody-embedded coacervate layer equips the NK cells with the ability to recognize cancer cells and eliminate them through enhanced antibody-dependent cellular cytotoxicity (ADCC). This work thus presents a unique strategy of cell surface functionalization and demonstrates its use in displaying cancer-targeting mAb for cancer therapies, highlighting its potential application in the field of cancer therapy.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Xiaojing Li
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Fangke Chen
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 99999, Hong Kong SAR, China
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| |
Collapse
|
13
|
Bian Y, Lv F, Pan H, Ren W, Zhang W, Wang Y, Cao Y, Li W, Wang W. Fusion Dynamics and Size-Dependence of Droplet Microstructure in ssDNA-Mediated Protein Phase Separation. JACS AU 2024; 4:3690-3704. [PMID: 39328748 PMCID: PMC11423313 DOI: 10.1021/jacsau.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation involving proteins and nucleic acids has been recognized to play crucial roles in genome organization and transcriptional regulation. However, the biophysical mechanisms underlying the droplet fusion dynamics and microstructure evolution during the early stage of liquid-liquid phase separation (LLPS) remain elusive. In this work, we study the phase separation of linker histone H1, which is among the most abundant chromatin proteins, in the presence of single-stranded DNA (ssDNA) capable of forming a G-quadruplex by using molecular simulations and experimental characterization. We found that droplet fusion is a rather stochastic and kinetically controlled process. Productive fusion events are triggered by the formation of ssDNA-mediated electrostatic bridges within the droplet contacting zone. The droplet microstructure is size-dependent and evolves driven by maximizing the number of electrostatic contacts. We also showed that the folding of ssDNA to the G-quadruplex promotes LLPS by increasing the multivalency and strength of protein-DNA interactions. These findings provide deep mechanistic insights into the growth dynamics of biomolecular droplets and highlight the key role of kinetic control during the early stage of ssDNA-protein condensation.
Collapse
Affiliation(s)
- Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Fangyi Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Hai Pan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Weitong Ren
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Yanwei Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yi Cao
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Wenfei Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 PMCID: PMC11843573 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Pradhan S, Campanile M, Sharma S, Oliva R, Patra S. Mechanistic Insights into the c-MYC G-Quadruplex and Berberine Binding inside an Aqueous Two-Phase System Mimicking Biomolecular Condensates. J Phys Chem Lett 2024; 15:8706-8714. [PMID: 39159468 DOI: 10.1021/acs.jpclett.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We investigated the binding between the c-MYC G-quadruplex (GQ) and berberine chloride (BCl) in an aqueous two-phase system (ATPS) with 12.3 wt % polyethylene glycol and 5.6 wt % dextran, mimicking the highly crowded intracellular biomolecular condensates formed via liquid-liquid phase separation. We found that in the ATPS, complex formation is significantly altered, leading to an increase in affinity and a change in the stoichiometry of the complex with respect to neat buffer conditions. Thermodynamic studies reveal that binding becomes more thermodynamically favorable in the ATPS due to entropic effects, as the strong excluded volume effect inside ATPS droplets reduces the entropic penalty associated with binding. Finally, the binding affinity of BCl for the c-MYC GQ is higher than those for other DNA structures, indicating potential specific interactions. Overall, these findings will be helpful in the design of potential drugs targeting the c-MYC GQ structures in cancer-related biocondensates.
Collapse
Affiliation(s)
- Susmita Pradhan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126 Naples, Italy
| | - Shubhangi Sharma
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126 Naples, Italy
| | - Satyajit Patra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| |
Collapse
|
16
|
Devarajan DS, Mittal J. Sequence-encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607792. [PMID: 39185151 PMCID: PMC11343109 DOI: 10.1101/2024.08.13.607792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Many biomolecular condensates act as viscoelastic complex fluids with distinct cellular functions. Deciphering the viscoelastic behavior of biomolecular condensates can provide insights into their spatiotemporal organization and physiological roles within cells. Though there is significant interest in defining the role of condensate dynamics and rheology in physiological functions, the quantification of their time-dependent viscoelastic properties is limited and mostly done through experimental rheological methods. Here, we demonstrate that a computational passive probe microrheology technique, coupled with continuum mechanics, can accurately characterize the linear viscoelasticity of condensates formed by intrinsically disordered proteins (IDPs). Using a transferable coarse-grained protein model, we first provide a physical basis for choosing optimal values that define the attributes of the probe particle, namely its size and interaction strength with the residues in an IDP chain. We show that the technique captures the sequence-dependent viscoelasticity of heteropolymeric IDPs that differ either in sequence charge patterning or sequence hydrophobicity. We also illustrate the technique's potential in quantifying the spatial dependence of viscoelasticity in heterogeneous IDP condensates. The computational microrheology technique has important implications for investigating the time-dependent rheology of complex biomolecular architectures, resulting in the sequence-rheology-function relationship for condensates.
