1
|
Barroso da Silva FL, Paco K, Laaksonen A, Ray A. Biophysics of SARS-CoV-2 spike protein's receptor-binding domain interaction with ACE2 and neutralizing antibodies: from computation to functional insights. Biophys Rev 2025; 17:309-333. [PMID: 40376405 PMCID: PMC12075047 DOI: 10.1007/s12551-025-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/24/2025] [Indexed: 05/18/2025] Open
Abstract
The spike protein encoded by the SARS-CoV-2 has become one of the most studied macromolecules in recent years due to its central role in COVID-19 pathogenesis. The spike protein's receptor-binding domain (RBD) directly interacts with the host-encoded receptor protein, ACE2. This review critically examines computational insights into RBD's interaction with ACE2 and with therapeutic antibodies designed to interfere with this interaction. We begin by summarizing insights from early computational studies on pre-pandemic SARS-CoV-1 RBD interactions and how these early studies shaped the understanding of SARS-CoV-2. Next, we highlight key theoretical contributions that revealed the molecular mechanisms behind the binding affinity of SARS-CoV-2 RBD against ACE2, and the structural changes that have enhanced the infectivity of emerging variants. Special attention is given to the "RBD charge rule", a predictive framework for determining variant infectivity based on the electrostatic properties of the RBD. Towards applying the computational insights to therapy, we discuss a multiscale computational protocol for optimizing monoclonal antibodies to improve binding affinity across multiple spike protein variants, including representatives from the Omicron family. Finally, we explore how these insights can inform the development of future vaccines and therapeutic interventions for combating future coronavirus diseases.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av Prof Zeferino Vaz, S/no, Ribeirão Preto, São Paulo BR-14040-903 Brazil
- Department of Chemical and Biomolecular Engineering, NC State University, 911 Partners Way, Engineering Building I (EB1), Raleigh, NC 27695-7905 USA
| | - Karen Paco
- Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr., Claremont, CA 91711 USA
| | - Aatto Laaksonen
- Department of Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius Väg 8, 106 91 Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 210009 People’s Republic of China
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Laboratorievägen 14, 97187 Luleå, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
| | - Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Dr., Claremont, CA 91711 USA
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 USA
| |
Collapse
|
2
|
Iqbal Z, Asim M, Khan UA, Sultan N, Ali I. Computational electrostatic engineering of nanobodies for enhanced SARS-CoV-2 receptor binding domain recognition. Front Mol Biosci 2025; 12:1512788. [PMID: 40129869 PMCID: PMC11931142 DOI: 10.3389/fmolb.2025.1512788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel computational approach for engineering nanobodies (Nbs) for improved interaction with receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Using Protein Structure Reliability reports, RBD (7VYR_R) was selected and refined for subsequent Nb-RBD interactions. By leveraging electrostatic complementarity (EC) analysis, we engineered and characterized five Electrostatically Complementary Nbs (ECSb1-ECSb5) based on the CeVICA library's SR6c3 Nb. Through targeted modifications in the complementarity-determining regions (CDR) and framework regions (FR), we optimized electrostatic interactions to improve binding affinity and specificity. The engineered Nbs (ECSb3, ECSb4, and ECSb5) demonstrated high binding specificity for AS3, CA1, and CA2 epitopes. Interestingly, ECSb1 and ECSb2 selectively engaged with AS3 and CA1 instead of AS1 and AS2, respectively, due to a preference for residues that conferred superior binding complementarities. Furthermore, ECSbs significantly outperformed SR6c3 Nb in MM/GBSA results, notably, ECSb4 and ECSb3 exhibited superior binding free energies of -182.58 kcal.mol-1 and -119.07 kcal.mol-1, respectively, compared to SR6c3 (-105.50 kcal.mol-1). ECSbs exhibited significantly higher thermostability (100.4-148.3 kcal·mol⁻1) compared to SR6c3 (62.6 kcal·mol⁻1). Similarly, enhanced electrostatic complementarity was also observed for ECSb4-RBD and ECSb3-RBD (0.305 and 0.390, respectively) relative to SR6c3-RBD (0.233). Surface analyses confirmed optimized electrostatic patches and reduced aggregation propensity in the engineered Nb. This integrated EC and structural engineering approach successfully developed engineered Nbs with enhanced binding specificity, increased thermostability, and reduced aggregation, laying the groundwork for novel therapeutic applications targeting the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al Hofuf, Saudi Arabia
