1
|
Mustan F, Genchev N, Vinarova L, Bevernage J, Tistaert C, Ivanova A, Tcholakova S, Vinarov Z. Understanding drug solubilization in intestinal mixed micelles through molecular dynamics simulations. J Colloid Interface Sci 2025; 684:225-234. [PMID: 39827542 DOI: 10.1016/j.jcis.2025.01.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
HYPOTHESIS Solubilization is a fundamental process that underpins various technologies in the pharmaceutical and chemical industry. However, knowledge of the location, orientation and interactions of solubilized molecules in the micelles is still limited. We expect all-atom molecular dynamics simulations to improve the molecular-level understanding of solubilization and to enable its in silico prediction. METHODS The solubilization of six drugs in intestinal mixed micelles composed of taurocholate and dioleoyl phosphatidylcholine was simulated by molecular dynamics in explicit water and measured experimentally by liquid chromatography. The location and orientation of the solubilized drugs were visualized by cumulative radial distribution functions and interactions were characterized by radial distribution function ratios and hydrogen bonding. FINDINGS A new simulation-derived parameter was defined, which accounts for drug-micelle and drug-water interactions and correlates (R2 = 0.83) with the experimentally measured solubilization. Lipophilicity was found to govern the location of all drugs in the micelle (hydrophobic core, palisade layer or on the surface), while hydrogen bonding was crucial for orientation and solubilization of two of the molecules. The study demonstrates that explicit, hydrogen bond-forming water molecules are vital for accurate prediction of solubilization and provides a comprehensive framework for quantitative studies of drug location and orientation within the micelles.
Collapse
Affiliation(s)
- Fatmegyul Mustan
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria.
| | - Nikola Genchev
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria
| | - Liliya Vinarova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria
| | | | | | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria
| | - Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria
| |
Collapse
|
2
|
Mustan F, Ivanova A, Tcholakova S. Taurodeoxycholate Aggregation Explored by Molecular Dynamics: Primary-To-Secondary Micelle Transition and Formation of Mixed Micelles with Fatty Acids. Molecules 2024; 29:5897. [PMID: 39769986 PMCID: PMC11677267 DOI: 10.3390/molecules29245897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Micelles formed by bile salts in aqueous solution are important for the solubilization of hydrophobic molecules in the gastrointestinal tract. The molecular level information about the mechanism and driving forces for primary-to-secondary micelle transition is still missing. In the current study, the micelle formation of 50 mM solutions of taurodeoxycholate (TDC) is studied by atomistic molecular dynamics simulations. It is shown that primary micelles with an aggregation number of 8-10 emerge and persist within the first 50 ns. Then, they coalesce to form secondary micelles with an aggregation number of 19 molecules. This transition is governed by hydrophobic interactions, which significantly decrease the solvent-accessible surface area per molecule in the secondary micelles. The addition of monomers of the sodium salt of fatty acids (FAs), as agents aiding hydrophobic drug delivery, to secondary TDC micelles results in the co-existence of mixed FA-TDC and pure FA micelles. The studied saturated FAs, with chain lengths of C14:0 and C18:0, are incorporated into the micelle core, whereas TDC molecules position themselves around the FAs, forming a shell on the micelle surface. In contrast, the tails of the C18:1 unsaturated fatty acid mix homogeneously with TDC molecules throughout the entire micelle volume. The latter creates a very suitable medium for hosting hydrophobic molecules in the micelles containing unsaturated fatty acids.
Collapse
Affiliation(s)
- Fatmegyul Mustan
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Ave., 1164 Sofia, Bulgaria;
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria
| |
Collapse
|
3
|
Mándi A, Rimóczi A, Vasas A, Hohmann J, Swamy MMM, Monde K, Barta RA, Kicsák M, Komáromi I, Fehér K, Kurtán T. Testing the Simplified Molecular Dynamics Approach to Improve the Reproduction of ECD Spectra and Monitor Aggregation. Int J Mol Sci 2024; 25:6453. [PMID: 38928181 PMCID: PMC11204327 DOI: 10.3390/ijms25126453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit solvent molecules at the molecular mechanics (MD) level in the dynamics simulations and subsequent TDDFT-ECD calculation for the unoptimized MD structures was able to improve the agreements between experimental and computed spectra. Since enhancements were achieved even for molecules with limited conformational flexibility, deformations caused by the solvent molecules and multitudes of conformers produced with unoptimized geometries seem to be key factors for better agreement. The MD approach could confirm that aggregation of the phenanthrene natural product luzulin A had a significant contribution to a specific wavelength range of the experimental ECD. The MD approach has proved that dimer formation occurred in solution and this was responsible for the anomalous ECD spectrum. The scope and limitations of the method have also been discussed.
