1
|
Gao K, Vogel F, Foskinis R, Vratolis S, Gini MI, Granakis K, Zografou O, Fetfatzis P, Papayannis A, Möhler O, Eleftheriadis K, Nenes A. On the drivers of ice nucleating particle diurnal variability in Eastern Mediterranean clouds. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2025; 8:160. [PMID: 40337146 PMCID: PMC12052592 DOI: 10.1038/s41612-024-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 05/09/2025]
Abstract
We report the drivers of spatiotemporal variability of ice nucleating particles (INPs) for mixed-phase orographic clouds (~-25 °C) in the Eastern Mediterranean. In the planetary boundary layer, pronounced INP diurnal periodicity is observed, which is mainly driven by biological (and to a lesser extent, dust) particles but not aerosols from biomass burning. The comparison of size-resolved and fluorescence-discriminated aerosol particle properties with INPs reveals the primary role of fluorescent bioaerosol. The presence of Saharan dust increases INPs during nighttime more than daytime, because of lower boundary layer height during nighttime which decreases the contribution of aerosols (including bioaerosols) from the boundary layer. INP diurnal periodicity is absent in the free troposphere, although levels are driven by the availability of bioaerosol and dust particles. Given the effective ice nucleation ability of bioaerosols and subsequent effects from ice multiplication at warm temperatures, the lack of such cycles in models points to important and overlooked drivers of cloud formation and precipitation in mountainous regions.
Collapse
Affiliation(s)
- Kunfeng Gao
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Franziska Vogel
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Present Address: Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), Bologna, Italy
| | - Romanos Foskinis
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laser Remote Sensing Unit (LRSU), Physics Department, National Technical University of Athens, Zografou, Greece
- Centre for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Stergios Vratolis
- ENvironmental Radioactivity & Aerosol Technology for atmospheric & Climate ImpacT Lab, INRASTES, NCSR Demokritos, Attica, Greece
| | - Maria I. Gini
- ENvironmental Radioactivity & Aerosol Technology for atmospheric & Climate ImpacT Lab, INRASTES, NCSR Demokritos, Attica, Greece
| | - Konstantinos Granakis
- ENvironmental Radioactivity & Aerosol Technology for atmospheric & Climate ImpacT Lab, INRASTES, NCSR Demokritos, Attica, Greece
| | - Olga Zografou
- ENvironmental Radioactivity & Aerosol Technology for atmospheric & Climate ImpacT Lab, INRASTES, NCSR Demokritos, Attica, Greece
| | - Prodromos Fetfatzis
- ENvironmental Radioactivity & Aerosol Technology for atmospheric & Climate ImpacT Lab, INRASTES, NCSR Demokritos, Attica, Greece
| | - Alexandros Papayannis
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Laser Remote Sensing Unit (LRSU), Physics Department, National Technical University of Athens, Zografou, Greece
| | - Ottmar Möhler
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Konstantinos Eleftheriadis
- ENvironmental Radioactivity & Aerosol Technology for atmospheric & Climate ImpacT Lab, INRASTES, NCSR Demokritos, Attica, Greece
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Centre for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
2
|
Liu W, Sun W, Liang C, Chen T, Zhuang W, Liu D, Chen Y, Ying H. Escherichia coli Surface Display: Advances and Applications in Biocatalysis. ACS Synth Biol 2025; 14:648-661. [PMID: 40047247 DOI: 10.1021/acssynbio.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Escherichia coli surface display technology, which facilitates the stable display of target peptides and proteins on the bacterial surface through fusion with anchor proteins, has become a potent and versatile tool in biotechnology and biomedicine. The E. coli surface display strategy presents a unique alternative to classic intracellular and extracellular expression systems, facilitating the anchorage of target peptides and proteins on the cell surface for functional execution. This distinctive attribute also introduces a novel paradigm in the realm of biocatalysis, harnessing cells with surface-displayed enzymes to catalyze the conversion of substrates. This strategy effectively eliminates the requirement for enzyme purification, overcomes the limitations related to substrate transmembrane transport, improves enzyme activity and stability, and greatly reduces the cost of downstream product purification, thus making it widely used in biocatalysis. Here, we review recent advances in various surface display systems and surface display technology for biocatalytic applications. Additionally, we discuss the current limitations of this technology and several promising alternative display methods.