| | - Muhammad Asim
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Umair Ahmad Khan
- Medical and Allied Department, Faisalabad Medical University, Faisalabad, Pakistan
| | - Neelam Sultan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Nguyen H, Nguyen HL, Li MS. Binding of SARS-CoV-2 Nonstructural Protein 1 to 40S Ribosome Inhibits mRNA Translation. J Phys Chem B 2024; 128:7033-7042. [PMID: 39007765 DOI: 10.1021/acs.jpcb.4c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Experimental evidence has established that SARS-CoV-2 NSP1 acts as a factor that restricts cellular gene expression and impedes mRNA translation within the ribosome's 40S subunit. However, the precise molecular mechanisms underlying this phenomenon have remained elusive. To elucidate this issue, we employed a combination of all-atom steered molecular dynamics and coarse-grained alchemical simulations to explore the binding affinity of mRNA to the 40S ribosome, both in the presence and absence of SARS-CoV-2 NSP1. Our investigations revealed that the binding of SARS-CoV-2 NSP1 to the 40S ribosome leads to a significant enhancement in the binding affinity of mRNA. This observation, which aligns with experimental findings, strongly suggests that SARS-CoV-2 NSP1 has the capability to inhibit mRNA translation. Furthermore, we identified electrostatic interactions between mRNA and the 40S ribosome as the primary driving force behind mRNA translation. Notably, water molecules were found to play a pivotal role in stabilizing the mRNA-40S ribosome complex, underscoring their significance in this process. We successfully pinpointed the specific SARS-CoV-2 NSP1 residues that play a critical role in triggering the translation arrest.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang City 550000, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Quang Trung Software City, Life Science Lab, Institute for Computational Science and Technology, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam
| |
Collapse
|
4
|
Cournia Z, Chipot C. Applications of Free-Energy Calculations to Biomolecular Processes. A Collection. J Phys Chem B 2024; 128:3299-3301. [PMID: 38600851 DOI: 10.1021/acs.jpcb.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n◦7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street W225, Chicago, Illinois 60637, United States
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Cournia Z, Chipot C. Applications of Free-Energy Calculations to Biomolecular Processes. A Collection. J Chem Inf Model 2024; 64:2129-2131. [PMID: 38587007 DOI: 10.1021/acs.jcim.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Affiliation(s)
- Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n◦7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street W225, Chicago, Illinois 60637, United States
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Lan PD, Nissley DA, O’Brien EP, Nguyen TT, Li MS. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. J Chem Phys 2024; 160:055101. [PMID: 38310477 PMCID: PMC11223169 DOI: 10.1063/5.0188053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
The binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein to the host cell receptor angiotensin-converting enzyme 2 (ACE2) is the first step in human viral infection. Therefore, understanding the mechanism of interaction between RBD and ACE2 at the molecular level is critical for the prevention of COVID-19, as more variants of concern, such as Omicron, appear. Recently, atomic force microscopy has been applied to characterize the free energy landscape of the RBD-ACE2 complex, including estimation of the distance between the transition state and the bound state, xu. Here, using a coarse-grained model and replica-exchange umbrella sampling, we studied the free energy landscape of both the wild type and Omicron subvariants BA.1 and XBB.1.5 interacting with ACE2. In agreement with experiment, we find that the wild type and Omicron subvariants have similar xu values, but Omicron binds ACE2 more strongly than the wild type, having a lower dissociation constant KD.