Collapse
Affiliation(s)
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
17
|
Kang HW, Nguyen L, An S, Kyoung M. Mechanistic insights into condensate formation of human liver-type phosphofructokinase by stochastic modeling approaches. Sci Rep 2024; 14:19011. [PMID: 39152221 PMCID: PMC11329711 DOI: 10.1038/s41598-024-69534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Human liver-type phosphofructokinase 1 (PFKL) has been shown to regulate glucose flux as a scaffolder arranging glycolytic and gluconeogenic enzymes into a multienzyme metabolic condensate, the glucosome. However, it has remained elusive of how phase separation of PFKL is governed and initiates glucosome formation in living cells, thus hampering to understand a mechanism of glucosome formation and its functional contribution to human cells. In this work, we developed a stochastic model in silico using the principle of Langevin dynamics to investigate how biological properties of PFKL contribute to the condensate formation. The significance of an intermolecular interaction between PFKLs, an effective concentration of PFKL at a region of interest, and its own self-assembled filaments in formation of PFKL condensates and control of their sizes were demonstrated by molecular dynamics simulation using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Such biological properties that define intracellular dynamics of PFKL appear to be essential for phase separation of PFKL, which may represent an initiation step for the formation of glucosome condensates. Collectively, our computational study provides mechanistic insights of glucosome formation, particularly an initial stage through the formation of PFKL condensates in living human cells.
Collapse
Affiliation(s)
- Hye-Won Kang
- Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| | - Luan Nguyen
- Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
18
|
Sood A, Zhang B. Preserving condensate structure and composition by lowering sequence complexity. Biophys J 2024; 123:1815-1826. [PMID: 38824391 PMCID: PMC11267431 DOI: 10.1016/j.bpj.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Biomolecular condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating heterogeneous, nonspecific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that although spacer interactions contribute to phase separation and co-condensation, their nonspecific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined networked structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low-complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
19
|
Wan L, Zhu Y, Zhang W, Mu W. Recent advances in design and application of synthetic membraneless organelles. Biotechnol Adv 2024; 73:108355. [PMID: 38588907 DOI: 10.1016/j.biotechadv.2024.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants that enable disordered protein assembly into discrete condensed phases. Nat Chem 2024; 16:1062-1072. [PMID: 38316988 PMCID: PMC11929961 DOI: 10.1038/s41557-023-01423-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Cells harbour numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein- and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids, resulting in demixing via liquid-liquid phase separation. Proteins harbouring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modelling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
Affiliation(s)
- Rachel M Welles
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kandarp A Sojitra
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Mikael V Garabedian
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- Bioengineering Graduate Program, Rice University, Houston, TX, USA
| | - Wentao Wang
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Muyang Guan
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Roshan M Regy
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Elizabeth R Gallagher
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Hammer
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Program, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Rekhi S, Garcia CG, Barai M, Rizuan A, Schuster BS, Kiick KL, Mittal J. Expanding the molecular language of protein liquid-liquid phase separation. Nat Chem 2024; 16:1113-1124. [PMID: 38553587 PMCID: PMC11230844 DOI: 10.1038/s41557-024-01489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Understanding the relationship between a polypeptide sequence and its phase separation has important implications for analysing cellular function, treating disease and designing novel biomaterials. Several sequence features have been identified as drivers for protein liquid-liquid phase separation (LLPS), schematized as a 'molecular grammar' for LLPS. Here we further probe how sequence modulates phase separation and the material properties of the resulting condensates, targeting sequence features previously overlooked in the literature. We generate sequence variants of a repeat polypeptide with either no charged residues, high net charge, no glycine residues or devoid of aromatic or arginine residues. All but one of 12 variants exhibited LLPS, albeit to different extents, despite substantial differences in composition. Furthermore, we find that all the condensates formed behaved like viscous fluids, despite large differences in their viscosities. Our results support the model of multiple interactions between diverse residue pairs-not just a handful of residues-working in tandem to drive the phase separation and dynamics of condensates.
Collapse
Affiliation(s)
- Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Mayur Barai
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
22
|
Latham AP, Zhu L, Sharon DA, Ye S, Willard AP, Zhang X, Zhang B. Microphase Separation Produces Interfacial Environment within Diblock Biomolecular Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.30.534967. [PMID: 37034777 PMCID: PMC10081284 DOI: 10.1101/2023.03.30.534967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, i.e., the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELP). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Longchen Zhu
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Dina A Sharon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Songtao Ye
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
23
|
Roggeveen JV, Wang H, Shi Z, Stone HA. A calibration-free model of micropipette aspiration for measuring properties of protein condensates. Biophys J 2024; 123:1393-1403. [PMID: 37789618 PMCID: PMC11163300 DOI: 10.1016/j.bpj.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
There is growing evidence that biological condensates, which are also referred to as membraneless organelles, and liquid-liquid phase separation play critical roles regulating many important cellular processes. Understanding the roles these condensates play in biology is predicated on understanding the material properties of these complex substances. Recently, micropipette aspiration (MPA) has been proposed as a tool to assay the viscosity and surface tension of condensates. This tool allows the measurement of both material properties in one relatively simple experiment, in contrast to many other techniques that only provide one or a ratio of parameters. While this technique has been commonly used in the literature to determine the material properties of membrane-bound objects dating back decades, the model describing the dynamics of MPA for objects with an external membrane does not correctly capture the hydrodynamics of unbounded fluids, leading to a calibration parameter several orders of magnitude larger than predicted. In this work we derive a new model for MPA of biological condensates that does not require any calibration and is consistent with the hydrodynamics of the MPA geometry. We validate the predictions of this model by conducting MPA experiments on a standard silicone oil of known material properties and are able to predict the viscosity and surface tension using MPA. Finally, we reanalyze with this new model the MPA data presented in previous works for condensates formed from LAF-1 RGG domains.