Collapse
Affiliation(s)
- Wei Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - CaiCe Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wei Zhuang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Dong Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
3
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
4
|
Hibbs M, Pal D, Barudzija G, Ariya PA. Physicochemical properties and their impact on ice nucleation efficiency of respiratory viral RNA and proteins. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2010-2019. [PMID: 39351962 DOI: 10.1039/d4em00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Ice nucleation processes in the earth's atmosphere are critical for cloud formation, radiation, precipitation, and climate change. We investigated the physicochemical properties and ice nucleation potential of selected viral aerosols, including their RNA and proteins, using advanced techniques such as scanning-transmission electron microscopy (S/TEM), small angle X-ray scattering (SAXS), particle analyzers, and a peltier chamber. The experiments revealed that RNA particles obtained from MS2 bacteriophage had a mean freezing point of -13.9 ± 0.3 °C, comparable to the average ice nucleation temperature of global dust particles, which is approximatively -15 °C. RNA from MS2, Influenza, SARS-CoV-1 and SARS-CoV-2 demonstrated average ice nucleation temperatures of -13.9 ± 0.3 °C, -13.7 ± 0.3 °C, -13.7 ± 0.3 °C, and -15.9 ± 0.4 °C, respectively. SAXS analysis indicated a high local crystallinity value of 0.5 of MS2 RNA particles, hinting that high crystalline nature may contribute to their effectiveness as ice nuclei. Dilution experiments show that viral RNA consistently catalyzes ice nucleation. The addition of dust-containing particles, such as Fe2O3, CuO, and TiO2, to MS2 bacteriophage droplets enhanced ice nucleation, as did UV radiation. We herein discuss the implications of this work on ice nucleation and freezing processes.
Collapse
Affiliation(s)
- Mattie Hibbs
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Devendra Pal
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Gorjana Barudzija
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| | - Parisa A Ariya
- Department of Atmospheric and Oceanic Sciences, Canada.
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| |
Collapse
|
5
|
Renzer G, de Almeida Ribeiro I, Guo HB, Fröhlich-Nowoisky J, Berry RJ, Bonn M, Molinero V, Meister K. Hierarchical assembly and environmental enhancement of bacterial ice nucleators. Proc Natl Acad Sci U S A 2024; 121:e2409283121. [PMID: 39418308 PMCID: PMC11513900 DOI: 10.1073/pnas.2409283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial ice nucleating proteins (INPs) are exceptionally effective in promoting the kinetically hindered transition of water to ice. Their efficiency relies on the assembly of INPs into large functional aggregates, with the size of ice nucleation sites determining activity. Experimental freezing spectra have revealed two distinct, defined aggregate sizes, typically classified as class A and C ice nucleators (INs). Despite the importance of INPs and years of extensive research, the precise number of INPs forming the two aggregate classes, and their assembly mechanism have remained enigmatic. Here, we report that bacterial ice nucleation activity emerges from more than two prevailing aggregate species and identify the specific number of INPs responsible for distinct crystallization temperatures. We find that INP dimers constitute class C INs, tetramers class B INs, and hexamers and larger multimers are responsible for the most efficient class A activity. We propose a hierarchical assembly mechanism based on tyrosine interactions for dimers, and electrostatic interactions between INP dimers to produce larger aggregates. This assembly is membrane-assisted: Increasing the bacterial outer membrane fluidity decreases the population of the larger aggregates, while preserving the dimers. Inversely, Dulbecco's Phosphate-Buffered Saline buffer increases the population of multimeric class A and B aggregates 200-fold and endows the bacteria with enhanced stability toward repeated freeze-thaw cycles. Our analysis suggests that the enhancement results from the better alignment of dimers in the negatively charged outer membrane, due to screening of their electrostatic repulsion. This demonstrates significant enhancement of the most potent bacterial INs.