Collapse
Affiliation(s)
| | - Daniel A. Nissley
- Department of Statistics, University of Oxford, Oxford Protein Bioinformatics Group, Oxford OX1 2JD, United Kingdom
| | | | - Toan T. Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems and Department of Theoretical Physics, Faculty of Physics, University of Science, Vietnam National University - Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi 11400, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
7
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
8
|
Giron CC, Laaksonen A, Barroso da Silva FL. Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. J Biomol Struct Dyn 2023; 41:5707-5727. [PMID: 35815535 DOI: 10.1080/07391102.2022.2095305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 remains a health threat with the continuous emergence of new variants. This work aims to expand the knowledge about the SARS-CoV-2 receptor-binding domain (RBD) interactions with cell receptors and monoclonal antibodies (mAbs). By using constant-pH Monte Carlo simulations, the free energy of interactions between the RBD from different variants and several partners (Angiotensin-Converting Enzyme-2 (ACE2) polymorphisms and various mAbs) were predicted. Computed RBD-ACE2-binding affinities were higher for two ACE2 polymorphisms (rs142984500 and rs4646116) typically found in Europeans which indicates a genetic susceptibility. This is amplified for Omicron (BA.1) and its sublineages BA.2 and BA.3. The antibody landscape was computationally investigated with the largest set of mAbs so far in the literature. From the 32 studied binders, groups of mAbs were identified from weak to strong binding affinities (e.g. S2K146). These mAbs with strong binding capacity and especially their combination are amenable to experimentation and clinical trials because of their high predicted binding affinities and possible neutralization potential for current known virus mutations and a universal coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Universidade Federal do Triângulo Mineiro, Hospital de Clínicas, Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, PR China
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå, Sweden
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy
| | - Fernando Luís Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Banerjee S, Hemmat MA, Shubham S, Gosai A, Devarakonda S, Jiang N, Geekiyanage C, Dillard JA, Maury W, Shrotriya P, Lamm MH, Nilsen-Hamilton M. Structurally Different Yet Functionally Similar: Aptamers Specific for the Ebola Virus Soluble Glycoprotein and GP1,2 and Their Application in Electrochemical Sensing. Int J Mol Sci 2023; 24:4627. [PMID: 36902059 PMCID: PMC10003157 DOI: 10.3390/ijms24054627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2'FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins.
Collapse
Affiliation(s)
- Soma Banerjee
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
| | - Mahsa Askary Hemmat
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shambhavi Shubham
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Agnivo Gosai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Nianyu Jiang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Pranav Shrotriya
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Monica H. Lamm
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Marit Nilsen-Hamilton
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
10
|
Neamtu A, Mocci F, Laaksonen A, Barroso da Silva FL. Towards an optimal monoclonal antibody with higher binding affinity to the receptor-binding domain of SARS-CoV-2 spike proteins from different variants. Colloids Surf B Biointerfaces 2023; 221:112986. [PMID: 36375294 PMCID: PMC9617679 DOI: 10.1016/j.colsurfb.2022.112986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
A highly efficient and robust multiple scales in silico protocol, consisting of atomistic Molecular Dynamics (MD), coarse-grain (CG) MD, and constant-pH CG Monte Carlo (MC), has been developed and used to study the binding affinities of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 and several of its here optimized versions against 11 SARS-CoV-2 variants including the wild type. Totally 235,000 mAbs structures were initially generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-like-RBD complexes with critical mutations and compared to the native one, all having the potential to block virus-host cell interaction. Of these 10 finalists, two candidates were further identified in the CG simulations to be the best against all SARS-CoV-2 variants. Surprisingly, all 10 candidates and the native CR3022 exhibited a higher affinity for the Omicron variant despite its highest number of mutations. The multiscale protocol gives us a powerful rational tool to design efficient mAbs. The electrostatic interactions play a crucial role and appear to be controlling the affinity and complex building. Studied mAbs carrying a more negative total net charge show a higher affinity. Structural determinants could be identified in atomistic simulations and their roles are discussed in detail to further hint at a strategy for designing the best RBD binder. Although the SARS-CoV-2 was specifically targeted in this work, our approach is generally suitable for many diseases and viral and bacterial pathogens, leukemia, cancer, multiple sclerosis, rheumatoid, arthritis, lupus, and more.