Collapse
Affiliation(s)
- James V Roggeveen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
24
|
Lim S, Clark DS. Phase-separated biomolecular condensates for biocatalysis. Trends Biotechnol 2024; 42:496-509. [PMID: 37925283 DOI: 10.1016/j.tibtech.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Nature often uses dynamically assembling multienzymatic complexes called metabolons to achieve spatiotemporal control of complex metabolic reactions. Researchers are aiming to mimic this strategy of organizing enzymes to enhance the performance of artificial biocatalytic systems. Biomolecular condensates formed through liquid-liquid phase separation (LLPS) can serve as a powerful tool to drive controlled assembly of enzymes. Diverse enzymatic pathways have been reconstituted within catalytic condensates in vitro as well as synthetic membraneless organelles in living cells. Furthermore, in vivo condensates have been engineered to regulate metabolic pathways by selectively sequestering enzymes. Thus, harnessing LLPS for controlled organization of enzymes provides an opportunity to dynamically regulate biocatalytic processes.
Collapse
Affiliation(s)
- Samuel Lim
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA..
| |
Collapse
|
25
|
Sundaravadivelu Devarajan D, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim YC, Mittal J. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations. Nat Commun 2024; 15:1912. [PMID: 38429263 PMCID: PMC10907393 DOI: 10.1038/s41467-024-46223-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Material properties of phase-separated biomolecular condensates, enriched with disordered proteins, dictate many cellular functions. Contrary to the progress made in understanding the sequence-dependent phase separation of proteins, little is known about the sequence determinants of condensate material properties. Using the hydropathy scale and Martini models, we computationally decipher these relationships for charge-rich disordered protein condensates. Our computations yield dynamical, rheological, and interfacial properties of condensates that are quantitatively comparable with experimentally characterized condensates. Interestingly, we find that the material properties of model and natural proteins respond similarly to charge segregation, despite different sequence compositions. Molecular interactions within the condensates closely resemble those within the single-chain ensembles. Consequently, the material properties strongly correlate with molecular contact dynamics and single-chain structural properties. We demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.
Collapse
Affiliation(s)
| | - Jiahui Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Beata Szała-Mendyk
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062, Dresden, Germany
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, 20375, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Devarajan DS, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim YC, Mittal J. Sequence-Dependent Material Properties of Biomolecular Codensates and their Relation to Dilute Phase Conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540038. [PMID: 37215004 PMCID: PMC10197689 DOI: 10.1101/2023.05.09.540038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Material properties of phase-separated biomolecular assemblies, enriched with disordered proteins, dictate their ability to participate in many cellular functions. Despite the significant effort dedicated to understanding how the sequence of the disordered protein drives its phase separation to form condensates, little is known about the sequence determinants of condensate material properties. Here, we computationally decipher these relationships for charged disordered proteins using model sequences comprised of glutamic acid and lysine residues as well as naturally occurring sequences of LAF1's RGG domain and DDX4's N-terminal domain. We do so by delineating how the arrangement of oppositely charged residues within these sequences influences the dynamical, rheological, and interfacial properties of the condensed phase through equilibrium and non-equilibrium molecular simulations using the hydropathy scale and Martini models. Our computations yield material properties that are quantitatively comparable with experimentally characterized condensate systems. Interestingly, we find that the material properties of both the model and natural proteins respond similarly to the segregation of charges, despite their very different sequence compositions. Condensates of the highly charge-segregated sequences exhibit slower dynamics than the uniformly charge-patterned sequences, because of their comparatively long-lived molecular contacts between oppositely charged residues. Surprisingly, the molecular interactions within the condensate are highly similar to those within a single-chain for all sequences. Consequently, the condensate material properties of charged disordered proteins are strongly correlated with their dense phase contact dynamics and their single-chain structural properties. Our findings demonstrate the potential to harness the sequence characteristics of disordered proteins for predicting and engineering the material properties of functional condensates, with insights from the dilute phase properties.
