1
|
Elangovan N, Arumugam N, Pennamuthiriyan A, Garg A, Sivaramakrishnan V, Kanchi S, Santhamoorthy M. The role of biochemical and biophysical properties, molecular docking and dynamics studies on azelastine. Biochem Biophys Res Commun 2025; 763:151781. [PMID: 40222330 DOI: 10.1016/j.bbrc.2025.151781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
The structure of the 4-(4-chlorobenzyl)-2-(1-methylazepan-4-yl) phthalazin-1(2H)-one (IA) was optimized through computational study. The optimized structure revealed that the bond length between atoms C3 and C5 was the longest at 1.54 Å, while the bond between atoms C10 and H31 had the lowest length at about 1.01 Å, respectively. The natural bond orbital (NBO) analysis indicates that the bonding π(C3-C20) to anti-bonding π∗(N2-C3) interaction exhibits the most significant stabilization energy of about 253.59 kcal/mol. Due to the solvent's influence, the gas phase MEP value and HOMO-LUMO band gap value are lower, when compared to solvents. A localized bond pair that undergoes movement between two atoms, and a bond pair that undergoes movement between two different pairs of atoms are identified by electron localized function (ELF), localized orbital locator (LOL), and average localized ionization energy (ALIE) studies, respectively. The electron density and thermodynamic properties were determined using Gaussian software. This study examined various parameters such as non-linear optical (NLO), molecular electrostatic potential (MEP), UV-vis, and HOMO-LUMO in different solvents. Further, the biological activity of the IA compound was studied using molecular docking and dynamics on the target Mycobacterium tuberculosis ArgF (7NOR) protein, which showed favorable protein-ligand interaction energy.
Collapse
Affiliation(s)
- Natarajan Elangovan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Anandaraj Pennamuthiriyan
- Department of Chemistry, K. Ramakrishnan College of Engineering (Autonomous), Samayapuram, Tiruchirappalli, Tamilnadu, India
| | - Anuj Garg
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | | |
Collapse
|
2
|
Patle RY, Dongre RS. Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. J Drug Target 2025; 33:437-457. [PMID: 39530737 DOI: 10.1080/1061186x.2024.2428966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.
Collapse
Affiliation(s)
- Ramkrishna Y Patle
- PGTD Chemistry, RTM Nagpur University, Nagpur, India
- Mahatma Gandhi College of Science, Chandrapur, India
| | | |
Collapse
|
3
|
Datta Darshan VM, Arumugam N, Almansour AI, Sivaramakrishnan V, Kanchi S. In silico energetic and molecular dynamic simulations studies demonstrate potential effect of the point mutations with implications for protein engineering in BDNF. Int J Biol Macromol 2024; 271:132247. [PMID: 38750847 DOI: 10.1016/j.ijbiomac.2024.132247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Protein engineering by directed evolution is time-consuming. Hence, in silico techniques like FoldX-Yasara for ∆∆G calculation, and SNPeffect for predicting propensity for aggregation, amyloid formation, and chaperone binding are employed to design proteins. Here, we used in silico techniques to engineer BDNF-NTF3 interaction and validated it using mutations with known functional implications for NGF dimer. The structures of three mutants representing a positive, negative, or neutral ∆∆G involving two interface residues in BDNF and two mutations representing a neutral and positive ∆∆G in NGF, which is aligned with BDNF, were selected for molecular dynamics (MD) simulation. Our MD results conclude that the secondary structure of individual protomers of the positive and negative mutants displayed a similar or different conformation from the NTF3 monomer, respectively. The positive mutants showed fewer hydrophobic interactions and higher hydrogen bonds compared to the wild-type, negative, and neutral mutants with similar SASA, suggesting solvent-mediated disruption of hydrogen-bonded interactions. Similar results were obtained for mutations with known functional implications for NGF and BDNF. The results suggest that mutations with known effects in homologous proteins could help in validation, and in silico directed evolution experiments could be a viable alternative to the experimental technique used for protein engineering.