Collapse
Affiliation(s)
- Andrei Neamtu
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, Str. Universitatii nr. 16, 700051 Iasi, România; TRANSCEND Centre - Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot, Nr. 2-4 Iași, România
| | - Francesca Mocci
- University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| | - Aatto Laaksonen
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41 A, 700487 Iasi, Romania; University of Cagliari, Department of Chemical and Geological Sciences, Campus Monserrato, SS 554 bivio per Sestu, 09042 Monserrato, Italy; Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. café, s/no - campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
11
|
Shariatifar H, Farasat A. Affinity enhancement of CR3022 binding to RBD; in silico site directed mutagenesis using molecular dynamics simulation approaches. J Biomol Struct Dyn 2023; 41:81-90. [PMID: 34796779 DOI: 10.1080/07391102.2021.2004230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a disease which caused by a novel beta coronavirus. Structural and non-structural proteins are expressed by the virus gene fragments. The RBD of the S1 protein of the virus has the ability to interact with potent antibodies including CR3022, which was characterized to target the S protein of the virus which can efficiently neutralize the SARS-CoV in vitro and in vivo. In current study, we aimed to design CR3022 based antibody with high affinity compared with wild-type CR3022 using MD simulation method. Two variants were designed based on the amino acid binding conformation and the free binding energy of the critical amino acids which involved in CR3022-RBD interactions were evaluated. In this study three complexes were evaluated; CR3022-RBD, V1-RBD and V2-RBD using molecular dynamics simulations carried out for 100 ns in each case. Then, all the complexes were simulated for 100 ns. In the next step, to calculate the free binding affinity of the wild CR3022 and mutant antibody (V1 and V2) with RBD, the PMF method was performed. The RMSD profile demonstrated that all three complexes were equilibrated after 85 ns. Furthermore, the free binding energy results indicated that the V2-RBD complex has the higher binding affinity than V1-RBD and CR3022-RBD complexes. It should be noted that in above variants, the electrostatic energy and the number of H-bonds between the antibody and RBD increased. Thus, it is suggested that both designed antibodies could be considered as appropriate candidates for covid-19 disease treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hanifeh Shariatifar
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
12
|
Pang YT, Acharya A, Lynch DL, Pavlova A, Gumbart JC. SARS-CoV-2 spike opening dynamics and energetics reveal the individual roles of glycans and their collective impact. Commun Biol 2022; 5:1170. [PMID: 36329138 PMCID: PMC9631587 DOI: 10.1038/s42003-022-04138-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The trimeric spike (S) glycoprotein, which protrudes from the SARS-CoV-2 viral envelope, binds to human ACE2, initiated by at least one protomer's receptor binding domain (RBD) switching from a "down" (closed) to an "up" (open) state. Here, we used large-scale molecular dynamics simulations and two-dimensional replica exchange umbrella sampling calculations with more than a thousand windows and an aggregate total of 160 μs of simulation to investigate this transition with and without glycans. We find that the glycosylated spike has a higher barrier to opening and also energetically favors the down state over the up state. Analysis of the S-protein opening pathway reveals that glycans at N165 and N122 interfere with hydrogen bonds between the RBD and the N-terminal domain in the up state, while glycans at N165 and N343 can stabilize both the down and up states. Finally, we estimate how epitope exposure for several known antibodies changes along the opening path. We find that the BD-368-2 antibody's epitope is continuously exposed, explaining its high efficacy.