Collapse
Affiliation(s)
| | - Jiahui Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Beata Szała-Mendyk
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375, United States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
27
|
Shandilya E, Bains AS, Maiti S. Enzyme-Mediated Temporal Control over the Conformational Disposition of a Condensed Protein in Macromolecular Crowded Media. J Phys Chem B 2023; 127:10508-10517. [PMID: 38052045 DOI: 10.1021/acs.jpcb.3c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Temporal regulation between input and output signals is one of the hallmarks of complex biological processes. Herein, we report that the conformational disposition of a protein in macromolecularly crowded media can be controlled with time using enzymes. First, we demonstrate the pH dependence of bovine serum albumin (BSA) condensation and conformational alteration in the presence of poly(ethylene glycol) as a crowder. However, by exploiting the strength of pH-modulatory enzymatic reactions (glucose oxidase and urease), the conversion time between the condensed and free forms can be tuned. Additionally, we demonstrate that the trapping of intermediate states with respect to the overall system at a particular α-helix or β-sheet composition and rotational mobility can be possible simply by altering the substrate concentration. Finally, we show that the intrinsic catalytic ability of BSA toward the Kemp elimination (KE) reaction is inhibited in the aggregated form but regained in the free form. In fact, the rate of KE reaction can also be actuated enzymatically in a temporal fashion, therefore demonstrating the programmability of a cascade of biochemical events in crowded media.
Collapse
Affiliation(s)
- Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Arshdeep Singh Bains
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
28
|
Sood A, Zhang B. Preserving condensate structure and composition by lowering sequence complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569249. [PMID: 38076908 PMCID: PMC10705451 DOI: 10.1101/2023.11.29.569249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Biological condensates play a vital role in organizing cellular chemistry. They selectively partition biomolecules, preventing unwanted cross-talk and buffering against chemical noise. Intrinsically disordered proteins (IDPs) serve as primary components of these condensates due to their flexibility and ability to engage in multivalent, non-specific interactions, leading to spontaneous aggregation. Theoretical advancements are critical at connecting IDP sequences with condensate emergent properties to establish the so-called molecular grammar. We proposed an extension to the stickers and spacers model, incorporating non-specific pairwise interactions between spacers alongside specific interactions among stickers. Our investigation revealed that while spacer interactions contribute to phase separation and co-condensation, their non-specific nature leads to disorganized condensates. Specific sticker-sticker interactions drive the formation of condensates with well-defined structures and molecular composition. We discussed how evolutionary pressures might emerge to affect these interactions, leading to the prevalence of low complexity domains in IDP sequences. These domains suppress spurious interactions and facilitate the formation of biologically meaningful condensates.
Collapse
Affiliation(s)
- Amogh Sood
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Cho Y, Jacobs WM. Nonequilibrium interfacial properties of chemically driven fluids. J Chem Phys 2023; 159:154101. [PMID: 37843057 DOI: 10.1063/5.0166824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Chemically driven fluids can demix to form condensed droplets that exhibit phase behaviors not observed at equilibrium. In particular, nonequilibrium interfacial properties can emerge when the chemical reactions are driven differentially between the interior and exterior of the phase-separated droplets. Here, we use a minimal model to study changes in the interfacial tension between coexisting phases away from equilibrium. Simulations of both droplet nucleation and interface roughness indicate that the nonequilibrium interfacial tension can either be increased or decreased relative to its equilibrium value, depending on whether the driven chemical reactions are accelerated or decelerated within the droplets. Finally, we show that these observations can be understood using a predictive theory based on an effective thermodynamic equilibrium.
Collapse
Affiliation(s)
- Yongick Cho
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
30
|
Testa A, Spanke HT, Jambon-Puillet E, Yasir M, Feng Y, Küffner AM, Arosio P, Dufresne ER, Style RW, Rebane AA. Surface Passivation Method for the Super-repellence of Aqueous Macromolecular Condensates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14626-14637. [PMID: 37797324 PMCID: PMC10586374 DOI: 10.1021/acs.langmuir.3c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.
Collapse
Affiliation(s)
- Andrea Testa
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Etienne Jambon-Puillet
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- LadHyX,
CNRS, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau 91120, France
| | - Mohammad Yasir
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanxia Feng
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas M. Küffner
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Robert W. Style
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksander A. Rebane
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Life
Molecules and Materials Laboratory, Programs in Chemistry and in Physics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Bao Y, Chen H, Xu Z, Gao J, Jiang L, Xia J. Photo-Responsive Phase-Separating Fluorescent Molecules for Intracellular Protein Delivery. Angew Chem Int Ed Engl 2023; 62:e202307045. [PMID: 37648812 DOI: 10.1002/anie.202307045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Cellular membranes, including the plasma and endosome membranes, are barriers to outside proteins. Various vehicles have been devised to deliver proteins across the plasma membrane, but in many cases, the payload gets trapped in the endosome. Here we designed a photo-responsive phase-separating fluorescent molecule (PPFM) with a molecular weight of 666.8 daltons. The PPFM compound condensates as fluorescent droplets in the aqueous solution by liquid-liquid phase separation (LLPS), which disintegrate upon photoirradiation with a 405 nm light-emitting diode (LED) lamp within 20 min or a 405 nm laser within 3 min. The PPFM coacervates recruit a wide range of peptides and proteins and deliver them into mammalian cells. Photolysis disperses the payload from condensates into the cytosolic space. Altogether, a type of small molecules that are photo-responsive and phase separating are discovered; their coacervates can serve as transmembrane vehicles for intracellular delivery of proteins, whereas photo illumination triggers the cytosolic distribution of the payload.