Collapse
Affiliation(s)
- Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| | - Aliz Rimóczi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Andrea Vasas
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (A.V.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (A.V.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Mahadeva M. M. Swamy
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan; (M.M.M.S.); (K.M.)
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan; (M.M.M.S.); (K.M.)
| | - Roland A. Barta
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Máté Kicsák
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| | - István Komáromi
- Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Krisztina Fehér
- HUN-REN–UD Molecular Recognition and Interaction Research Group, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| |
Collapse
|
4
|
Santos JRC, Abreu PE, Marques JMC. Aggregation patterns of curcumin and piperine mixtures in different polar media. Phys Chem Chem Phys 2023; 25:19899-19910. [PMID: 37458414 DOI: 10.1039/d3cp00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
This work reports a thorough molecular dynamics investigation on the aggregation patterns of curcumin and piperine in water, ethanol and a mixture of both solvents. The low solubility of curcumin in water results in a rapid formation of very stable dimers for both keto and enol tautomers. In agreement with a higher solubility, piperine molecules move closer and farther apart several times during the simulation, which indicates the formation of a less stable dimer in water. In contrast, both curcumin and piperine are soluble in ethanol and, thus, dimers can hardly be formed in this media. In comparison with a pure-water solvent, a 30 : 70 mixture of ethanol and water significantly reduces the probability of formation of most dimers of curcumin and piperine molecules. The simulations show that larger clusters may be complex structures, but the formation of stacks (in the case of piperine and enol tautomer of curcumin) and cages (when the keto tautomer of curcumin is involved) are not rare. Furthermore, it is shown that each single molecule presents a certain degree of mobility in the cluster, especially on the surface, but without leading to dissociation.
Collapse
Affiliation(s)
- J R C Santos
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - P E Abreu
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - J M C Marques
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
5
|
Leopold J, Engel KM, Prabutzki P, Schiller J. Combined Use of MALDI-TOF Mass Spectrometry and 31P NMR Spectroscopy for the Analysis of (Phospho)Lipids. Methods Mol Biol 2023; 2625:183-200. [PMID: 36653644 DOI: 10.1007/978-1-0716-2966-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lipids are important and abundant constituents of all biological tissues and body fluids. In particular, phospholipids (PLs) constitute a major part of the cellular membrane and play a role in signal transduction, and some selected PLs are increasingly considered as potential disease markers. Unfortunately, methods of lipid analysis are less established in comparison to techniques of protein analysis. Mass spectrometry (MS) is an increasingly used technique to analyze lipids, especially in combination with electrospray ionization MS, which is the most commonly used ionization technique in lipidomics. Matrix-assisted laser desorption/ionization coupled to time-of-flight MS (MALDI-TOF MS) has itself proven to represent a useful tool in the field of lipid analysis. 31P nuclear magnetic resonance (NMR) spectroscopy, another powerful method for PL analysis, represents a direct quantitative method and does not suffer from suppression effects.This paper gives an overview of methodological aspects of MALDI-TOF MS and 31P NMR in lipid research and summarizes the specific advantages and drawbacks of both methods. In particular, suppression effects in MS will be highlighted, and possible ways to overcome this problem, e.g., the use of different matrices and separation of the relevant lipid mixture prior to analysis, will be discussed.
Collapse
Affiliation(s)
- Jenny Leopold
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Kathrin M Engel
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Patricia Prabutzki
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany.
| |
Collapse
|
6
|
Vitrac O, Nguyen PM, Hayert M. In Silico Prediction of Food Properties: A Multiscale Perspective. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.786879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several open software packages have popularized modeling and simulation strategies at the food product scale. Food processing and key digestion steps can be described in 3D using the principles of continuum mechanics. However, compared to other branches of engineering, the necessary transport, mechanical, chemical, and thermodynamic properties have been insufficiently tabulated and documented. Natural variability, accented by food evolution during processing and deconstruction, requires considering composition and structure-dependent properties. This review presents practical approaches where the premises for modeling and simulation start at a so-called “microscopic” scale where constituents or phase properties are known. The concept of microscopic or ground scale is shown to be very flexible from atoms to cellular structures. Zooming in on spatial details tends to increase the overall cost of simulations and the integration over food regions or time scales. The independence of scales facilitates the reuse of calculations and makes multiscale modeling capable of meeting food manufacturing needs. On one hand, new image-modeling strategies without equations or meshes are emerging. On the other hand, complex notions such as compositional effects, multiphase organization, and non-equilibrium thermodynamics are naturally incorporated in models without linearization or simplifications. Multiscale method’s applicability to hierarchically predict food properties is discussed with comprehensive examples relevant to food science, engineering and packaging. Entropy-driven properties such as transport and sorption are emphasized to illustrate how microscopic details bring new degrees of freedom to explore food-specific concepts such as safety, bioavailability, shelf-life and food formulation. Routes for performing spatial and temporal homogenization with and without chemical details are developed. Creating a community sharing computational codes, force fields, and generic food structures is the next step and should be encouraged. This paper provides a framework for the transfer of results from other fields and the development of methods specific to the food domain.
