1
|
Fan W, Yu Z, Appadoo D, Liang K, Liang J. Enhancing Multi-Enzyme Cascade Activity in Metal-Organic Frameworks via Controlled Enzyme Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503059. [PMID: 40195929 DOI: 10.1002/smll.202503059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/31/2025] [Indexed: 04/09/2025]
Abstract
To position multi-enzymes in a core-shell structure, the conventional layer-by-layer approach is often used. However, this method is time-consuming and complex, requiring multiple steps and the isolation of intermediates at each stage. To address this challenge, a sequential strategy is introduced for the controlled encapsulation of multi-enzymes within metal-organic frameworks (MOFs), achieving a core-shell structure without the need for intermediate isolation. Synchrotron Terahertz-Far-Infrared (THz-Far-IR) spectroscopy is employed to monitor this encapsulation process. The results revealed that the first enzyme is co-precipitated within the MOFs, followed by biomineralization upon the addition of a second enzyme, achieving distinct enzyme positioning. This approach is applicable to both two-enzyme and three-enzyme cascade systems. The results demonstrate that multi-enzyme cascade activity is significantly enhanced compared to conventional one-pot and layer-by-layer approaches, owing to optimal spatial arrangement, increased surface area, and improved enzyme conformation. Furthermore, the encapsulated enzymes exhibit strong resistance to high temperatures, proteolysis, and organic solvents, along with excellent reusability, making this method highly promising for industrial biocatalytic applications.
Collapse
Affiliation(s)
- Wenqing Fan
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zefang Yu
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Kang Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jieying Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Xu Z, Zhou J. Unraveling the orientation of an enzyme adsorbed onto a metal-organic framework. Phys Chem Chem Phys 2025; 27:4603-4613. [PMID: 39380469 DOI: 10.1039/d4cp01649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Bio-conversion of lignocellulosic biomass to bioethanol fuel is a highly desirable yet challenging objective because of the low catalytic activity and high cost of β-glucosidase (BGL). Recently, ZIF-8, an emerging organic porous material, has been proposed as a promising candidate for enzyme immobilization to improve associated activity and stability. However, the underlying interaction mechanism of binding BGL on the ZIF-8 surface is yet to be clarified. Here, the adsorption of BGL onto ZIF-8 is explored for the first time by molecular dynamics simulations. The results show that BGL adsorbs on the ZIF-8 surface with a "back-on" orientation. The adsorption free energy analysis shows that the adsorption process is enthalpy driven. In addition, the electrostatic interaction between negatively charged residues and Zn2+ on the surface of ZIF-8 is found to play a decisive role in surface binding, which accounts for 98% of the total interaction energy. The secondary structure of BGL is not affected despite the strong adsorption, suggesting the good biocompatibility of ZIF-8. This study not only provides a reliable theoretical insight into understanding the interaction mechanism between BGL and ZIF-8, but also helps the rational design of ZIF-8-based materials for bio-related applications.
Collapse
Affiliation(s)
- Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
3
|
Hsu YP, Li NS, Pang HH, Pan YC, Tsai HP, Chen HC, Chen YT, Weng CH, Kuo SW, Yang HW. Lab-on-the-Needles: A Microneedle Patch-Based Mobile Unit for Highly Sensitive Ex Vivo and In Vivo Detection of Protein Biomarkers. ACS NANO 2025; 19:3249-3264. [PMID: 39763125 PMCID: PMC11781025 DOI: 10.1021/acsnano.4c11238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025]
Abstract
Detection of biomarkers associated with physiological conditions provides critical insights into healthcare and disease management. However, challenges in sampling and analysis complicate the detection and quantification of protein biomarkers within the epidermal layer of the skin and in viscous liquid biopsy samples. Here, we present the "Lab-on-the-Needles" concept, utilizing a microneedle patch-based sensing box (MNP-based SenBox) for mobile healthcare applications. This system facilitates the rapid capture of protein biomarkers directly from the in situ epidermal layer of skin or liquid biopsies, followed by on-needle analysis for immediate assessment. The integration of horseradish peroxidase-incorporated zeolitic imidazolate framework-8 (HRP@ZIF-8) as a sensitive and stable signal probe, the detection limit for anti-SARS-CoV-2 NP IgA antibodies and various SARS-CoV-2 S1P mutant strains improves by at least 1,000-fold compared to FDA-approved commercial saliva lateral flow immune rapid tests. Additionally, the MNP-based SenBox demonstrated minimally invasive monitoring and rapid quantification of inflammatory cytokine levels (TNF-α and IL-1β) in rats within 30 min using a portable ColorReader. This study highlights the potential of the MNP-based SenBox for the minimally invasive collection and analysis of protein biomarkers directly from in situ epidermal layers of skin or liquid biopsies that might facilitate mobile healthcare diagnostics and longitudinal monitoring.