Collapse
Affiliation(s)
- V M Datta Darshan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh 515134, India.
| |
Collapse
|
4
|
Esteban-Hofer L, Emmanouilidis L, Yulikov M, Allain FHT, Jeschke G. Ensemble structure of the N-terminal domain (1-267) of FUS in a biomolecular condensate. Biophys J 2024; 123:538-554. [PMID: 38279531 PMCID: PMC10938082 DOI: 10.1016/j.bpj.2024.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Solutions of some proteins phase separate into a condensed state of high protein concentration and a dispersed state of low concentration. Such behavior is observed in living cells for a number of RNA-binding proteins that feature intrinsically disordered domains. It is relevant for cell function via the formation of membraneless organelles and transcriptional condensates. On a basic level, the process can be studied in vitro on protein domains that are necessary and sufficient for liquid-liquid phase separation (LLPS). We have performed distance distribution measurements by electron paramagnetic resonance for 13 sections in an N-terminal domain (NTD) construct of the protein fused in sarcoma (FUS), consisting of the QGSY-rich domain and the RGG1 domain, in the denatured, dispersed, and condensed state. Using 10 distance distribution restraints for ensemble modeling and three such restraints for model validation, we have found that FUS NTD behaves as a random-coil polymer under good-solvent conditions in both the dispersed and condensed state. Conformation distribution in the biomolecular condensate is virtually indistinguishable from the one in an unrestrained ensemble, with the latter one being based on only residue-specific Ramachandran angle distributions. Over its whole length, FUS NTD is slightly more compact in the condensed than in the dispersed state, which is in line with the theory for random coils in good solvent proposed by de Gennes, Daoud, and Jannink. The estimated concentration in the condensate exceeds the overlap concentration resulting from this theory. The QGSY-rich domain is slightly more extended, slightly more hydrated, and has slightly higher propensity for LLPS than the RGG1 domain. Our results support previous suggestions that LLPS of FUS is driven by multiple transient nonspecific hydrogen bonding and π-sp2 interactions.
Collapse
Affiliation(s)
- Laura Esteban-Hofer
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | | | - Maxim Yulikov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | | | - Gunnar Jeschke
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland.
| |
Collapse
|
5
|
González-Méndez I, Sorroza-Martínez K, González-Sánchez I, Gracia-Mora J, Bernad-Bernad MJ, Cerbón M, Rivera E, Yatsimirsky AK. Exploring the Influence of Spacers in EDTA-β-Cyclodextrin Dendrimers: Physicochemical Properties and In Vitro Biological Behavior. Int J Mol Sci 2023; 24:14422. [PMID: 37833869 PMCID: PMC10572662 DOI: 10.3390/ijms241914422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesis of a new family of ethylenediaminetetraacetic acid (EDTA) core dimers and G0 dendrimers end-capped with two and four β-cyclodextrin (βCD) moieties was performed by click-chemistry conjugation, varying the spacers attached to the core. The structure analyses were achieved in DMSO-d6 and the self-inclusion process was studied in D2O by 1H-NMR spectroscopy for all platforms. It was demonstrated that the interaction with adamantane carboxylic acid (AdCOOH) results in a guest-induced shift of the self-inclusion effect, demonstrating the full host ability of the βCD units in these new platforms without any influence of the spacer. The results of the quantitative size and water solubility measurements demonstrated the equivalence between the novel EDTA-βCD platforms and the classical PAMAM-βCD dendrimer. Finally, we determined the toxicity for all EDTA-βCD platforms in four different cell lines: two human breast cancer cells (MCF-7 and MDA-MB-231), human cervical adenocarcinoma cancer cells (HeLa), and human lung adenocarcinoma cells (SK-LU-1). The new EDTA-βCD carriers did not present any cytotoxicity in the tested cell lines, which showed that these new classes of platforms are promising candidates for drug delivery.
Collapse
Affiliation(s)
- Israel González-Méndez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-M.); (J.G.-M.)
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City C.P. 04510, Mexico;
| | - Ignacio González-Sánchez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-S.); (M.C.)
| | - Jesús Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-M.); (J.G.-M.)
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico;
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-S.); (M.C.)
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City C.P. 04510, Mexico;
| | - Anatoly K. Yatsimirsky
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City C.P. 04510, Mexico; (I.G.-M.); (J.G.-M.)