Collapse
Affiliation(s)
- Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Electrostatic effects on ligand-assisted transfer of metals to (bio)accumulating interfaces and metal complexes (bioavai)lability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022; 126:6835-6852. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrostatic intermolecular interactions are important in many aspects of biology. We have studied the main electrostatic features involved in the interaction of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with the human receptor Angiotensin-converting enzyme 2 (ACE2). As the principal computational tool, we have used the FORTE approach, capable to model proton fluctuations and computing free energies for a very large number of protein-protein systems under different physical-chemical conditions, here focusing on the RBD-ACE2 interactions. Both the wild-type and all critical variants are included in this study. From our large ensemble of extensive simulations, we obtain, as a function of pH, the binding affinities, charges of the proteins, their charge regulation capacities, and their dipole moments. In addition, we have calculated the pKas for all ionizable residues and mapped the electrostatic coupling between them. We are able to present a simple predictor for the RBD-ACE2 binding based on the data obtained for Alpha, Beta, Gamma, Delta, and Omicron variants, as a linear correlation between the total charge of the RBD and the corresponding binding affinity. This "RBD charge rule" should work as a quick test of the degree of severity of the coming SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Fernando L Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 38025-440 Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden.,Department of Chemical and Geological Sciences, Campus Monserrato, University of Cagliari, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| |
Collapse
|
15
|
Ching WY, Adhikari P, Jawad B, Podgornik R. Effect of Delta and Omicron Mutations on the RBD-SD1 Domain of the Spike Protein in SARS-CoV-2 and the Omicron Mutations on RBD-ACE2 Interface Complex. Int J Mol Sci 2022; 23:10091. [PMID: 36077490 PMCID: PMC9456519 DOI: 10.3390/ijms231710091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
The receptor-binding domain (RBD) is the essential part in the Spike-protein (S-protein) of SARS-CoV-2 virus that directly binds to the human ACE2 receptor, making it a key target for many vaccines and therapies. Therefore, any mutations at this domain could affect the efficacy of these treatments as well as the viral-cell entry mechanism. We introduce ab initio DFT-based computational study that mainly focuses on two parts: (1) Mutations effects of both Delta and Omicron variants in the RBD-SD1 domain. (2) Impact of Omicron RBD mutations on the structure and properties of the RBD-ACE2 interface system. The in-depth analysis is based on the novel concept of amino acid-amino acid bond pair units (AABPU) that reveal the differences between the Delta and/or Omicron mutations and its corresponding wild-type strain in terms of the role played by non-local amino acid interactions, their 3D shapes and sizes, as well as contribution to hydrogen bonding and partial charge distributions. Our results also show that the interaction of Omicron RBD with ACE2 significantly increased its bonding between amino acids at the interface providing information on the implications of penetration of S-protein into ACE2, and thus offering a possible explanation for its high infectivity. Our findings enable us to present, in more conspicuous atomic level detail, the effect of specific mutations that may help in predicting and/or mitigating the next variant of concern.
Collapse
Affiliation(s)
- Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
16
|
Williams A, Zhan CG. Fast Prediction of Binding Affinities of SARS-CoV-2 Spike Protein and Its Mutants with Antibodies through Intermolecular Interaction Modeling-Based Machine Learning. J Phys Chem B 2022; 126:5194-5206. [PMID: 35817617 PMCID: PMC9301770 DOI: 10.1021/acs.jpcb.2c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Since the introduction of the novel SARS-CoV-2 virus (COVID-19) in late 2019, various new variants have appeared with mutations that confer resistance to the vaccines and monoclonal antibodies that were developed in response to the wild-type virus. As we continue through the pandemic, an accurate and efficient methodology is needed to help predict the effects certain mutations will have on both our currently produced therapeutics and those that are in development. Using published cryo-electron microscopy and X-ray crystallography structures of the spike receptor binding domain region with currently known antibodies, in the present study, we created and cross-validated an intermolecular interaction modeling-based multi-layer perceptron machine learning approach that can accurately predict the mutation-caused shifts in the binding affinity between the spike protein (wild-type or mutant) and various antibodies. This validated artificial intelligence (AI) model was used to predict the binding affinity (Kd) of reported SARS-CoV-2 antibodies with various variants of concern, including the most recently identified "Deltamicron" (or "Deltacron") variant. This AI model may be employed in the future to predict the Kd of developed novel antibody therapeutics to overcome the challenging antibody resistance issue and develop structural bases for the effects of both current and new mutants of the spike protein. In addition, the similar AI strategy and approach based on modeling of the intermolecular interactions may be useful in development of machine learning models predicting binding affinities for other protein-protein binding systems, including other antibodies binding with their antigens.