Collapse
Affiliation(s)
- Galit Renzer
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | | | - Hao-Bo Guo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH45433
| | | | - Rajiv J. Berry
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH45433
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112-0850
| | - Konrad Meister
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID83725
| |
Collapse
|
6
|
Bieber P, Darwish GH, Algar WR, Borduas-Dedekind N. The presence of nanoparticles in aqueous droplets containing plant-derived biopolymers plays a role in heterogeneous ice nucleation. J Chem Phys 2024; 161:094304. [PMID: 39230378 DOI: 10.1063/5.0213171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Organic matter can initiate heterogeneous ice nucleation in supercooled water droplets, thereby influencing atmospheric cloud glaciation. Predicting the ice nucleation ability of organic matter-containing cloud droplets is challenging due to the unknown mechanism for templating ice. Here, we observed the presence of nanoparticles in aqueous samples of known ice-nucleating biopolymers cellulose and lignin, as well as in newly identified ice-nucleating biopolymers xylan and laminarin. Using our drop Freezing Ice Nuclei Counter (FINC), we measured the median ice nucleation temperature (T50) of xylan and of laminarin droplets of 2 μl to be -14.2 and -20.0 °C, respectively. Next, we characterized these samples using nanoparticle tracking analysis, and we detected and quantified nanoparticles with mean diameters between 132 and 267 nm. Xylan contained the largest nanoparticles and froze at higher temperatures. Xylan also dictated the freezing in a 1:1:1:1 mixture with cellulose, lignin, laminarin, and xylan. Filtration experiments down to 300 kDa with the xylan sample indicated that the presence of nanoparticles triggered freezing. Overall, only samples with mean diameters above 150 nm froze above -20 °C. Furthermore, we determined the ice-active site densities normalized to particle concentrations, surface area, and mass of the nanoparticles to show that the samples' nucleation site densities are similar to sea spray aerosols and nanometer-sized dust. The identification and characterization of xylan and laminarin as nanometer-sized ice-nucleating substances expands the growing list of organic matter capable of impacting cloud formation and thus climate.
Collapse
Affiliation(s)
- Paul Bieber
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nadine Borduas-Dedekind
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
7
|
Uko MP, Umana SI, Iwatt IJ, Udoekong NS, Mgbechidinma CL, Adie FU, Akan OD. Microbial ice-binding structures: A review of their applications. Int J Biol Macromol 2024; 275:133670. [PMID: 38971293 DOI: 10.1016/j.ijbiomac.2024.133670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Microorganisms' ice-binding structures (IBS) are macromolecules with potential commercial value in agriculture, food technology, material technology, cryobiology, and medicine. Microbial ice-structuring or microbial ice-binding particles, with their multi-applications, are simple to use, effective in low amounts, non-toxic, and environmentally friendly. Due to their source and composition diversities, microbial ice-binding structures are gaining attention because they are useable in various conditions. Some microorganisms also produce structures with dual ice-nucleating and anti-freezing properties. Structures that promote ice formation (ice nucleating particles- INPs) act as ice nuclei, lowering the energy barrier between supercooled liquid and ice, causing ice crystals to form. In contrast, anti-freeze particles (AFPs) prevent ice formation and recrystallization through several mechanisms, including disturbing the formation of string hydrogen bonds amongst water molecules, melting already formed ice crystals, and preventing crystal formation by binding to specific sites. Knowledge of the type and function of microbial ice-binding structures lends fundamental insight for possible scaling the production of cheap, functional, and advanced microbial structure-inspired mimics and by-products. This review focuses on microbial ice-binding structures and their potential uses in the food, medicinal, environmental, and agricultural sectors.
Collapse
Affiliation(s)
- Mfoniso Peter Uko
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria
| | - Senyene Idorenyin Umana
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria; Department of Microbiology, Faculty of Michael Okpara of Agriculture, Umudike, Nigeria
| | - Ifiok Joseph Iwatt
- Center for Wetlands and Wastes Management Studies, Faculty of Agriculture, University of Uyo, Uyo, Nigeria
| | | | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan 200243, Nigeria
| | - Francisca Upekiema Adie
- Department of Microbiology, Faculty of Biological Sciences, Cross River State University of Technology, Calabar, Nigeria
| | - Otobong Donald Akan
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria; College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China.
| |
Collapse
|
8
|
Bieber P, Borduas-Dedekind N. High-speed cryo-microscopy reveals that ice-nucleating proteins of Pseudomonas syringae trigger freezing at hydrophobic interfaces. SCIENCE ADVANCES 2024; 10:eadn6606. [PMID: 38959312 PMCID: PMC11221516 DOI: 10.1126/sciadv.adn6606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ice-nucleating proteins (INpro) trigger the freezing of supercooled water droplets relevant to atmospheric, biological, and technological applications. The high ice nucleation activity of INpro isolated from the bacteria Pseudomonas syringae could be linked to the aggregation of proteins at the bacterial membrane or at the air-water interface (AWI) of droplets. Here, we imaged freezing onsets, providing direct evidence of these proposed mechanisms. High-speed cryo-microscopy identified the onset location of freezing in droplets between two protein-repellent glass slides. INpro from sterilized P. syringae (Snomax) statistically favored nucleation at the AWI of the droplets. Removing cellular fragments by filtration or adding surfactants increased the frequency of nucleation events at the AWI. On the other hand, cultivated intact bacteria cells or lipid-free droplets nucleated ice without an affinity to the AWI. Overall, we provide visual evidence that INpro from P. syringae trigger freezing at hydrophobic interfaces, such as the AWI or the bacterial membrane, with important mechanistic implications for applications of INpro.