Collapse
|
7
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
8
|
Importance of Conjugation of the Bile Salt on the Mechanism of Lipolysis. Molecules 2021; 26:molecules26195764. [PMID: 34641309 PMCID: PMC8510408 DOI: 10.3390/molecules26195764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
We aim to advance the discussion on the significance of the conjugation of bile salts (BS) in our organism. We hypothesize that conjugation influences the rate of lipolysis. Since the rate of lipolysis is a compound parameter, we compare the effect of conjugation on four surface parameters, which contribute to the rate. Since deconjugation is due to gut microbiota, we hypothesize that microbiota may affect the rate of lipolysis. A meta-analysis of literature data of critical micelle concentration, β, aggregation number, and molar solubilization ratio has been performed for the first time. In addition, critical micelle concentration (CMC), interfacial tension, and lipolysis rate measurements were performed. It was found that the unconjugated BS in mixed micelles increases the antagonism between the BS, therefore, increasing the CMC. This correlated with the effect of unconjugated BS on the solubilization capacity of mixed micelles. The collected literature information indicates that the role of the BS and its conjugation in our organism is a key factor influencing the functioning of our organism, where too high levels of unconjugated BS may lead to malabsorption of fat-soluble nutrients. The experimental lipolysis results irrevocably showed that conjugation is a significant factor influencing the rate.
Collapse
|
9
|
Chattaraj KG, Paul S. Underlying Mechanisms of Allopurinol in Eliminating Renal Toxicity Induced by Melamine-Uric Acid Complex Formation: A Computational Study. Chem Res Toxicol 2021; 34:2054-2069. [PMID: 34410109 DOI: 10.1021/acs.chemrestox.1c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using molecular dynamics, we address uric acid (UA) replacement by a model small-molecule inhibitor, allopurinol (AP), from its aggregated cluster in a columnar fashion. Experimentally it has been affirmed that AP is efficient in preventing UA-mediated renal stone formation. However, no study has presented the underlying mechanisms yet. Hence, a theoretical approach is presented for mapping the AP, which binds to melamine (MM) and UA clusters. In AP's presence, the higher-order cluster of UA molecules turns into a lower-order cluster, which "drags" fewer MM to them. Consequently, the MM-UA composite structure gets reduced. It is worth noting that UA-AP and AP-MM hydrogen-bonding interactions often play an essential role in reducing the UA-MM cluster size. Interestingly, an AP around UA makes a pillar-like structure, confirmed by defining the point-plane distribution function. The decomposition of the preferential interaction by Kirkwood-Buff integral into different angles like 0°-30°, 30°-60°, and 60°-90° firmly establishes the phenomenon mentioned above. However, the structural order for such π-stacking interactions between AP and UA molecules is not hierarchical but rather more spontaneous. The driving force behind UA-AP-MM composite formation is the favorable complexation energy that can be inferred by computing pairwise binding free energies for all possible combinations. Performing enhanced sampling and quantum calculations further confirms the evidence for UA degradation.
Collapse
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| |
Collapse
|
10
|
Bonnaud PA, Ushiyama H, Tejima S, Fujita JI. Neat and Aqueous Polyelectrolytes under a Steady-Shear Flow. J Phys Chem B 2021; 125:6930-6944. [PMID: 34132550 DOI: 10.1021/acs.jpcb.1c02298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Materials enabling impact-energy absorption of high-velocity projectiles are of great interest for applications like aerospace. In such a frame, shear thickening fluids were found very useful. Here, we investigated nanorheological properties of neat and aqueous polyelectrolytes of low molecular weights containing poly([2-(methacryloyloxy) ethyl] trimethyl ammonium) as polycations and poly(acrylamide-co-acrylic acid) as polyanions. Results were compared with pure water. We employed nonequilibrium molecular dynamics with the SLLOD algorithm to compute the viscosity at various shear rates. Systems containing polyelectrolytes exhibit shear thickening. The analysis of molecular configurations revealed a strong disruption of the ionic structure and more clusters with smaller sizes on increasing the shear rate. Potential energies showed that shear thickening originates from an increase in intramolecular and van der Waals interactions resulting from the increasing difficultly of polyelectrolyte-based systems to relax at high shear rates. Our method and findings underscore the importance of accounting for the molecular scale in the design of materials absorbing the impact energy efficiently.