Collapse
Affiliation(s)
- Alexander
H. Williams
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
17
|
Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms. Biomolecules 2022; 12:biom12070964. [PMID: 35883520 PMCID: PMC9313167 DOI: 10.3390/biom12070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions.
Collapse
|
18
|
Nguyen H, Li MS. Antibody-nanobody combination increases their neutralizing activity against SARS-CoV-2 and nanobody H11-H4 is effective against Alpha, Kappa and Delta variants. Sci Rep 2022; 12:9701. [PMID: 35690632 PMCID: PMC9188278 DOI: 10.1038/s41598-022-14263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
The global spread of COVID-19 is devastating health systems and economies worldwide. While the use of vaccines has yielded encouraging results, the emergence of new variants of SARS-CoV-2 shows that combating COVID-19 remains a big challenge. One of the most promising treatments is the use of not only antibodies, but also nanobodies. Recent experimental studies revealed that the combination of antibody and nanobody can significantly improve their neutralizing ability through binding to the SARS-CoV-2 spike protein, but the molecular mechanisms underlying this observation remain largely unknown. In this work, we investigated the binding affinity of the CR3022 antibody and H11-H4 nanobody to the SARS-CoV-2 receptor binding domain (RBD) using molecular modeling. Both all-atom steered molecular dynamics simulations and coarse-grained umbrella sampling showed that, consistent with the experiment, CR3022 associates with RBD more strongly than H11-H4. We predict that the combination of CR3022 and H11-H4 considerably increases their binding affinity to the spike protein. The electrostatic interaction was found to control the association strength of CR3022, but the van der Waals interaction dominates in the case of H11-H4. However, our study for a larger set of nanobodies and antibodies showed that the relative role of these interactions depends on the specific complex. Importantly, we showed Beta, Gamma, Lambda, and Mu variants reduce the H11-H4 activity while Alpha, Kappa and Delta variants increase its neutralizing ability, which is in line with experiment reporting that the nanobody elicited from the llama is very promising for fighting against the Delta variant.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland. .,Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.
| |
Collapse
|
19
|
Nguyen H, Lan PD, Nissley DA, O’Brien EP, Li MS. Cocktail of REGN Antibodies Binds More Strongly to SARS-CoV-2 Than Its Components, but the Omicron Variant Reduces Its Neutralizing Ability. J Phys Chem B 2022; 126:2812-2823. [PMID: 35403431 PMCID: PMC9016775 DOI: 10.1021/acs.jpcb.2c00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A promising approach to combat Covid-19 infections is the development of effective antiviral antibodies that target the SARS-CoV-2 spike protein. Understanding the structures and molecular mechanisms underlying the binding of antibodies to SARS-CoV-2 can contribute to quickly achieving this goal. Recently, a cocktail of REGN10987 and REGN10933 antibodies was shown to be an excellent candidate for the treatment of Covid-19. Here, using all-atom steered molecular dynamics and coarse-grained umbrella sampling, we examine the interactions of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with REGN10987 and REGN10933 separately as well as together. Both computational methods show that REGN10933 binds to RBD more strongly than REGN10987. Importantly, the cocktail binds to RBD (simultaneous binding) more strongly than its components. The dissociation constants of REGN10987-RBD and REGN10933-RBD complexes calculated from the coarse-grained simulations are in good agreement with the experimental data. Thus, REGN10933 is probably a better candidate for treating Covid-19 than REGN10987, although the cocktail appears to neutralize the virus more efficiently than REGN10933 or REGN10987 alone. The association of REGN10987 with RBD is driven by van der Waals interactions, while electrostatic interactions dominate in the case of REGN10933 and the cocktail. We also studied the effectiveness of these antibodies on the two most dangerous variants Delta and Omicron. Consistent with recent experimental reports, our results confirmed that the Omicron variant reduces the neutralizing activity of REGN10933, REGN10987, and REGN10933+REGN10987 with the K417N, N440K, L484A, and Q498R mutations playing a decisive role, while the Delta variant slightly changes their activity.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pham Dang Lan