| |
Collapse
|
6
|
Zhang M, Xue B, Li Q, Shi R, Cao Y, Wang W, Li J. Sequence Tendency for the Interaction between Low-Complexity Intrinsically Disordered Proteins. JACS AU 2023; 3:93-104. [PMID: 36711093 PMCID: PMC9875249 DOI: 10.1021/jacsau.2c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Reversible interaction between intrinsically disordered proteins (IDPs) is considered as the driving force for liquid-liquid phase separation (LLPS), while the detailed description of such a transient interaction process still remains a challenge. And the mechanisms underlying the behavior of IDP interaction, for example, the possible relationship with its inherent conformational fluctuations and sequence features, remain elusive. Here, we use atomistic molecular dynamics (MD) simulation to investigate the reversible association of the LAF-1 RGG domain, the IDP with ultra-low LLPS concentration (0.06 mM). We find that the duration of the association between two RGG domains is highly heterogeneous, and the sustained associations essentially dominate the IDP interaction. More interestingly, such sustained associations are mediated by a finite region, that is, the C-terminal region 138-168 (denoted as a contact-prone region). We noticed that such sequence tendency is attributed to the extended conformation of the RGG domain during its inherent conformational fluctuations. Hence, our results suggest that there is a certain region in this low-complexity IDP which can essentially dominate their interaction and should be also important to the LLPS. And the inherent conformational fluctuations are actually essential for the emergence of such a hot region of IDP interaction. The importance of this hot region to LLPS is verified by experiment.
Collapse
Affiliation(s)
- Moxin Zhang
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| | - Bin Xue
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Qingtai Li
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Rui Shi
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| | - Yi Cao
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Wei Wang
- Collaborative
Innovation Center of Advanced Microstructures, National Laboratory
of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Jingyuan Li
- Zhejiang
Province Key Laboratory of Quantum Technology and Device, School of
Physics, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
7
|
Kavyani S, Amjad-Iranagh S, Zarif M. Effect of temperature, pH, and terminal groups on structural properties of carbon nanotube-dendrimer composites: A coarse-grained molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Polanowski P, Hałagan K, Sikorski A. Star Polymers vs. Dendrimers: Studies of the Synthesis Based on Computer Simulations. Polymers (Basel) 2022; 14:2522. [PMID: 35808567 PMCID: PMC9269100 DOI: 10.3390/polym14132522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 01/24/2023] Open
Abstract
A generic model was developed for studies of the polymerization process of regular branched macromolecules. Monte Carlo simulations were performed employing the Dynamic Lattice Liquid algorithm to study this process. A core-first methodology was used in a living polymerization of stars with up to 32 arms, and dendrimers consisted of 4-functional segments. The kinetics of the synthesis process for stars with different numbers of branches and dendrimers was compared. The size and structure of star-branched polymers and dendrimers during the synthesis were studied. The influence of the functionality of well-defined cores on the structure and on the dispersity of the system was also examined. The differences in the kinetics in the formation of both architectures, as well as changes to their structures, were described and discussed.
Collapse
Affiliation(s)
- Piotr Polanowski
- Department of Molecular Physics, Lodz University of Technology, 90-924 Lodz, Poland; (P.P.); (K.H.)
| | - Krzysztof Hałagan
- Department of Molecular Physics, Lodz University of Technology, 90-924 Lodz, Poland; (P.P.); (K.H.)
| | - Andrzej Sikorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
9
|
Díaz CF, Guzmán L, Jiménez VA, Alderete JB. Polyamidoamine dendrimers of the third generation–chlorin e6 nanoconjugates: Nontoxic hybrid polymers with photodynamic activity. J Appl Polym Sci 2022; 139. [DOI: 10.1002/app.51835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 01/06/2025]
Abstract
AbstractDendrimer‐based nanoconjugates play a key role as functional polymers for biomedical applications. In this work, the one‐pot conjugation of polyamidoamine dendrimers of the third generation (PAMAM‐G3) with the photosensitizer chlorin e6 (Ce6) is presented using 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC) and N‐hydroxysuccinimide (NHS) to mediate the synthesis, resulting in a 9% substitution degree according to nuclear magnetic resonance data. The PAMAM‐G3‐Ce6 nanoconjugate exhibits reduced cytotoxicity compared with the native dendrimer and efficient photodynamic activity against HeLa cancer cells after 1 h of incubation with a 100 μmol L−1 solution and 3 min of irradiation with red light‐emitting diode light (628 nm, 259 W m−2). Molecular dynamics simulations confirm that the PAMAM‐G3‐Ce6 system adopts a spherical structure and retains the internal dendritic cavities that enable drug encapsulation, which is relevant for the potential use of these hybrid polymers in combined chemo/photodynamic therapy.