Collapse
Affiliation(s)
- Patrick A Bonnaud
- Department of Computational Science and Technology, Research Organization for Information Science and Technology, 1-18-16 Hamamatsucho, Minato, 105-0013 Tokyo, Japan
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-5875, Japan
| | - Hiroshi Ushiyama
- Department of Computational Science and Technology, Research Organization for Information Science and Technology, 1-18-16 Hamamatsucho, Minato, 105-0013 Tokyo, Japan
| | - Syogo Tejima
- Department of Computational Science and Technology, Research Organization for Information Science and Technology, 1-18-16 Hamamatsucho, Minato, 105-0013 Tokyo, Japan
| | - Jun-Ichi Fujita
- Institute of Applied Physics, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
11
|
Mustan F, Ivanova A, Tcholakova S, Denkov N. Revealing the Origin of the Specificity of Calcium and Sodium Cations Binding to Adsorption Monolayers of Two Anionic Surfactants. J Phys Chem B 2020; 124:10514-10528. [PMID: 33147954 DOI: 10.1021/acs.jpcb.0c06649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The studied anionic surfactants linear alkyl benzene sulfonate (LAS) and sodium lauryl ether sulfate (SLES) are widely used key ingredients in many home and personal care products. These two surfactants are known to react very differently with multivalent counterions, including Ca2+. This is explained by a stronger interaction of the calcium cation with the LAS molecules, compared to SLES. The molecular origin of this difference in the interactions remains unclear. In the current study, we conduct classical atomistic molecular dynamics simulations to compare the ion interactions with the adsorption layers of these two surfactants, formed at the vacuum-water interface. Trajectories of 150 ns are generated to characterize the adsorption layer structure and the binding of Na+ and Ca2+ ions. We found that both surfactants behave similarly in the presence of Na+ ions. However, when Ca2+ is added, Na+ ions are completely displaced from the surface with adsorbed LAS molecules, while this displacement occurs only partially for SLES. The simulations show that the preference of Ca2+ to the LAS molecules is due to a strong specific attraction with the sulfonate head-group, besides the electrostatic one. This specific attraction involves significant reduction of the hydration shells of the interacting calcium cation and sulfonate group, which couple directly and form surface clusters of LAS molecules, coordinated around the adsorbed Ca2+ ions. In contrast, SLES molecules do not exhibit such specific interaction because the hydration shell around the sulfate anion is more stable, due to the extra oxygen atom in the sulfate group, thus precluding substantial dehydration and direct coupling with any of the cations studied.
Collapse
|
12
|
Pabois O, Ziolek RM, Lorenz CD, Prévost S, Mahmoudi N, Skoda MWA, Welbourn RJL, Valero M, Harvey RD, Grundy MML, Wilde PJ, Grillo I, Gerelli Y, Dreiss CA. Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. J Colloid Interface Sci 2020; 587:522-537. [PMID: 33189321 DOI: 10.1016/j.jcis.2020.10.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
Abstract
HYPOTHESES Bile salts (BS) are biosurfactants released into the small intestine, which play key and contrasting roles in lipid digestion: they adsorb at interfaces and promote the adsorption of digestive enzymes onto fat droplets, while they also remove lipolysis products from that interface, solubilising them into mixed micelles. Small architectural variations on their chemical structure, specifically their bile acid moiety, are hypothesised to underlie these conflicting functionalities, which should be reflected in different aggregation and solubilisation behaviour. EXPERIMENTS The micellisation of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ by one hydroxyl group on the bile acid moiety, was assessed by pyrene fluorescence spectroscopy, and the morphology of aggregates formed in the absence and presence of fatty acids (FA) and monoacylglycerols (MAG) - typical lipolysis products - was resolved by small-angle X-ray/neutron scattering (SAXS, SANS) and molecular dynamics simulations. The solubilisation by BS of triacylglycerol-incorporating liposomes - mimicking ingested lipids - was studied by neutron reflectometry and SANS. FINDINGS Our results demonstrate that BS micelles exhibit an ellipsoidal shape. NaTDC displays a lower critical micellar concentration and forms larger and more spherical aggregates than NaTC. Similar observations were made for BS micelles mixed with FA and MAG. Structural studies with liposomes show that the addition of BS induces their solubilisation into mixed micelles, with NaTDC displaying a higher solubilising capacity.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Robert M Ziolek
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | | | - Najet Mahmoudi
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Maximilian W A Skoda
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Rebecca J L Welbourn
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Margarita Valero
- Department of Physical Chemistry, University of Salamanca, Salamanca 37007, Spain.