- Life
Science Lab, Institute for Computational
Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam,Faculty
of Physics and Engineering Physics, VNUHCM-University
of Science, 227, Nguyen
Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford
Protein Bioinformatics Group, OX1 2JD Oxford, United Kingdom
| | - Edward P. O’Brien
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States,Bioinformatics
and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States,Institute
for Computational and Data Sciences, Penn
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland,
| |
Collapse
|
20
|
Adhikari P, Jawad B, Podgornik R, Ching WY. Mutations of Omicron Variant at the Interface of the Receptor Domain Motif and Human Angiotensin-Converting Enzyme-2. Int J Mol Sci 2022; 23:2870. [PMID: 35270013 PMCID: PMC8911136 DOI: 10.3390/ijms23052870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The most recent Omicron variant of SARS-CoV-2 has caused global concern and anxiety. The only thing certain about this strain, with a large number of mutations in the spike protein, is that it spreads quickly, seems to evade immune defense, and mitigates the benefits of existing vaccines. Based on the ultra-large-scale ab initio computational modeling of the receptor binding motif (RBM) and the human angiotensin-converting enzyme-2 (ACE2) interface, we provide the details of the effect of Omicron mutations at the fundamental atomic scale level. In-depth analysis anchored in the novel concept of amino acid-amino acid bond pair units (AABPU) indicates that mutations in the Omicron variant are connected with (i) significant changes in the shape and structure of AABPU components, together with (ii) significant increase in the positive partial charge, which facilitates the interaction with ACE2. We have identified changes in bonding due to mutations in the RBM. The calculated bond order, based on AABPU, reveals that the Omicron mutations increase the binding strength of RBM to ACE2. Our findings correlate with and are instrumental to explain the current observations and can contribute to the prediction of next potential new variant of concern.
Collapse
Affiliation(s)
- Puja Adhikari
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
| | - Bahaa Jawad
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute of Theoretical Science, University of Chinese Academy of Sciences, Beijing 100049, China;
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100090, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA; (P.A.); (B.J.)
| |
Collapse
|
21
|
Zhou L, Wu L, Peng C, Yang Y, Shi Y, Gong L, Xu Z, Zhu W. Predicting spike protein NTD mutations of SARS-CoV-2 causing immune evasion by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:3410-3419. [PMID: 35073390 DOI: 10.1039/d1cp05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among all the potential targets studied for developing drugs and antibodies, the spike (S) protein is the most striking one, which is on the surface of the virus. In contrast with the intensively investigated immunodominant receptor-binding domain (RBD) of the protein, little is known about the neutralizing antibody binding mechanisms of the N-terminal domain (NTD), let alone the effects of NTD mutations on antibody binding and thereby the risk of immune evasion. Based on 400 ns molecular dynamics simulation for 11 NTD-antibody complexes together with other computational approaches in this study, we investigated critical residues for NTD-antibody binding and their detailed mechanisms. The results show that 36 residues on the NTD including R246, Y144, K147, Y248, L249 and P251 are critically involved in the direct interaction of the NTD with many monoclonal antibodies (mAbs), indicating that the viruses harboring these residue mutations may have a high risk of immune evasion. Binding free energy calculations and an interaction mechanism study reveal that R246I, which is present in the Beta (B.1.351/501Y.V2) variant, may have various impacts on current NTD antibodies through abolishing the hydrogen bonds and electrostatic interaction with the antibodies or affecting other interface residues. Therefore, special attention should be paid to the mutations of these key residues in future antibody and vaccine design and development.