Collapse
Affiliation(s)
- Carola F. Díaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas Universidad Andres Bello Talcahuano Chile
| | - Leonardo Guzmán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences Universidad de Concepción Concepción Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas Universidad Andres Bello Talcahuano Chile
| | - Joel B. Alderete
- Instituto de Química de Recursos Naturales Universidad de Talca Talca Chile
| |
Collapse
|
10
|
Fang X, Gao K, Huang J, Liu K, Chen L, Piao Y, Liu X, Tang J, Shen Y, Zhou Z. Molecular level precision and high molecular weight peptide dendrimers for drug-specific delivery. J Mater Chem B 2021; 9:8594-8603. [PMID: 34705008 DOI: 10.1039/d1tb01157j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peptide dendrimers have a broad application in biomedical science due to their biocompatibility, diversity, and multifunctionality, but the precision synthesis of high-molecule weight peptide dendrimers remains challenging. We here report the facile and liquid-phase synthesis of molecular level precision and amino-acid built-in polylysine (PLL) dendrimers with molecular weights as high as ∼60 kDa. Three types of polyhedral oligosilsesquioxane (POSS)-cored PLL dendrimers with phenylalanine, tyrosine, or histidine as building blocks were synthesized. The precise structures of the dendrimers were confirmed by MALDI-TOF MS, GPC, and 1H NMR spectroscopy. The interior functionalized peptide dendrimers improved the encapsulation capability of SN38 and sustained the release profiles. Enhanced molecular interactions between the peptide dendrimers and drugs were explored by both NMR experiments and computer simulations. The peptide dendrimer/SN38 formulations showed potent antitumor activity against multiple cancer cell lines. We believe that this strategy can be applied to the synthesis of tailor-made functional peptide dendrimers for drug-specific delivery and other diverse biomedical applications.
Collapse
Affiliation(s)
- Xinhao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Kai Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jianxiang Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Kexin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Linying Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
11
|
Yamini G, Kanchi S, Kalu N, Momben Abolfath S, Leppla SH, Ayappa KG, Maiti PK, Nestorovich EM. Hydrophobic Gating and 1/ f Noise of the Anthrax Toxin Channel. J Phys Chem B 2021; 125:5466-5478. [PMID: 34015215 DOI: 10.1021/acs.jpcb.0c10490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"Pink" or 1/f noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/f power spectral density. In the anthrax toxin channel (PA63), it appears as fast voltage-independent current interruptions between conducting and nonconducting states. This behavior hampers potential development of PA63 as an ion-channel biosensor. On the bright side, the PA63 flickering represents a mesmerizing phenomenon to investigate. Notably, similar 1/f fluctuations are observed in the channel-forming components of clostridial binary C2 and iota toxins, which share functional and structural similarities with the anthrax toxin channel. Similar to PA63, they are evolved to translocate the enzymatic components of the toxins into the cytosol. Here, using high-resolution single-channel lipid bilayer experiments and all-atom molecular dynamic simulations, we suggest that the 1/f noise in PA63 occurs as a result of "hydrophobic gating" at the ϕ-clamp region, the phenomenon earlier observed in several water-filled channels "fastened" inside by the hydrophobic belts. The ϕ-clamp is a narrow "hydrophobic ring" in the PA63 lumen formed by seven or eight phenylalanine residues at position 427, conserved in the C2 and iota toxin channels, which catalyzes protein translocation. Notably, the 1/f noise remains undetected in the F427A PA63 mutant. This finding can elucidate the functional purpose of 1/f noise and its possible role in the transport of the enzymatic components of binary toxins.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Subbarao Kanchi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India.,Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| |
Collapse
|
12
|
Kunalan S, Dey K, Roy PK, Velachi V, Maiti PK, Palanivelu K, Jayaraman N. Efficient facilitated transport PETIM dendrimer-PVA-PEG/PTFE composite flat-bed membranes for selective removal of CO2. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
De Luca S, Treny J, Chen F, Seal P, Stenzel MH, Smith SC. Enhancing Cationic Drug Delivery with Polymeric Carriers: The Coulomb‐pH Switch Approach. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sergio De Luca
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| | - Jennifer Treny
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Prasenjit Seal
- Department of Chemistry University of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sean C. Smith
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
14
|
Smith RJ, Fabiani T, Wang S, Ramesh S, Khan S, Santiso E, Silva FLB, Gorman C, Menegatti S. Exploring the physicochemical and morphological properties of peptide‐hybridized dendrimers (
DendriPeps
) and their aggregates. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ryan J. Smith
- Department of ChemistryNorth Carolina State University Raleigh North Carolina USA
| | - Thomas Fabiani
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | - Siyao Wang
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | - Saad Khan
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | - Erik Santiso
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
| | - Fernando Luis Barroso Silva
- Faculty of Pharmaceutical Sciences at Ribeirão PretoUniversidade de São Paulo Ribeirão Preto São Paulo Brazil
| | - Christopher Gorman
- Department of ChemistryNorth Carolina State University Raleigh North Carolina USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh North Carolina USA
- Golden Leaf Biomanufacturing Training & Education Center Raleigh North Carolina USA