Collapse
|
9
|
Teska CJ, Dieser M, Foreman CM. Clothing Textiles as Carriers of Biological Ice Nucleation Active Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6305-6312. [PMID: 38530277 DOI: 10.1021/acs.est.3c09600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Microplastics have littered the globe, with synthetic fibers being the largest source of atmospheric microplastics. Many atmospheric particles can act as ice nucleators, thereby affecting the microphysical and radiative properties of clouds and, hence, the radiative balance of the Earth. The present study focused on the ice-nucleating ability of fibers from clothing textiles (CTs), which are commonly shed from the normal wear of apparel items. Results from immersion ice nucleation experiments showed that CTs were effective ice nucleators active from -6 to -12 °C, similar to common biological ice nucleators. However, subsequent lysozyme and hydrogen peroxide digestion stripped the ice nucleation properties of CTs, indicating that ice nucleation was biological in origin. Microscopy confirmed the presence of biofilms (i.e., microbial cells attached to a surface and enclosed in an extracellular polysaccharide matrix) on CTs. If present in sufficient quantities in the atmosphere, biological particles (biofilms) attached to fibrous materials could contribute significantly to atmospheric ice nucleation.
Collapse
Affiliation(s)
- Christy J Teska
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Christine M Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
10
|
Alsante A, Thornton DCO, Brooks SD. Effect of Aggregation and Molecular Size on the Ice Nucleation Efficiency of Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4594-4605. [PMID: 38408303 PMCID: PMC10938890 DOI: 10.1021/acs.est.3c06835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Aerosol acts as ice-nucleating particles (INPs) by catalyzing the formation of ice crystals in clouds at temperatures above the homogeneous nucleation threshold (-38 °C). In this study, we show that the immersion mode ice nucleation efficiency of the environmentally relevant protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), occurs at temperatures between -6.8 and -31.6 °C. Further, we suggest that this range is controlled by the RuBisCO concentration and protein aggregation. The warmest median nucleation temperature (-7.9 ± 0.8 °C) was associated with the highest concentration of RuBisCO (2 × 10-1 mg mL-1) and large aggregates with a hydrodynamic diameter of ∼103 nm. We investigated four additional chemically and structurally diverse proteins, plus the tripeptide glutathione, and found that each of them was a less effective INP than RuBisCO. Ice nucleation efficiency of the proteins was independent of the size (molecular weight) for the five proteins investigated in this study. In contrast to previous work, increasing the concentration and degree of aggregation did not universally increase ice nucleation efficiency. RuBisCO was the exception to this generalization, although the underlying molecular mechanism determining why aggregated RuBisCO is such an effective INP remains elusive.