Collapse
Affiliation(s)
- Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hongfei Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhiyi Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiayang Gao
- Center for Cell & Developmental Biology, School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Liwen Jiang
- Center for Cell & Developmental Biology, School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
32
|
Welles RM, Sojitra KA, Garabedian MV, Xia B, Wang W, Guan M, Regy RM, Gallagher ER, Hammer DA, Mittal J, Good MC. Determinants of Disordered Protein Co-Assembly Into Discrete Condensed Phases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532134. [PMID: 36945618 PMCID: PMC10028963 DOI: 10.1101/2023.03.10.532134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cells harbor numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids resulting in demixing via liquid-liquid phase separation (LLPS). Proteins harboring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modeling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.
Collapse
|
33
|
Mohanty P, Shenoy J, Rizuan A, Mercado-Ortiz JF, Fawzi NL, Mittal J. A synergy between site-specific and transient interactions drives the phase separation of a disordered, low-complexity domain. Proc Natl Acad Sci U S A 2023; 120:e2305625120. [PMID: 37579155 PMCID: PMC10450430 DOI: 10.1073/pnas.2305625120] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is involved in key processes in RNA metabolism and is frequently implicated in many neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. The prion-like, disordered C-terminal domain (CTD) of TDP-43 is aggregation-prone, can undergo liquid-liquid phase separation (LLPS) in isolation, and is critical for phase separation (PS) of the full-length protein under physiological conditions. While a short conserved helical region (CR, spanning residues 319-341) promotes oligomerization and is essential for LLPS, aromatic residues in the flanking disordered regions (QN-rich, IDR1/2) are also found to play a critical role in PS and aggregation. Compared with other phase-separating proteins, TDP-43 CTD has a notably distinct sequence composition including many aliphatic residues such as methionine and leucine. Aliphatic residues were previously suggested to modulate the apparent viscosity of the resulting phases, but their direct contribution toward CTD phase separation has been relatively ignored. Using multiscale simulations coupled with in vitro saturation concentration (csat) measurements, we identified the importance of aromatic residues while also suggesting an essential role for aliphatic methionine residues in promoting single-chain compaction and LLPS. Surprisingly, NMR experiments showed that transient interactions involving phenylalanine and methionine residues in the disordered flanking regions can directly enhance site-specific, CR-mediated intermolecular association. Overall, our work highlights an underappreciated mode of biomolecular recognition, wherein both transient and site-specific hydrophobic interactions act synergistically to drive the oligomerization and phase separation of a disordered, low-complexity domain.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrinDepartment of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - Jayakrishna Shenoy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI02912
| | - Azamat Rizuan
- Artie McFerrinDepartment of Chemical Engineering, Texas A&M University, College Station, TX77843
| | - José F. Mercado-Ortiz
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI02912
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI02912
| | - Jeetain Mittal
- Artie McFerrinDepartment of Chemical Engineering, Texas A&M University, College Station, TX77843
- Department of Chemistry, Texas A&M University, College Station, TX77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX77843
| |
Collapse
|
34
|
Mangiarotti A, Chen N, Zhao Z, Lipowsky R, Dimova R. Wetting and complex remodeling of membranes by biomolecular condensates. Nat Commun 2023; 14:2809. [PMID: 37217523 DOI: 10.1038/s41467-023-37955-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Cells compartmentalize parts of their interiors into liquid-like condensates, which can be reconstituted in vitro. Although these condensates interact with membrane-bound organelles, their potential for membrane remodeling and the underlying mechanisms of such interactions are not well-understood. Here, we demonstrate that interactions between protein condensates - including hollow ones, and membranes can lead to remarkable morphological transformations and provide a theoretical framework to describe them. Modulation of solution salinity or membrane composition drives the condensate-membrane system through two wetting transitions, from dewetting, through a broad regime of partial wetting, to complete wetting. When sufficient membrane area is available, fingering or ruffling of the condensate-membrane interface is observed, an intriguing phenomenon producing intricately curved structures. The observed morphologies are governed by the interplay of adhesion, membrane elasticity, and interfacial tension. Our results highlight the relevance of wetting in cell biology, and pave the way for the design of synthetic membrane-droplet based biomaterials and compartments with tunable properties.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Nannan Chen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
- Department of Nutrition and Food Hygiene, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743, Jena, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany.
| |
Collapse
|
35
|
Law JO, Jones CM, Stevenson T, Williamson TA, Turner MS, Kusumaatmaja H, Grellscheid SN. A bending rigidity parameter for stress granule condensates. SCIENCE ADVANCES 2023; 9:eadg0432. [PMID: 37196085 DOI: 10.1126/sciadv.adg0432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Interfacial tension plays an important role in governing the dynamics of droplet coalescence and determining how condensates interact with and deform lipid membranes and biological filaments. We demonstrate that an interfacial tension-only model is inadequate for describing stress granules in live cells. Harnessing a high-throughput flicker spectroscopy pipeline to analyze the shape fluctuations of tens of thousands of stress granules, we find that the measured fluctuation spectra require an additional contribution, which we attribute to elastic bending deformation. We also show that stress granules have an irregular, nonspherical base shape. These results suggest that stress granules are viscoelastic droplets with a structured interface, rather than simple Newtonian liquids. Furthermore, we observe that the measured interfacial tensions and bending rigidities span a range of several orders of magnitude. Hence, different types of stress granules (and more generally, other biomolecular condensates) can only be differentiated via large-scale surveys.