| |
Collapse
|
15
|
Tian F, Lin X, Valle RP, Zuo YY, Gu N. Poly(amidoamine) Dendrimer as a Respiratory Nanocarrier: Insights from Experiments and Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5364-5371. [PMID: 30888182 DOI: 10.1021/acs.langmuir.9b00434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pulmonary drug delivery is superior to the systemic administration in treating lung diseases. An optimal respiratory nanocarrier should be able to efficiently and safely cross the pulmonary surfactant film, which serves as the first biological barrier for respiratory delivery and plays paramount roles in maintaining the proper mechanics of breathing. In this work, we focused on the interactions between poly(amidoamine) (PAMAM) dendrimers and a model pulmonary surfactant. With combined Langmuir monolayer experiments and coarse-grained molecular dynamics simulations, we studied the effect of environmental temperature, size, and surface property of PAMAM dendrimers (G3-OH, G3-NH2, G5-OH, and G5-NH2) on the dipalmitoylphosphatidylcholine (DPPC) monolayer. Our simulations indicated that the environmental temperature could significantly affect the influence of PAMAM dendrimers on the DPPC monolayer. Therefore, results obtained at room temperature cannot be directly applied to elucidate interactions at body temperature. Simulations at body temperature found that all tested PAMAM dendrimers can easily penetrate the lipid monolayer during the monolayer expansion process (mimicking "inhalation"), and the cationic PAMAM dendrimers (-NH2) show promising penetration ability during the monolayer compression process (mimicking "expiration"). Larger PAMAM dendrimers (G5) adsorbed onto the lipid monolayer tend to induce structural collapse and inhibit normal phase transitions of the lipid monolayer. These adverse effects could be mitigated in the subsequent expansion-compression cycle. These findings suggest that the PAMAM dendrimer may be used as a potential respiratory drug nanocarrier.
Collapse
Affiliation(s)
- Fujia Tian
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100083 , China
| | - Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University , Beijing 100083 , China
- Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, School of Biological Science and Medical Engineering , Beihang University , Beijing 100083 , China
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Russell P Valle
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Yi Y Zuo
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Ning Gu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
16
|
Seal P, Xu J, Luca S, Boyer C, Smith SC. Unraveling Photocatalytic Mechanism and Selectivity in PET‐RAFT Polymerization. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Prasenjit Seal
- Department of ChemistryUniversity of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) 00014 Helsinki Finland
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicineSchool of Chemical EngineeringUNSW Australia Sydney NSW 2052 Australia
| | - Sergio Luca
- Integrated Materials Design CentreSchool of Chemical EngineeringUNSW Australia Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicineSchool of Chemical EngineeringUNSW Australia Sydney NSW 2052 Australia
| | - Sean C. Smith
- Department of Applied MathematicsResearch School of Physics and EngineeringThe Australian National University Acton ACT 2601 Australia
| |
Collapse
|
17
|
Kanchi S, Gosika M, Ayappa KG, Maiti PK. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation. J Chem Theory Comput 2018; 14:3825-3839. [DOI: 10.1021/acs.jctc.8b00119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Subbarao Kanchi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Department of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mounika Gosika
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K. G. Ayappa
- Department of Chemical Engineering, Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Sahoo AK, Kanchi S, Mandal T, Dasgupta C, Maiti PK. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6168-6179. [PMID: 29373024 DOI: 10.1021/acsami.7b18498] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the major challenges of nanomedicine and gene therapy is the effective translocation of drugs and genes across cell membranes. In this study, we describe a systematic procedure that could be useful for efficient drug and gene delivery into the cell. Using fully atomistic molecular dynamics (MD) simulations, we show that molecules of various shapes, sizes, and chemistries can be spontaneously encapsulated in a single-walled carbon nanotube (SWCNT) embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer, as we have exemplified with dendrimers, asiRNA, ssDNA, and ubiquitin protein. We compute the free energy gain by the molecules upon their entry inside the SWCNT channel to quantify the stability of these molecules inside the channel as well as to understand the spontaneity of the process. The free energy profiles suggest that all molecules can enter the channel without facing any energy barrier but experience a strong energy barrier (≫kBT) to translocate across the channel. We propose a theoretical model for the estimation of encapsulation and translocation times of the molecules. Whereas the model predicts the encapsulation time to be of the order of few nanoseconds, which match reasonably well with those obtained from the simulations, it predicts the translocation time to be astronomically large for each molecule considered in this study. This eliminates the possibility of passive diffusion of the molecules through the CNT-nanopore spanning across the membrane. To counter this, we put forward a mechanical method of ejecting the encapsulated molecules by pushing them with other free-floating SWCNTs of diameter smaller than the pore diameter. The feasibility of the proposed method is also demonstrated by performing MD simulations. The generic strategy described here should work for other molecules as well and hence could be potentially useful for drug- and gene-delivery applications.