Collapse
Affiliation(s)
- Alyssa
N. Alsante
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
| | - Daniel C. O. Thornton
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department
of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
12
|
Hansen T, Lee J, Reicher N, Ovadia G, Guo S, Guo W, Liu J, Braslavsky I, Rudich Y, Davies PL. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C. eLife 2023; 12:RP91976. [PMID: 38109272 PMCID: PMC10727499 DOI: 10.7554/elife.91976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins (INPs) of common environmental bacteria like Pseudomonas syringae and Pseudomonas borealis. However, individually, these 100 kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an INP gene into Escherichia coli led to efficient ice nucleation. Here, we demonstrate that a positively charged subdomain at the C-terminal end of the central β-solenoid of the INP is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the INP multimers form fibres that are ~5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Jocelyn Lee
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Naama Reicher
- Department of Earth and Planetary Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | - Gil Ovadia
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of JerusalemRehovotIsrael
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of JerusalemRehovotIsrael
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
13
|
Xie Y, Zhou K, Tan L, Ma Y, Li C, Zhou H, Wang Z, Xu B. Coexisting with Ice Crystals: Cryogenic Preservation of Muscle Food─Mechanisms, Challenges, and Cutting-Edge Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19221-19239. [PMID: 37947813 DOI: 10.1021/acs.jafc.3c06155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cryopreservation, one of the most effective preservation methods, is essential for maintaining the safety and quality of food. However, there is no denying the fact that the quality of muscle food deteriorates as a result of the unavoidable production of ice. Advancements in cryoregulatory materials and techniques have effectively mitigated the adverse impacts of ice, thereby enhancing the standard of freezing preservation. The first part of this overview explains how ice forms, including the theoretical foundations of nucleation, growth, and recrystallization as well as the key influencing factors that affect each process. Subsequently, the impact of ice formation on the eating quality and nutritional value of muscle food is delineated. A systematic explanation of cutting-edge strategies based on nucleation intervention, growth control, and recrystallization inhibition is offered. These methods include antifreeze proteins, ice-nucleating proteins, antifreeze peptides, natural deep eutectic solvents, polysaccharides, amino acids, and their derivatives. Furthermore, advanced physical techniques such as electrostatic fields, magnetic fields, acoustic fields, liquid nitrogen, and supercooling preservation techniques are expounded upon, which effectively hinder the formation of ice crystals during cryopreservation. The paper outlines the difficulties and potential directions in ice inhibition for effective cryopreservation.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
14
|
Schwidetzky R, de Almeida Ribeiro I, Bothen N, Backes AT, DeVries AL, Bonn M, Fröhlich-Nowoisky J, Molinero V, Meister K. Functional aggregation of cell-free proteins enables fungal ice nucleation. Proc Natl Acad Sci U S A 2023; 120:e2303243120. [PMID: 37943838 PMCID: PMC10655213 DOI: 10.1073/pnas.2303243120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above -10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above -5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum. We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.
Collapse
Affiliation(s)
- Ralph Schwidetzky
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | | | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz55128, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz55128, Germany
| | - Arthur L. DeVries
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | | | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112
| | - Konrad Meister
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID83725
| |
Collapse
|
15
|
Hansen T, Lee JC, Reicher N, Ovadia G, Guo S, Guo W, Liu J, Braslavsky I, Rudich Y, Davies PL. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551873. [PMID: 37577566 PMCID: PMC10418271 DOI: 10.1101/2023.08.03.551873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins of common environmental bacteria like Pseudomonas syringae and P. borealis. However, individually, these 100-kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an ice nucleation protein gene into Escherichia coli led to efficient ice nucleation. Here we demonstrate that a positively-charged sub-domain at the C-terminal end of the central beta-solenoid of the ice nucleation protein is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the ice nucleation protein multimers form fibres that are ~ 5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| | - Jocelyn C. Lee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| | - Naama Reicher
- Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Ovadia
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| |
Collapse
|
16
|
Jahed KR, Saini AK, Sherif SM. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1246093. [PMID: 37649996 PMCID: PMC10465183 DOI: 10.3389/fpls.2023.1246093] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Low temperature stress significantly threatens crop productivity and economic sustainability. Plants counter this by deploying advanced molecular mechanisms to perceive and respond to cold stress. Transmembrane proteins initiate these responses, triggering a series of events involving secondary messengers such as calcium ions (Ca2+), reactive oxygen species (ROS), and inositol phosphates. Of these, calcium signaling is paramount, activating downstream phosphorylation cascades and the transcription of cold-responsive genes, including cold-regulated (COR) genes. This review focuses on how plants manage freeze-induced damage through dual strategies: cold tolerance and cold avoidance. Tolerance mechanisms involve acclimatization to decreasing temperatures, fostering gradual accumulation of cold resistance. In contrast, avoidance mechanisms rely on cryoprotectant molecules like potassium ions (K+), proline, glycerol, and antifreeze proteins (AFPs). Cryoprotectants modulate intracellular solute concentration, lower the freezing point, inhibit ice formation, and preserve plasma membrane fluidity. Additionally, these molecules demonstrate antioxidant activity, scavenging ROS, preventing protein denaturation, and subsequently mitigating cellular damage. By forming extensive hydrogen bonds with water molecules, cryoprotectants also limit intercellular water movement, minimizing extracellular ice crystal formation, and cell dehydration. The deployment of cryoprotectants is a key adaptive strategy that bolsters plant resilience to cold stress and promotes survival in freezing environments. However, the specific physiological and molecular mechanisms underlying these protective effects remain insufficiently understood. Therefore, this review underscores the need for further research to elucidate these mechanisms and assess their potential impact on crop productivity and sustainability, contributing to the progressive discourse in plant biology and environmental science.