Collapse
Affiliation(s)
- Jack O Law
- Computational Biology Unit and Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Carl M Jones
- Computational Biology Unit and Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Biosciences, University of Durham, Durham, UK
| | - Thomas Stevenson
- Computational Biology Unit and Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | | | | | - Sushma N Grellscheid
- Computational Biology Unit and Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Biosciences, University of Durham, Durham, UK
| |
Collapse
|
36
|
Wan L, Zhu Y, Zhang W, Mu W. Phase-Separated Synthetic Organelles Based on Intrinsically Disordered Protein Domain for Metabolic Pathway Assembly in Escherichia coli. ACS NANO 2023. [PMID: 37191277 DOI: 10.1021/acsnano.3c02333] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Extensive research efforts have been focused on spatial organization of biocatalytic cascades or catalytic networks in confined cellular environments. Inspired by the natural metabolic systems that spatially regulate pathways via sequestration into subcellular compartments, formation of artificial membraneless organelles through expressing intrinsically disordered proteins in host strains has been proven to be a feasible strategy. Here we report the engineering of a synthetic membraneless organelle platform, which can be used to extend compartmentalization and spatially organize pathway sequential enzymes. We show that heterologous overexpression of the RGG domain derived from the disordered P granule protein LAF-1 in an Escherichia coli strain can form intracellular protein condensates via liquid-liquid phase separation. We further demonstrate that different clients can be recruited to the synthetic compartments via directly fusing with the RGG domain or cooperating with different protein interaction motifs. Using the 2'-fucosyllactose de novo biosynthesis pathway as a model system, we show that clustering sequential enzymes into synthetic compartments can effectively increase the titer and yield of the target product compared to strains with free-floating pathway enzymes. The synthetic membraneless organelle system constructed here gives a promising approach in the development of microbial cell factories, wherein it could be used for the compartmentalization of pathway enzymes to streamline metabolic flux.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
37
|
Dai Y, You L, Chilkoti A. Engineering synthetic biomolecular condensates. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359769 PMCID: PMC10107566 DOI: 10.1038/s44222-023-00052-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 06/28/2023]
Abstract
The concept of phase-separation-mediated formation of biomolecular condensates provides a new framework to understand cellular organization and cooperativity-dependent cellular functions. With growing understanding of how biological systems drive phase separation and how cellular functions are encoded by biomolecular condensates, opportunities have emerged for cellular control through engineering of synthetic biomolecular condensates. In this Review, we discuss how to construct synthetic biomolecular condensates and how they can regulate cellular functions. We first describe the fundamental principles by which biomolecular components can drive phase separation. Next, we discuss the relationship between the properties of condensates and their cellular functions, which informs the design of components to create programmable synthetic condensates. Finally, we describe recent applications of synthetic biomolecular condensates for cellular control and discuss some of the design considerations and prospective applications.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
38
|
Zeng X, Pappu RV. Developments in describing equilibrium phase transitions of multivalent associative macromolecules. Curr Opin Struct Biol 2023; 79:102540. [PMID: 36804705 PMCID: PMC10732938 DOI: 10.1016/j.sbi.2023.102540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Biomolecular condensates are distinct cellular bodies that form and dissolve reversibly to organize cellular matter and biochemical reactions in space and time. Condensates are thought to form and dissolve under the influence of spontaneous and driven phase transitions of multivalent associative macromolecules. These include phase separation, which is defined by segregation of macromolecules from the solvent or from one another, and percolation or gelation, which is an inclusive networking transition driven by reversible associations among multivalent macromolecules. Considerable progress has been made to model sequence-specific phase transitions, especially for intrinsically disordered proteins. Here, we summarize the state-of-the-art of theories and computations aimed at understanding and modeling sequence-specific, thermodynamically controlled, coupled associative and segregative phase transitions of archetypal multivalent macromolecules.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA. https://twitter.com/@xiangzezeng
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
39
|
Liu M, Wang Y, Jiang H, Han Y, Xia J. Synthetic Multienzyme Assemblies for Natural Product Biosynthesis. Chembiochem 2023; 24:e202200518. [PMID: 36625563 DOI: 10.1002/cbic.202200518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
In nature, enzymes that catalyze sequential reactions are often assembled as clusters or complexes. The formation of multienzyme complexes, or metabolons, brings the enzyme active sites into proximity to promote intermediate transfer, decrease intermediate leakage, and streamline the metabolic flux towards the desired products. We and others have developed synthetic versions of metabolons through various strategies to enhance the catalytic rates for synthesizing valuable chemicals inside microbes. Synthetic multienzyme complexes range from static enzyme nanostructures to dynamic enzyme coacervates. Enzyme complexation optimizes the metabolic fluxes inside microbes, increases the product titer, and supplies the field with high-yield microbe strains that are amenable to large-scale fermentation. Enzyme complexes constructed inside microbial cells can be separated as independent entities and catalyze biosynthetic reactions ex vivo; such a feature gains these complexes another name, "synthetic organelles" - new subcellular entities with independent structures and functions. Still, the field is seeking new strategies to better balance dynamicity and confinement and to achieve finer control of local compartmentalization in the cells, as the natural multienzyme complexes do. Industrial applications of synthetic multienzyme complexes for the large-scale production of valuable chemicals are yet to be realized. This review focuses on synthetic multienzyme complexes that are constructed and function inside microbial cells.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yongxu Han