Collapse
Affiliation(s)
- Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Subbarao Kanchi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Taraknath Mandal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Chandan Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
19
|
Duong PHH, Zuo J, Nunes SP. Dendrimeric Thin-Film Composite Membranes: Free Volume, Roughness, and Fouling Resistance. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuoc H. H. Duong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering
Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Jian Zuo
- National University of Singapore, Department of Chemical
and Biomolecular Engineering, 4 Engineering Drive 4, 117585 Singapore
| | - Suzana P. Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering
Division (BESE), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
De Luca S, Chen F, Seal P, Stenzel MH, Smith SC. Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy. Biomacromolecules 2017; 18:3665-3677. [PMID: 28880549 DOI: 10.1021/acs.biomac.7b00657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accelerating search for new types of drugs and delivery strategies poses challenge to understanding the mechanism of delivery. To this end, a detailed atomistic picture of binding between the drug and carrier is quintessential. Although many studies focus on the electrostatics of drug-vector interactions, it has also been pointed out that entropic factors relating to water and counterions can play an important role. By carrying out extensive molecular dynamics simulations and subsequently validating with experiments, we shed light herein on the binding in aqueous solution between a protein drug and polymeric carrier. We examined the complexation between the polymer poly(ethylene glycol) methyl ether acrylate-b-poly(carboxyethyl acrylate (PEGMEA-b-PCEA) and the protein egg white lysozyme, a system that acts as a model for polymer-vector/protein-drug delivery systems. The complexation has been visualized and characterized using contact maps and hydrogen bonding analyses for five independent simulations of the complex, each running over 100 ns. Binding at physiological pH is, as expected, mediated by Coulombic attraction between the positively charged protein and negatively charged carboxylate groups on the polymer. However, we find that consideration of electrostatics alone is insufficient to explain the complexation behavior at low pH. Intracomplex hydrogen bonds, van der Waals interactions, as well as water-water interactions dictate that the polymer does not release the protein at pH 4.8 or indeed at pH 3.2 even though the Coulombic attractions are largely removed as carboxylate groups on the polymer become titrated. Experiments in aqueous solution carried out at pH 7.0, 4.5, and 3.0 confirm the veracity of the computed binding behavior. Overall, these combined simulation and experimental results illustrate that coulomb interactions need to be complemented with consideration of other entropic forces, mediated by van der Waals interactions and hydrogen bonding, to search for adequate descriptors to predict binding and release properties of polymer-protein complexes. Advances in computational power over the past decade make atomistic molecular dynamics simulations such as implemented here one of the few avenues currently available to elucidate the complexity of these interactions and provide insights toward finding adequate descriptors. Thus, there remains much room for improvement of design principles for efficient capture and release delivery systems.