Collapse
Affiliation(s)
| | | | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, United States
| |
Collapse
|
17
|
Aich R, Pal P, Chakraborty S, Jana B. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins. J Phys Chem B 2023; 127:6038-6048. [PMID: 37395194 DOI: 10.1021/acs.jpcb.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Bacteria containing ice-nucleating proteins (INPs) evolved in nature to nucleate ice at the high sub-zero ambiance. The ability of the INPs to induce order in the hydration layer and their aggregation propensity appear to be key factors of their ice nucleation abilities. However, the mechanism of the process of ice nucleation by INPs is yet to be understood clearly. Here, we have performed all-atom molecular dynamics simulations and analyzed the structure and dynamics of the hydration layer around the proposed ice-nucleating surface of a model INP. Results are compared with the hydration of a topologically similar non-ice-binding protein (non-IBP) and another ice-growth inhibitory antifreeze protein (sbwAFP). We observed that the hydration structure around the ice-nucleating surface of INP is highly ordered and the dynamics of the hydration water are slower, compared to the non-IBP. Even the ordering of the hydration layer is more evident around the ice-binding surface of INP, compared to the antifreeze protein sbwAFP. Particularly with increasing repeat units of INP, we observe an increased population of ice-like water. Interestingly, the distances between the hydroxyl groups of the threonine ladder and its associated channel water of the ice-binding surface (IBS) of INP in the X and Y direction mimic the oxygen atom distances of the basal plane of hexagonal ice. However, the structural synergies between the hydroxyl group distances of the threonine ladder and its associated channel water of the IBS of sbwAFP and oxygen atom distances of the basal plane are less evident. This difference makes the IBS of the INP a better template for ice nucleation than AFP, although both of them bind to the ice surface efficiently.
Collapse
Affiliation(s)
- Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institution of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 5000046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
18
|
Zalazar M, Zypman F, Drori R. Micro-thermography for imaging ice crystal growth and nucleation inside non-transparent materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2887634. [PMID: 37125860 DOI: 10.1063/5.0142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Ice crystal growth and nucleation rate measurements are usually done using light microscopy in liquid and transparent samples. Yet, the understanding of important practical problems depends on monitoring ice growth inside solid materials, for example how rapid ice growth leads to structural damage of food, or how the final structure of cementitious materials is affected by ice during curing. Imaging crystal growth inside solid materials cannot be done with visible light and is intrinsically more challenging than visible light imaging. Thermography is a technique that uses thermal (infrared) cameras to monitor temperature changes in a material, and it has been used to provide a qualitative description of ice propagation with a low spatial resolution. Here, we describe a method that uses a novel micro-thermography system to image ice nucleation and growth inside non-transparent samples. This method relies on two major components: a cold stage with accurate temperature control (±0.001 °C) and a thermal camera with high spatial and temperature resolution. Our experiments include imaging of ice formation and growth in pure water first and then inside plant leaves used as a model for a non-transparent material. An ice growth rate of 2.2 mm/s was measured inside a plant leaf at -12 °C, and ice nucleation in single plant cells was observed as a hotspot having a diameter of 160 µm. The results presented here provide an experimental proof that high-quality imaging of ice growth is achievable, thus paving the way for quantitative measurements of ice growth kinetics and ice nucleation in solid materials.
Collapse
Affiliation(s)
- Martin Zalazar
- Department of Chemistry and Biochemistry, Stern College, New York, New York 10016, USA
| | - Fredy Zypman
- Department of Physics, Yeshiva College, New York, New York 10033, USA
| | - Ran Drori
- Department of Chemistry and Biochemistry, Stern College, New York, New York 10016, USA
| |
Collapse
|
19
|
Lindow S. History of Discovery and Environmental Role of Ice Nucleating Bacteria. PHYTOPATHOLOGY 2023; 113:605-615. [PMID: 36122194 DOI: 10.1094/phyto-07-22-0256-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The phenomenon of biological ice nucleation that is exhibited by a variety of bacteria is a fascinating phenotype, which has been shown to incite frost damage to frost-sensitive plants and has been proposed to contribute to atmospheric processes that affect the water cycle and earth's radiation balance. This review explores the several possible drivers for the evolutionary origin of the ice nucleation phenotype. These bacteria and the gene required for this phenotype have also been exploited in processes as diverse as reporter gene assays to assess environmentally responsive gene expression in various plant pathogenic and environmental bacteria and in the detection of foodborne human pathogens when coupled with host-specific bacteriophage, whereas ice nucleating bacteria themselves have been exploited in the production of artificial snow for recreation and oil exploration and in the process of freezing of various food products. This review also examines the historical development of our understanding of ice nucleating bacteria, details of the genetic determinants of ice nucleation, and features of the aggregates of membrane-bound ice nucleation protein necessary for catalyzing ice. Lastly, this review also explores the role of these bacteria in limiting the supercooling ability of plants and the strategies and limitations of avoiding plant frost damage by managing these bacterial populations by bactericides, antagonistic bacteria, or cultural control strategies.