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and, Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
40
|
Mondal M, Gao YQ. Sequence‐dependent clustering properties of nucleotides fragments in an ionic solution. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology Shenzhen Bay Laboratory Shenzhen China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering Peking University Beijing China
- Biomedical Pioneering Innovation Center Peking University Beijing China
- Beijing Advanced Innovation Center for Genomics Peking University Beijing China
| |
Collapse
|
41
|
Kulkarni A, Vidal-Henriquez E, Zwicker D. Effective simulations of interacting active droplets. Sci Rep 2023; 13:733. [PMID: 36639416 PMCID: PMC9839783 DOI: 10.1038/s41598-023-27630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Droplets form a cornerstone of the spatiotemporal organization of biomolecules in cells. These droplets are controlled using physical processes like chemical reactions and imposed gradients, which are costly to simulate using traditional approaches, like solving the Cahn-Hilliard equation. To overcome this challenge, we here present an alternative, efficient method. The main idea is to focus on the relevant degrees of freedom, like droplet positions and sizes. We derive dynamical equations for these quantities using approximate analytical solutions obtained from a sharp interface limit and linearized equations in the bulk phases. We verify our method against fully-resolved simulations and show that it can describe interacting droplets under the influence of chemical reactions and external gradients using only a fraction of the computational costs of traditional methods. Our method can be extended to include other processes in the future and will thus serve as a relevant platform for understanding the dynamics of droplets in cells.
Collapse
Affiliation(s)
- Ajinkya Kulkarni
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | | | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
42
|
Parchure A, Tian M, Stalder D, Boyer CK, Bearrows SC, Rohli KE, Zhang J, Rivera-Molina F, Ramazanov BR, Mahata SK, Wang Y, Stephens SB, Gershlick DC, von Blume J. Liquid-liquid phase separation facilitates the biogenesis of secretory storage granules. J Cell Biol 2022; 221:e202206132. [PMID: 36173346 PMCID: PMC9526250 DOI: 10.1083/jcb.202206132] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin is synthesized by pancreatic β-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in β-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cierra K. Boyer
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Shelby C. Bearrows
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Kristen E. Rohli
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Samuel B. Stephens
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
43
|
Hong Y, Najafi S, Casey T, Shea JE, Han SI, Hwang DS. Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins. Nat Commun 2022; 13:7326. [PMID: 36443315 PMCID: PMC9705477 DOI: 10.1038/s41467-022-35001-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine's ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine's ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.
Collapse
Affiliation(s)
- Yuri Hong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Saeed Najafi
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Thomas Casey
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Joan-Emma Shea
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| | - Song-I Han
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
44
|
Qian ZG, Huang SC, Xia XX. Synthetic protein condensates for cellular and metabolic engineering. Nat Chem Biol 2022; 18:1330-1340. [DOI: 10.1038/s41589-022-01203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
|
45
|
Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry 2022; 61:2443-2455. [PMID: 35802394 PMCID: PMC9669140 DOI: 10.1021/acs.biochem.2c00210] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of membraneless organelles, often termed "biological condensates", play an important role in the regulation of cellular processes such as gene transcription, translation, and protein quality control. On the basis of experimental and theoretical investigations, liquid-liquid phase separation (LLPS) has been proposed as a possible mechanism for the origin of biological condensates. LLPS requires multivalent macromolecules that template the formation of long-range, intermolecular interaction networks and results in the formation of condensates with defined composition and material properties. Multivalent interactions driving LLPS exhibit a wide range of modes from highly stereospecific to nonspecific and involve both folded and disordered regions. Multidomain proteins serve as suitable macromolecules for promoting phase separation and achieving disparate functions due to their potential for multivalent interactions and regulation. Here, we aim to highlight the influence of the domain architecture and interdomain interactions on the phase separation of multidomain protein condensates. First, the general principles underlying these interactions are illustrated on the basis of examples of multidomain proteins that are predominantly associated with nucleic acid binding and protein quality control and contain both folded and disordered regions. Next, the examples showcase how LLPS properties of folded and disordered regions can be leveraged to engineer multidomain constructs that form condensates with the desired assembly and functional properties. Finally, we highlight the need for improvements in coarse-grained computational models that can provide molecular-level insights into multidomain protein condensates in conjunction with experimental efforts.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | | | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
46
|
Abstract
Transcription is of great importance to stress response, fate control, and development, involving the functional cooperation of a large number of transcription factors and cofactors. Transcription machineries assemble rapidly to respond to the physiological and functional needs of cells. Recently, phase-separated biomolecular condensates have emerged as a universal biophysical basis for the spatiotemporal coordination of various cellular activities, including transcription. Here, we summarize and discuss recent advances in understanding of how phase separation contributes to RNA polymerase II (Pol II)-mediated transcriptional regulation, with a focus on the physical properties and dynamics of transcriptional condensates.
