Wang B, Guo C. Concentration-Dependent Effects of Cholesterol on the Dimerization of Amyloid-β Peptides in Lipid Bilayers.
ACS Chem Neurosci 2022;
13:2709-2718. [PMID:
36082607 DOI:
10.1021/acschemneuro.2c00349]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Membrane disruption mediated by the accumulation of amyloid-β (Aβ) on cell membranes is central to the pathogenesis of Alzheimer's disease (AD). Cholesterol, an important component of membranes, is well-recognized as a risk factor in AD. It can affect the aggregation and pore formation of Aβ on membranes whereas the specific effects are rather complex, particularly regarding the non-linear response to cholesterol concentrations. Yet, the mechanistic understanding of the role of cholesterol in Aβ-membrane interactions remains incomplete. Herein, we employed microsecond-scale molecular dynamics simulations to investigate the effects of cholesterol on Aβ dimerization in a lipid bilayer containing different molar ratios of cholesterol (0, 20, and 40 mol %). Cholesterol reduces the time required for the formation of stable dimers and exerts dual effects on Aβ-membrane interactions. First, cholesterol promotes the extraction of the C-terminal region from the membrane to water. Consequently, at the ratios of 0 and 20 mol %, peptides are anchored at the membrane-water interface, but they are repelled to water at a ratio of 40 mol % with high structural flexibility. Second, cholesterol weakens Aβ-membrane interactions, thereby enhancing inter-peptide interactions. The former is favorable for dimerization while the latter is not. The balance between two factors eventually leads to a non-monotonic effect on the degree of dimerization, whereby the number of inter-peptide contacts is the largest at a cholesterol ratio of 20 mol %. These results provide atomistic insights into the regulation mechanism of Aβ42 aggregation by cholesterol and help to understand the pathological link between cholesterol and AD.
Collapse