Collapse
Affiliation(s)
- Steven Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
20
|
Lee S, Cheon W, Kwon HT, Lee Y, Kim J, Balaraju K, Jeon Y. Identification and Characterization of Pseudomonas syringae pv. syringae, a Causative Bacterium of Apple Canker in Korea. THE PLANT PATHOLOGY JOURNAL 2023; 39:88-107. [PMID: 36760052 PMCID: PMC9929173 DOI: 10.5423/ppj.oa.08.2022.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
In the present investigation, bacterial isolates from infected apple trees causing apple canker during winter were studied in the northern Gyeongbuk Province, Korea. The pathogen was identified as Pseudomonas syringae pv. syringae (Pss) through various physiological and biochemical characterization assays such as BIOLOG, gas chromatography of fatty acid methyl esters, and 16S rRNA. Bioassays for the production of phytotoxins were positive for syringopeptin and syringomycin against Bacillus megaterium and Geotrichum candidum, respectively. The polymerase chain reaction (PCR) method enabled the detection of toxin-producing genes, syrB1, and sypB in Pss. The differentiation of strains was performed using LOPAT and GATTa tests. Pss further exhibited ice nucleation activity (INA) at a temperature of -0.7°C, indicating an INA+ bacterium. The ice-nucleating temperature was -4.7°C for a non-treated control (sterilized distilled water), whereas it was -9.6°C for an INA- bacterium Escherichia coli TOP10. These methods detected pathogenic strains from apple orchards. Pss might exist in an apple tree during ice injury, and it secretes a toxin that makes leaves yellow and cause canker symptoms. Until now, Korea has not developed antibiotics targeting Pss. Therefore, it is necessary to develop effective disease control to combat Pss in apple orchards. Pathogenicity test on apple leaves and stems showed canker symptoms. The pathogenic bacterium was re-isolated from symptomatic plant tissue and confirmed as original isolates by 16S rRNA. Repetitive element sequence-based PCR and enterobacterial repetitive intergenic consensus PCR primers revealed different genetic profiles within P. syringae pathovars. High antibiotic susceptibility results showed the misreading of mRNA caused by streptomycin and oxytetracycline.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
| | - Wonsu Cheon
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
| | - Hyeok Tae Kwon
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
| | - Jungyeon Kim
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
| | - Kotnala Balaraju
- Agricultural Science & Technology Research Institute, Andong National University, Andong 36729,
Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong 36729,
Korea
| |
Collapse
|
21
|
Morgan-Richards M, Marshall CJ, Biggs PJ, Trewick SA. Insect Freeze-Tolerance Downunder: The Microbial Connection. INSECTS 2023; 14:89. [PMID: 36662017 PMCID: PMC9860888 DOI: 10.3390/insects14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Insects that are freeze-tolerant start freezing at high sub-zero temperatures and produce small ice crystals. They do this using ice-nucleating agents that facilitate intercellular ice growth and prevent formation of large crystals where they can damage tissues. In Aotearoa/New Zealand the majority of cold adapted invertebrates studied survive freezing at any time of year, with ice formation beginning in the rich microbiome of the gut. Some freeze-tolerant insects are known to host symbiotic bacteria and/or fungi that produce ice-nucleating agents and we speculate that gut microbes of many New Zealand insects may provide ice-nucleating active compounds that moderate freezing. We consider too the possibility that evolutionary disparate freeze-tolerant insect species share gut microbes that are a source of ice-nucleating agents and so we describe potential transmission pathways of shared gut fauna. Despite more than 30 years of research into the freeze-tolerant mechanisms of Southern Hemisphere insects, the role of exogenous ice-nucleating agents has been neglected. Key traits of three New Zealand freeze-tolerant lineages are considered in light of the supercooling point (temperature of ice crystal formation) of microbial ice-nucleating particles, the initiation site of freezing, and the implications for invertebrate parasites. We outline approaches that could be used to investigate potential sources of ice-nucleating agents in freeze-tolerant insects and the tools employed to study insect microbiomes.