Collapse
Affiliation(s)
- Sergio De Luca
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Fan Chen
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Prasenjit Seal
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Sean C Smith
- Integrated Material Design Centre (IMDC), School of Chemical Engineering and ‡Centre for Advanced Macromolecular Design, School of Chemical Engineering and School of Chemistry, The University of New South Wales , Sydney, New South Wales 2052, Australia
| |
Collapse
|
21
|
Martinho N, Silva LC, Florindo HF, Brocchini S, Zloh M, Barata TS. Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties. Int J Nanomedicine 2017; 12:7053-7073. [PMID: 29026301 PMCID: PMC5626386 DOI: 10.2147/ijn.s135475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dendrimers are hyperbranched polymers with a multifunctional architecture that can be tailored for the use in various biomedical applications. Peptide dendrimers are particularly relevant for drug delivery applications due to their versatility and safety profile. The overall lack of knowledge of their three-dimensional structure, conformational behavior and structure-activity relationship has slowed down their development. Fluorophores are often conjugated to dendrimers to study their interaction with biomolecules and provide information about their mechanism of action at the molecular level. However, these probes can change dendrimer surface properties and have a direct impact on their interactions with biomolecules and with lipid membranes. In this study, we have used computer-aided molecular design and molecular dynamics simulations to identify optimal topology of a poly(l-glutamic acid) (PG) backbone dendrimer that allows incorporation of fluorophores in the core with minimal availability for undesired interactions. Extensive all-atom molecular dynamic simulations with the CHARMM force field were carried out for different generations of PG dendrimers with the core modified with a fluorophore (nitrobenzoxadiazole and Oregon Green 488) and various surface groups (glutamic acid, lysine and tryptophan). Analysis of structural and topological features of all designed dendrimers provided information about their size, shape, internal distribution and dynamic behavior. We have found that four generations of a PG dendrimer are needed to ensure minimal exposure of a core-conjugated fluorophore to external environment and absence of undesired interactions regardless of the surface terminal groups. Our findings suggest that NBD-PG-G4 can provide a suitable scaffold to be used for biophysical studies of surface-modified dendrimers to provide a deeper understanding of their intermolecular interactions, mechanisms of action and trafficking in a biological system.
Collapse
Affiliation(s)
- Nuno Martinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutics, UCL School of Pharmacy, London
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Liana C Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Centro de Química-Física Molecular and IN – Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Mire Zloh
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
22
|
Lakshminarayanan A, Jayaraman N. Successive outermost-to-core shell directionality of the protonation of poly(propyl ether imine) dendritic gene delivery vectors. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protonation behaviour of polycationic compounds has direct relevance to their ability to condense and deliver nucleic acids. This report pertains to a study of the protonation behaviour of polycationic poly(propyl ether imine) (PETIM) dendritic gene delivery vectors that are constituted with tertiary amine core moiety and branch sites, n-propyl ether linkages, and primary amine peripheries. The ability of this series of dendrimers to condense nucleic acids and mediate endosomal escape was studied by unravelling the protonation behaviour of the dendrimers aided by pH metric titrations and 1H and 15N NMR spectroscopies. The results demonstrate protonation of the primary and tertiary amines of outermost-to-core shells occurring in a successive stepwise fashion, in contrast to other polycationic vectors. Theoretical calculations based on the Ising model rationalize further the finer details of protonation at each shell. The protonation pattern correlates with the endosomal buffering and nucleic acid condensation properties of this PETIM-based dendritic gene delivery vectors. The study establishes that the protonation behaviour is a critical and essential parameter to assess the gene condensation and delivery vector properties of a polycationic compound.
Collapse
Affiliation(s)
- Abirami Lakshminarayanan
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Narayanaswamy Jayaraman
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
23
|
Abstract
Using fully atomistic molecular dynamics simulation that are several hundred nanoseconds long, we demonstrate the pH-controlled sponge action of PAMAM dendrimer. We show how at varying pH levels, the PAMAM dendrimer acts as a wet sponge; at neutral or low pH levels, the dendrimer expands noticeably and the interior of the dendrimer opens up to host several hundreds to thousands of water molecules depending on the generation number. Increasing the pH (i.e., going from low pH to high pH) leads to the collapse of the dendrimer size, thereby expelling the inner water, which mimics the ‘sponge’ action. As the dendrimer size swells up at a neutral pH or low pH due to the electrostatic repulsion between the primary and tertiary amines that are protonated at this pH, there is dramatic increase in the available solvent accessible surface area (SASA), as well as solvent accessible volume (SAV).