Collapse
Affiliation(s)
- Liping Zhou
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Leyun Wu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Cheng Peng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yanqing Yang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yulong Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Likun Gong
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China.,Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Yu W, Zhong N, Li X, Ren J, Wang Y, Li C, Yao G, Zhu R, Wang X, Jia Z, Wu C, Chen R, Zheng W, Liao H, Wu X, Yuan X. Structure Based Affinity Maturation and Characterizing of SARS-CoV Antibody CR3022 against SARS-CoV-2 by Computational and Experimental Approaches. Viruses 2022; 14:v14020186. [PMID: 35215781 PMCID: PMC8875849 DOI: 10.3390/v14020186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
The COVID-19 epidemic is raging around the world. Neutralizing antibodies are powerful tools for the prevention and treatment of SARS-CoV-2 infection. Antibody CR3022, a SARS-CoV neutralizing antibody, was found to cross-react with SARS-CoV-2, but its affinity was lower than that of its binding with SARS-CoV, which greatly limited the further development of CR3022 against SARS-CoV-2. Therefore, it is necessary to improve its affinity to SARS-CoV-2 in vitro. In this study, the structure-based molecular simulations were utilized to virtually mutate the possible key residues in the complementarity-determining regions (CDRs) of the CR3022 antibody. According to the criteria of mutation energy, the mutation sites that have the potential to impact the antibody affinity were then selected. Then optimized CR3022 mutants with the enhanced affinity were further identified and verified by enzyme-linked immunosorbent assay (ELISA), surface plasma resonance (SPR) and autoimmune reactivity experiments. Finally, molecular dynamics (MD) simulation and binding free energy calculation (MM/PBSA) were performed on the wild-type CR3022 and its two double-site mutants to understand in more detail the contribution of these sites to the higher affinity. It was found that the binding affinity of the CR3022 antibody could be significantly enhanced more than ten times after the introduction of the S103F/Y mutation in HCDR–3 and the S33R mutation in LCDR–1. The additional hydrogen-bonding, hydrophobic interactions, as well as salt-bridges formed between the modified double-site mutated antibody and SARS-CoV-2 RBD were identified. The computational and experimental results clearly demonstrated that the affinity of the modified antibody has been greatly enhanced. This study indicates that CR3022 as a neutralizing antibody recognizing the conserved region of RBD against SARS-CoV with cross-reactivity with SARS-CoV-2, a different member in a large family of coronaviruses, could be improved by the computational and experimental approaches which provided insights for developing antibody drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
| | - Nan Zhong
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Xin Li
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Jiayi Ren
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- School of Health, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Yueming Wang
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Chengming Li
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
| | - Rui Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
| | - Xiaoli Wang
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Zhenxing Jia
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Changwen Wu
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Rongfeng Chen
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Weihong Zheng
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Huaxin Liao
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
- Correspondence: (H.L.); (X.W.); (X.Y.); Tel.: +86-756-726-3999 (X.Y.)
| | - Xiaomin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
- Correspondence: (H.L.); (X.W.); (X.Y.); Tel.: +86-756-726-3999 (X.Y.)
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
- Correspondence: (H.L.); (X.W.); (X.Y.); Tel.: +86-756-726-3999 (X.Y.)
| |
Collapse
|
23
|
Cunningham O, Scott M, Zhou ZS, Finlay WJJ. Polyreactivity and polyspecificity in therapeutic antibody development: risk factors for failure in preclinical and clinical development campaigns. MAbs 2021; 13:1999195. [PMID: 34780320 PMCID: PMC8726659 DOI: 10.1080/19420862.2021.1999195] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antibody-based drugs, which now represent the dominant biologic therapeutic modality, are used to modulate disparate signaling pathways across diverse disease indications. One fundamental premise that has driven this therapeutic antibody revolution is the belief that each monoclonal antibody exhibits exquisitely specific binding to a single-drug target. Herein, we review emerging evidence in antibody off-target binding and relate current key findings to the risk of failure in therapeutic development. We further summarize the current state of understanding of structural mechanisms underpining the different phenomena that may drive polyreactivity and polyspecificity, and highlight current thinking on how de-risking studies may be best implemented in the screening triage. We conclude with a summary of what we believe to be key observations in the field to date, and a call for the wider antibody research community to work together to build the tools needed to maximize our understanding in this nascent area.
Collapse
Affiliation(s)
| | - Martin Scott
- Department of Biopharm Discovery, GlaxoSmithKline Research & Development, Hertfordshire, UK
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | | |
Collapse
|