Collapse
Affiliation(s)
- Mary Morgan-Richards
- Wildlife & Ecology Group, School of Natural Sciences, Massey University Manawatu, Palmerston North 4410, New Zealand
| | - Craig J. Marshall
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Patrick J. Biggs
- Molecular Biosciences, School of Natural Sciences, Massey University Manawatu, Palmerston North 4410, New Zealand
| | - Steven A. Trewick
- Wildlife & Ecology Group, School of Natural Sciences, Massey University Manawatu, Palmerston North 4410, New Zealand
| |
Collapse
|
22
|
Finkelstein AV, Garbuzynskiy SO, Melnik BS. How Can Ice Emerge at 0 °C? Biomolecules 2022; 12:981. [PMID: 35883537 PMCID: PMC9313213 DOI: 10.3390/biom12070981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
The classical nucleation theory shows that bulk water freezing does not occur at temperatures above ≈ -30 °C, and that at higher temperatures ice nucleation requires the presence of some ice-binding surfaces. The temperature and rate of ice nucleation depend on the size and level of complementarity between the atomic structure of these surfaces and various H-bond-rich/depleted crystal planes. In our experiments, the ice nucleation temperature was within a range from -8 °C to -15 °C for buffer and water in plastic test tubes. Upon the addition of ice-initiating substances (i.e., conventional AgI or CuO investigated here), ice appeared in a range from -3 °C to -7 °C, and in the presence of the ice-nucleating bacterium Pseudomonas syringae from -1 °C to -2 °C. The addition of an antifreeze protein inhibited the action of the tested ice-initiating agents.
Collapse
Affiliation(s)
- Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.O.G.); (B.S.M.)
- Faculty of Biotechnology, Lomonosov Moscow State University, 142290 Pushchino, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Sergiy O. Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.O.G.); (B.S.M.)
| | - Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.O.G.); (B.S.M.)
| |
Collapse
|
23
|
Khosasih V, Prasetyo N, Sudianto E, Waturangi DE. Prevalence and characterization of Ice Nucleation Active (INA) bacteria from rainwater in Indonesia. BMC Microbiol 2022; 22:116. [PMID: 35477335 PMCID: PMC9044597 DOI: 10.1186/s12866-022-02521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ice nucleation active (INA) bacteria are a group of microorganisms that can act as biological nucleator due to their ice nucleation protein property. Unfortunately, little is known about their prevalence and characteristics in tropical areas including Indonesia. Here, we monitor the presence of INA bacteria in rainwater and air samples collected from Jakarta, Tangerang and several areas in Western Java, Indonesia for one year. We further identify and characterize selected Class A of INA bacteria isolated from these areas. Results Most of the INA bacteria were isolated from rainwater samples collected during March–August 2010, particularly from Jakarta, Bandung, and Tangerang. A total of 1,902 bacterial isolates were recovered from these area. We found a limited number of bacterial isolates from air sampling. From ice nucleation activity assays, 101 INA isolates were found active as ice nucleator at a temperature above -10 °C. A large majority (73 isolates) of them are classified as Class C (active below -8 °C), followed by Class A (26 isolates; active at -2 to -5 °C) and Class B (two isolates; active at -5 to -8 °C). We sequenced the 16S rRNA gene of 18 Class A INA isolates and identified 15 isolates as Enterobacteriaceae, while the remaining three as Pseudomonadaceae. The vast majority of our Class A INA isolates were likely Pantoea spp. with several isolates were deduced as either Pseudomonas, Cronobacter, and Klebsiella. We found that these 18 Class A INA isolates had acquired resistance to antibiotics erythromycin and ampicillin, which are considered two critically important antibiotics. Conclusions Our results showed that the prevalence of INA bacterial population varies across locations and seasons. Furthermore, our isolates were dominated by Class A and C INA bacteria. This study also cautions regarding the spread of antibiotic resistance among INA bacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02521-1.
Collapse
Affiliation(s)
- Vivia Khosasih
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman, Jakarta, 12930, Indonesia.,Present Address: Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, 115
| | - Niko Prasetyo
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman, Jakarta, 12930, Indonesia
| | - Edi Sudianto
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan, 701
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman, Jakarta, 12930, Indonesia.
| |
Collapse
|