| | - Richard D Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria.
| | | | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble 38000, France; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
13
|
Chattaraj KG, Paul S. Investigation on the Mechanisms of Synchronous Interaction of K 3Cit with Melamine and Uric Acid That Avoids the Formation of Large Clusters. J Chem Inf Model 2020; 60:4827-4844. [PMID: 32786693 DOI: 10.1021/acs.jcim.0c00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uric acid (UA) has an enormous competence to aggregate over melamine (Mel), producing large UA clusters that "drag" Mel toward them. Such a combination of donor-acceptor pairs provides a robust Mel-UA composite, thereby denoting a high complexity. Thus, a straightforward but pragmatic methodology might indeed require either destruction of the aggregation of UA or impediment of the hydrogen-bonded cluster of Mel and UA. Here, potassium citrate (K3Cit) is used as a potent inhibitor for a significant decrease of large UA-Mel clusters. The underlying mechanisms of synchronous interactions between K3Cit and the Mel-UA pair are examined by the classical molecular dynamics simulation coupled with the enhanced sampling method. K3Cit binds to the Mel-UA pair profoundly to produce a Mel-UA-K3Cit complex with favorable complexation energy (as indicated by the reckoning of pairwise ΔGbind° employing the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method). The strength of interaction follows the order UA-K3Cit > Mel-K3Cit > Mel-UA, thus clearly demonstrating the instability caused by upsetting the π-stacking of UA and hydrogen bonding of Mel-UA simultaneously. The comprehensive, strategically designed "direct approach" and "indirect approach" cluster structure analysis shows that K3Cit reduces the direct approach Mel-UA cluster size significantly irrespective of ensemble variation. Furthermore, the estimation of potentials of mean force (PMFs) reveals that the (UA)decamer-Mel interaction prevails over (UA)tetramer-Mel. The dynamic property (dimer existence autocorrelation functions) proves the essence of dimerization between Mel and UA in the absence and presence of K3Cit. Moreover, the calculation of the preferential interaction parameter provides the concentration at which Mel-K3Cit and UA-K3Cit interactions are predominant over the interaction of Mel and UA.
Collapse
Affiliation(s)
- Krishna Gopal Chattaraj
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
14
|
Grijalva-Bustamante G, Quevedo-Robles R, del Castillo-Castro T, Castillo-Ortega M, Encinas J, Rodríguez-Félix D, Lara-Ceniceros T, Fernández-Quiroz D, Lizardi-Mendoza J, Armenta-Villegas L. A novel bile salt-assisted synthesis of colloidal polypyrrole nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Mishra SS, Mohanty S, Mishra J, Subuddhi U. Photophysical Properties of Coumarin 1 in Bile Salt Aggregates: An Insight into the Role of Bile Salt Structure on the Aggregation Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16555-16567. [PMID: 31742410 DOI: 10.1021/acs.langmuir.9b02664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The photophysical behavior of Coumarin 1 (Cou1), a well-known 7-aminocoumarin derivative, is very sensitive to the microenvironment in which it resides. In the present study, the effect of six bile salt variants on the photophysical behavior of Cou1 has been investigated. Dihydroxy (deoxycholates) as well as trihydroxy (cholates) bile salts with conjugated and unconjugated side chains have been chosen to get insight into the role of bile salt structure on the microenvironment of Cou1. Cou1 photophysics was found to be extremely sensitive to the aggregation process of the bile salt variants. The reduced polarity of the micellar environment stabilizes the planar intramolecular charge transferred state of Cou1, resulting in significant modulation in its photophysics in the bile salt media. The changes in the fluorescence parameters such as fluorescence intensity, emission energy, fluorescence quantum yield, anisotropy, and lifetime of Cou1 reveal that there is a distinct difference in the aggregation behavior of deoxycholates from that of cholates. The deoxycholates form micelles more or less critically similar to those of conventional surfactants, whereas the cholates self-assemble rather noncritically over a wide concentration range, thus signifying the vital role of the extra hydroxyl group in the aggregation pattern of trihydroxy bile salts. The conjugated bile salts are found to provide a relatively more compact, rigid, and hydrophobic microenvironment to Cou1 as compared to their unconjugated counterparts. Considering the significant modulation in the photophysical properties of Cou1, it has been employed as a molecular reporter for monitoring the aggregation process of bile salt variants and important information could be obtained about the effect of bile salt structure on the aggregation pattern and also about the micellar properties.