Collapse
Affiliation(s)
- Chenghao Guo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| |
Collapse
|
47
|
Capasso Palmiero U, Paganini C, Kopp MRG, Linsenmeier M, Küffner AM, Arosio P. Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104837. [PMID: 34664748 DOI: 10.1002/adma.202104837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence indicates that cells can regulate biochemical functions in time and space by generating membraneless compartments with well-defined mesoscopic properties. One important mechanism underlying this control is simple coacervation driven by associative disordered proteins that encode multivalent interactions. Inspired by these observations, programmable droplets based on simple coacervation of responsive synthetic polymers that mimic the "stickers-and-spacers" architecture of biological disordered proteins are developed. Zwitterionic polymers that undergo an enthalpy-driven liquid-liquid phase separation process and form liquid droplets that remarkably exclude most molecules are developed. Starting from this reference material, different functional groups in the zwitterionic polymer are progressively added to encode an increasing number of different intermolecular interactions. This strategy allowed the multiple emerging properties of the droplets to be controlled independently, such as stimulus-responsiveness, polarity, selective uptake of client molecules, fusion times, and miscibility. By exploiting this high programmability, a model of cellular compartmentalization is reproduced and droplets capable of confining different molecules in space without physical barriers are generated. Moreover, these biomolecular sorters are demonstrated to be able to localize, separate, and enable the detection of target molecules even within complex mixtures, opening attractive applications in bioseparation, and diagnostics.
Collapse
Affiliation(s)
- Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Carolina Paganini
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Marie R G Kopp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Miriam Linsenmeier
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Andreas M Küffner
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
48
|
Kelley FM, Favetta B, Regy RM, Mittal J, Schuster BS. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants. Proc Natl Acad Sci U S A 2021; 118:e2109967118. [PMID: 34916288 PMCID: PMC8713756 DOI: 10.1073/pnas.2109967118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cells contain membraneless compartments that assemble due to liquid-liquid phase separation, including biomolecular condensates with complex morphologies. For instance, certain condensates are surrounded by a film of distinct composition, such as Ape1 condensates coated by a layer of Atg19, required for selective autophagy in yeast. Other condensates are multiphasic, with nested liquid phases of distinct compositions and functions, such as in the case of ribosome biogenesis in the nucleolus. The size and structure of such condensates must be regulated for proper biological function. We leveraged a bioinspired approach to discover how amphiphilic, surfactant-like proteins may contribute to the structure and size regulation of biomolecular condensates. We designed and examined families of amphiphilic proteins comprising one phase-separating domain and one non-phase-separating domain. In particular, these proteins contain the soluble structured domain glutathione S-transferase (GST) or maltose binding protein (MBP), fused to the intrinsically disordered RGG domain from P granule protein LAF-1. When one amphiphilic protein is mixed in vitro with RGG-RGG, the proteins assemble into enveloped condensates, with RGG-RGG at the core and the amphiphilic protein forming the surface film layer. Importantly, we found that MBP-based amphiphiles are surfactants and influence droplet size, with increasing surfactant concentration resulting in smaller droplet radii. In contrast, GST-based amphiphiles at increased concentrations coassemble with RGG-RGG into multiphasic structures. We propose a mechanism for these experimental observations, supported by molecular simulations of a minimalist model. We speculate that surfactant proteins may play a significant role in regulating the structure and function of biomolecular condensates.
Collapse
Affiliation(s)
- Fleurie M Kelley
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Bruna Favetta
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Roshan Mammen Regy
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854;
| |
Collapse
|
49
|
Keating CD, Pappu RV. Liquid-Liquid Phase Separation: A Widespread and Versatile Way to Organize Aqueous Solutions. J Phys Chem B 2021; 125:12399-12400. [PMID: 34788996 DOI: 10.1021/acs.jpcb.1c08831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christine D Keating
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biolgical Systems Engineering Campus, Washington University in Saint Louis, Box 1097, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
50
|
Keating CD, Pappu RV. Liquid-Liquid Phase Separation: A Widespread and Versatile Way to Organize Aqueous Solutions. J Phys Chem Lett 2021; 12:10994-10995. [PMID: 34788997 DOI: 10.1021/acs.jpclett.1c03352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Christine D Keating
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biolgical Systems Engineering Campus, Washington University in Saint Louis, Box 1097, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|