Collapse
Affiliation(s)
- Prabal K. Maiti
- Center for Condensed Matter Theory, Department of Physics, Bangalore, India, 560012
- Center for Condensed Matter Theory, Department of Physics, Bangalore, India, 560012
| |
Collapse
|
24
|
Jain V, Maiti PK, Bharatam PV. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations. J Chem Phys 2016; 145:124902. [DOI: 10.1063/1.4962582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Vaibhav Jain
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India
| |
Collapse
|
25
|
Mandal T, Kanchi S, Ayappa KG, Maiti PK. pH controlled gating of toxic protein pores by dendrimers. NANOSCALE 2016; 8:13045-13058. [PMID: 27328315 DOI: 10.1039/c6nr02963a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Designing effective nanoscale blockers for membrane inserted pores formed by pore forming toxins, which are expressed by several virulent bacterial strains, on a target cell membrane is a challenging and active area of research. Here we demonstrate that PAMAM dendrimers can act as effective pH controlled gating devices once the pore has been formed. We have used fully atomistic molecular dynamics (MD) simulations to characterize the cytolysin A (ClyA) protein pores modified with fifth generation (G5) PAMAM dendrimers. Our results show that the PAMAM dendrimer, in either its protonated (P) or non-protonated (NP) states can spontaneously enter the protein lumen. Protonated dendrimers interact strongly with the negatively charged protein pore lumen. As a consequence, P dendrimers assume a more expanded configuration efficiently blocking the pore when compared with the more compact configuration adopted by the neutral NP dendrimers creating a greater void space for the passage of water and ions. To quantify the effective blockage of the protein pore, we have calculated the pore conductance as well as the residence times by applying a weak force on the ions/water. Ionic currents are reduced by 91% for the P dendrimers and 31% for the NP dendrimers. The preferential binding of Cl(-) counter ions to the P dendrimer creates a zone of high Cl(-) concentration in the vicinity of the internalized dendrimer and a high concentration of K(+) ions in the transmembrane region of the pore lumen. In addition to steric effects, this induced charge segregation for the P dendrimer effectively blocks ionic transport through the pore. Our investigation shows that the bio-compatible PAMAM dendrimers can potentially be used to develop therapeutic protocols based on the pH sensitive gating of pores formed by pore forming toxins to mitigate bacterial infections.
Collapse
Affiliation(s)
- Taraknath Mandal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | |
Collapse
|
26
|
Palecz B, Buczkowski A, Piekarski H, Kılınçarslan Ö. Thermodynamic Interaction between PAMAM G4-NH2, G4-OH, G3.5-COONa Dendrimers and Gemcitabine in Water Sotutions. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2016. [DOI: 10.21448/ijsm.240699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
De Luca S, Seal P, Ouyang D, Parekh HS, Kannam SK, Smith SC. Dynamical Interactions of 5-Fluorouracil Drug with Dendritic Peptide Vectors: The Impact of Dendrimer Generation, Charge, Counterions, and Structured Water. J Phys Chem B 2016; 120:5732-43. [PMID: 27267604 DOI: 10.1021/acs.jpcb.6b00533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular dynamics simulations are utilized to investigate the interactions between the skin cancer drug 5-fluorouracil (5FU) and peptide-based dendritic carrier systems. We find that these drug-carrier interactions do not conform to the traditional picture of long-time retention of the drug within a hydrophobic core of the dendrimer carrier. Rather, 5FU, which is moderately soluble in its own right, experiences weak, transient chattering interactions all over the dendrimer, mediated through multiple short-lived hydrogen bonding and close contact events. We find that charge on the periphery of the dendrimer actually has a negative effect on the frequency of drug-carrier interactions due to a counterion screening effect that has not previously been observed. However, charge is nevertheless an important feature since neutral dendrimers are shown to have a significant mutual attraction that can lead to clustering or agglomeration. This clustering is prevented due to charge repulsion for the titrated dendrimers, such that they remain independent in solution.
Collapse
Affiliation(s)
- Sergio De Luca
- Integrated Materials Design Centre (IMDC), School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Prasenjit Seal
- Integrated Materials Design Centre (IMDC), School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau , Macau, China
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | - Sean C Smith
- Integrated Materials Design Centre (IMDC), School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| |
Collapse
|
28
|
Torras J, Zanuy D, Aradilla D, Alemán C. Solvent effects on the properties of hyperbranched polythiophenes. Phys Chem Chem Phys 2016; 18:24610-9. [DOI: 10.1039/c6cp04812a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QM/MM-MD simulations of dendrimers using explicit solvent molecules capture the conformational flexibility and microfluctuations induced by different types of solvents.
Collapse
Affiliation(s)
- Juan Torras
- Departament d'Enginyeria Química
- EEI
- Universitat Politècnica de Catalunya
- 08700 Igualada
- Spain
| | - David Zanuy
- Departament d'Enginyeria Química
- E.T.S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - David Aradilla
- Departament d'Enginyeria Química
- E.T.S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química
- E.T.S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| |
Collapse
|