Collapse
Affiliation(s)
- Smruti Snigdha Mishra
- Department of Chemistry , National Institute of Technology , Rourkela , 769008 Odisha , India
| | - Subhrajit Mohanty
- Department of Chemistry , National Institute of Technology , Rourkela , 769008 Odisha , India
| | - Jhili Mishra
- Department of Chemistry , Indian Institute of Technology , Madras , Chennai 600036 , India
| | - Usharani Subuddhi
- Department of Chemistry , National Institute of Technology , Rourkela , 769008 Odisha , India
| |
Collapse
|
16
|
Chattaraj KG, Paul S. Inclusion of Theobromine Modifies Uric Acid Aggregation with Possible Changes in Melamine–Uric Acid Clusters Responsible for Kidney Stones. J Phys Chem B 2019; 123:10483-10504. [DOI: 10.1021/acs.jpcb.9b08487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| |
Collapse
|
17
|
Self-association of sodium isoursodeoxycholate and sodium isohenodeoxycholate in water. Chem Phys Lipids 2019; 223:104778. [PMID: 31173728 DOI: 10.1016/j.chemphyslip.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
Abstract
Bile salts (BS) form hydrophobic Small's primary micelles at concentrations above the critical micelle concentration (CMC), while at concentrations above 3CMC they form secondary micelles (by the association of primary micelles via H-bonds). In this paper the self-associations of the anions of isohenodeoxycholic acid (3-epimer of henodeoxycholic acid, ICD) and the anions of isoursodeoxycholic acid (3-epimer of ursodeoxycholic acid, IUD) are examined, since the thermodynamic parameters of their self-association have not yet been published. Forming of IUD aggregates with two or three building units is slightly more favorable via α sides of steroid skeletons, regarding hydrophobicity, while regarding steric repulsive interactions it is more favorable to associate via β sides. Due to this, IUD in the vicinity of the CMC can form primary micelles by association of IUD particles both from the convex side and from the concave side of the steroid ring system. Therefore, IUD is significantly more prone to initial micellization than bile salt derivatives whose steroidal skeletons contain equatorially oriented OH groups.
Collapse
|
18
|
Calienni MN, Febres-Molina C, Llovera RE, Zevallos-Delgado C, Tuttolomondo ME, Paolino D, Fresta M, Barazorda-Ccahuana HL, Gómez B, Alonso SDV, Montanari J. Nanoformulation for potential topical delivery of Vismodegib in skin cancer treatment. Int J Pharm 2019; 565:108-122. [DOI: 10.1016/j.ijpharm.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 01/17/2023]
|
19
|
Pigliacelli C, Belton P, Wilde P, Qi S. Probing the molecular interactions between pharmaceutical polymeric carriers and bile salts in simulated gastrointestinal fluids using NMR spectroscopy. J Colloid Interface Sci 2019; 551:147-154. [PMID: 31075629 DOI: 10.1016/j.jcis.2019.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/04/2023]
Abstract
The number of poorly soluble new drugs is increasing and one of the effective ways to deliver such pharmaceutically active molecules is using hydrophilic polymers to form a solid dispersion. Bile salts play an important role in the solubilisation of poorly soluble compounds in the gastrointestinal tract (gut) prior to absorption. When a poorly water-soluble drug is delivered using a hydrophilic polymer based solid dispersion oral formulation, it is still unclear whether there are any polymer-bile salt interactions, which may influence the drug dissolution and solubilisation. This study, using two widely used hydrophilic model polymers, Hydroxypropyl methylcellulose (HPMC) and polyvynilpirrolidone (PVP), and sodium taurocholate (NaTC) as the model bile salt, aims to investigate the interactions between the polymers and bile salts in simulated fed state (FeSSIF) and fasted state (FaSSIF) gut fluids. The nature of the interactions was characterised using a range of NMR techniques. The results revealed that the aggregation behaviour of NaTC in FaSSIF and FeSSIF is much more complex than in water. The addition of hydrophilic polymers led to the occurrences of NaTC-HPMC and NaTC-PVP aggregation. For both systems, pH and ionic strength strongly influenced the aggregation behavior, while the ion type played a less significant role. The outcome of this study enriched the understanding of the aggregation behaviour of bile salts and typical hydrophilic pharmaceutical polymers in bio-relevant media. Due to the high surface-activity of the bile salts and their ability to interact with polymers, such aggregation behaviour is expected to play a role in drug solubilisation in the gut when the drug is delivered by hydrophilic polymer based dispersions.
Collapse
Affiliation(s)
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Peter Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
20
|
Neves MC, Filipe HAL, Reis RL, Prates Ramalho JP, Coreta-Gomes F, Moreno MJ, Loura LMS. Interaction of Bile Salts With Lipid Bilayers: An Atomistic Molecular Dynamics Study. Front Physiol 2019; 10:393. [PMID: 31024345 PMCID: PMC6465969 DOI: 10.3389/fphys.2019.00393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Bile salts (BS) are biosurfactants crucial for emulsification and intestinal absorption of cholesterol and other hydrophobic compounds such as vitamins and fatty acids. Interaction of BS with lipid bilayers is important for understanding their effects on membranes properties. The latter have relevance in passive diffusion processes through intestinal epithelium such as reabsorption of BS, as well as their degree of toxicity to intestinal flora and their potential applications in drug delivery. In this work, we used molecular dynamics simulations to address at the atomic scale the interactions of cholate, deoxycholate, and chenodeoxycholate, as well as their glycine conjugates with POPC bilayers. In this set of BS, variation of three structural aspects was addressed, namely conjugation with glycine, number and position of hydroxyl substituents, and ionization state. From atomistic simulations, the location and orientation of BS inside the bilayer, and their specific interactions with water and host lipid, such as hydrogen bonding and ion-pair formation, were studied in detail. Membrane properties were also investigated to obtain information on the degree of perturbation induced by the different BS. The results are described and related to a recent experimental study (Coreta-Gomes et al., 2015). Differences in macroscopic membrane partition thermodynamics and translocation kinetics are rationalized in terms of the distinct structures and atomic-scale behavior of the bile salt species. In particular, the faster translocation of cholate is explained by its higher degree of local membrane perturbation. On the other hand, the relatively high partition of the polar glycine conjugates is related to the longer and more flexible side chain, which allows simultaneous efficient solvation of the ionized carboxylate and deep insertion of the ring system.
Collapse
Affiliation(s)
- Maria C Neves
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal
| | - Hugo A L Filipe
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal.,Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Rita Leones Reis
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal
| | - João P Prates Ramalho
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal.,Centro de Química de Évora e Centro Hercules, Universidade de Évora, Évora, Portugal
| | - Filipe Coreta-Gomes
- Centro de Química de Coimbra, Coimbra, Portugal.,QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Maria J Moreno
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.,Centro de Química de Coimbra, Coimbra, Portugal.,Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Luis M S Loura
- Centro de Química de Coimbra, Coimbra, Portugal.,Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Sengupta U, Carballo-Pacheco M, Strodel B. Automated Markov state models for molecular dynamics simulations of aggregation and self-assembly. J Chem Phys 2019; 150:115101. [DOI: 10.1063/1.5083915] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ushnish Sengupta
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- AICES Graduate School, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Carter EE, Heyert AJ, De Souza M, Baker JL, Lindberg GE. The ionic liquid [C4mpy][Tf2N] induces bound-like structure in the intrinsically disordered protein FlgM. Phys Chem Chem Phys 2019; 21:17950-17958. [DOI: 10.1039/c9cp01882d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide is shown to induce secondary structure similar to a bioactive state in the protein FlgM.
Collapse
Affiliation(s)
- Erin E. Carter
- Department of Chemistry and Biochemistry
- Northern Arizona University
- Flagstaff
- USA
| | | | | | | | - Gerrick E. Lindberg
- Department of Chemistry and Biochemistry
- Northern Arizona University
- Flagstaff
- USA
- Center for Materials Interfaces in Research and Applications
| |
Collapse
|
23
|
Swain J, Mishra J, Ghosh G, Mishra AK. Quantification of micropolarity and microviscosity of aggregation and salt-induced gelation of sodium deoxycholate (NaDC) using Nile red fluorescence. Photochem Photobiol Sci 2019; 18:2773-2781. [DOI: 10.1039/c9pp00293f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nile red fluorescence properties can be used for the estimation of micropolarity and microviscosity of the gel medium.
Collapse
Affiliation(s)
- Jitendriya Swain
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Jhili Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Goutam Ghosh
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Ashok Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
24
|
Gholizadeh R, Wang Y. Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Penetration of antimicrobial peptides in a lung surfactant model. Colloids Surf B Biointerfaces 2018; 167:345-353. [PMID: 29689490 DOI: 10.1016/j.colsurfb.2018.04.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Molecular dynamics simulations were successfully performed to understand the absorption mechanism of antimicrobial peptides LL-37, CATH-2, and SMAP-29 in a lung surfactant model. The antimicrobial peptides quickly penetrate in the lung surfactant model in dozens or hundreds nanoseconds, but they electrostatically interact with the lipid polar heads during the simulation time of 2 μs. This electrostatic interaction should be the explanation for the inactivation of the antimicrobial peptides when co-administrated with lung surfactant. As they strongly interact with the lipid polar heads of the lung surfactant, there is no positive charge available on the antimicrobial peptide to attack the negatively charged bacteria membrane. In order to avoid the interaction of peptides with the lipid polar heads, sodium cholate was used to form nanoparticles which act as an absorption enhancer of all antimicrobial peptides used in this investigation. The nanoparticles of 150 molecules of sodium cholate with one peptide were inserted on the top of the lung surfactant model. The nanoparticles penetrated into the lung surfactant model, spreading the sodium cholate molecules around the lipid polar heads. The sodium cholate molecules seem to protect the peptides from the interaction with the lipid polar heads, leaving them free to be delivered to the water phase. The penetration of peptides alone or even the peptide nanoparticles with sodium cholate do not collapse the lung surfactant model, indicating to be a promisor drug delivery system to the lung. The implications of this finding are that antimicrobial peptides may only be co-administered with an absorption enhancer such as sodium cholate into lung surfactant in order to avoid inactivation of their antimicrobial activity.
Collapse
|
26
|
Zhang X, Patel LA, Beckwith O, Schneider R, Weeden CJ, Kindt JT. Extracting Aggregation Free Energies of Mixed Clusters from Simulations of Small Systems: Application to Ionic Surfactant Micelles. J Chem Theory Comput 2017; 13:5195-5206. [PMID: 28942641 DOI: 10.1021/acs.jctc.7b00671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.
Collapse
Affiliation(s)
- X Zhang
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - L A Patel
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - O Beckwith
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - R Schneider
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - C J Weeden
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| | - J T Kindt
- Department of Chemistry and ‡Department of Mathematics and Computer Science, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
27
|
Poša M, Popović K. Structure-Property Relationships in Sodium Muricholate Derivative (Bile Salts) Micellization: The Effect of Conformation of Steroid Skeleton on Hydrophobicity and Micelle Formation-Pattern Recognition and Potential Membranoprotective Properties. Mol Pharm 2017; 14:3343-3355. [PMID: 28863265 DOI: 10.1021/acs.molpharmaceut.7b00375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is known that β-muricholic acid anions prevent membrane toxicity of hydrophobic bile acids, which are being used in therapy for solubilization of the cholesterol type bile stone. Better knowledge of these derivative micelles is very important for understanding their physiological and pharmacological effects. β-Axial (a) oriented hydroxyl group from the steroid skeleton decreases the hydrophobic surface of the convex side of the steroid skeleton. Therefore, the critical micellization concentration (CMC) for steroid surfactants with β-a-OH group should increase, but in the case of OH groups of different orientations forming H-bonds in the hydrophobic phase of the micelle, it has the opposite effect; the CMC decreses, and aggregation is more favored. The set of muricholic acids (MCs) is composed by α-MC, β-MC, γ-MC, and ω-MC, where α-MC and β-MC have β-axial-OH groups. The aggregation numbers (n) are determined using the Moroi-Matsuoka-Sugioka thermodynamic method. CMC, enthalpy of demicellization, and ΔCp are determined by isothermal titration calorimetry (ITC). This report pioneers in the study of MC derivatives micellization. Micelles of β-MC and γ-MC belong to the linear congeneric group (LCG) and their micelles above 85 mM have constant aggregation numbers n = 4-5. Micelles of α-MC and ω-MC are outliers in relation to the LCG, their aggregation number constantly increases; at 85 mM n = 6.8 (α-MC) and 6.5 (ω-MC). In micelles of derivatives β-MC and γ-MC, there is a low probability for the existence of hydrogen bonds. A micelle of α-MC probably has hydrogen bonds in its hydrophobic domain.
Collapse
Affiliation(s)
- Mihalj Poša
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad , Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Kosta Popović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad , Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
28
|
Slow solvation dynamics in supramolecular systems based on bile salts: Role of structural rigidity of bile salt aggregates. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Euston SR. Molecular simulation of biosurfactants with relevance to food systems. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Poša M, Pilipović A, Bjedov S, Obradović S, Tepavčević V, Sakač M. Parameters of micellization and hydrophobicity of sodium salts of 7-buthyl (butylidene) and 7-octyl (octylidene) derivatives of the cholic and the deoxycholic acid in a water solution: Pattern recognition — Linear hydrophobic congeneric groups. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|