Collapse
Affiliation(s)
- Ying-Pei Hsu
- Department
of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Nan-Si Li
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Hao-Han Pang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Yu-Chi Pan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Pei Tsai
- Division
of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsiao-Chien Chen
- Center for
Reliability Science and Technologies, Chang
Gung University, Taoyuan 33302, Taiwan
- Kidney
Research
Center, Department of Nephrology, Chang
Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Ying-Tzu Chen
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Chen-Hsun Weng
- Medical Device
Innovation Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan
| | - Shiao-Wei Kuo
- Department
of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Wei Yang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Medical Device
Innovation Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan
| |
Collapse
|
4
|
Jash O, Srivastava A, Balasubramanian S. HP35 Protein in the Mesopore of MIL-101(Cr) MOF: A Model to Study Cotranslocational Unfolding. ACS OMEGA 2024; 9:31185-31194. [PMID: 39035967 PMCID: PMC11256354 DOI: 10.1021/acsomega.4c05452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
The immobilization of enzymes in metal-organic framework (MOF) cages is important in biotechnology. In this context, the mechanism of translocation of proteins through the cavities of the MOF and the roles played by confinement and MOF chemistry in giving rise to stable protein intermediates that are otherwise transiently populated in the physiological environment are important questions to be addressed. These unexplored aspects are examined with villin headpiece (HP35) as a model protein confined within a mesopore of MIL-101(Cr) using molecular dynamics simulations. At equilibrium, the protein is located farther from the center of the cavity and closer to the MOF surface. Molecular interactions with the MOF partially unfold helix-1 at its N-terminus. Umbrella sampling simulations inform the range of conformations that HP35 undertakes during translocation from one cavity to another and associated changes in free energy. Relative to its equilibrium state within the cavity, the free energy barrier for the unfolded protein at the cage window is estimated to be 16 kcal/mol. This study of MOF-based protein conformation can also be a general approach to observing intermediates in folding-unfolding pathways.
Collapse
Affiliation(s)
- Oishika Jash
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Anand Srivastava
- Molecular
Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Sundaram Balasubramanian
- Chemistry
and Physics of Materials Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|
5
|
Shamloo A, Naseri T, Rahbary A, Bakhtiari MA, Ebrahimi S, Mirafzal I. In-silico study of drug delivery to atherosclerosis in the human carotid artery using metal-organic frameworks based on adhesion of nanocarriers. Sci Rep 2023; 13:21481. [PMID: 38057414 PMCID: PMC10700345 DOI: 10.1038/s41598-023-48803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
This study investigates nanocarriers (NCs) for drug delivery targeting carotid artery atherosclerosis. This targeted drug delivery mechanism is based on ligand-receptor bindings facilitated by coating NCs with P-selectin aptamers, which exhibit high affinities for P-selectin plaque receptors. Recognizing the significant advantages of metal-organic frameworks (MOFs), such as their high drug-loading percentages, we chose them as nanocarriers for this research. Our evaluation considers critical factors: NC surface density (the number of attached nanocarriers per unit of plaque area), toxicity (percentage of NCs missing the target), and efficient drug transfer to plaque tissue. Employing molecular dynamics (MD) for drug loading calculations via van der Waals interactions and computational fluid dynamics (CFD) for toxicity, surface density, and drug transfer assessments, we achieve a comprehensive analysis. A cardiac cycle-based metric guides optimal MOF release conditions, establishing an ideal dosage of 600 NCs per cycle. MOF-801 exhibits outstanding drug delivery performance, particularly in plaque targeting. While a magnetic field enhances NC adhesion, its impact on drug transfer is limited, emphasizing the need for further optimization in magnetic targeting for NC-based therapies. This study provides crucial insights into NC drug delivery performance in carotid artery atherosclerosis, advancing the field of targeted drug delivery for atherosclerosis treatment.
Collapse
Affiliation(s)
- Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Tahoora Naseri
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Ali Rahbary
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Mohammad Ali Bakhtiari
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Iman Mirafzal
- School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Liu H, Zhou Y, Guo J, Feng R, Hu G, Pang J, Chen Y, Terasaki O, Bu XH. Reticular Synthesis of Highly Crystalline Three-Dimensional Mesoporous Covalent-Organic Frameworks for Lipase Inclusion. J Am Chem Soc 2023; 145:23227-23237. [PMID: 37843005 DOI: 10.1021/jacs.3c07904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The synthesis and application of three-dimensional (3D) mesoporous covalent-organic frameworks (COFs) are still to be developed. Herein, two mesoporous 3D COFs with an stp topology were synthesized in a highly crystalline form with aniline as the modulator. The chemical composition of these COFs was confirmed by Fourier transform infrared (FT-IR) and 13C cross-polarization magic angle spinning nuclear magnetic resonance (NMR) spectroscopies. These 3D mesoporous COFs were highly crystalline and exhibited permanent porosity and good chemical stability in both aqueous and organic media. The space group and unit cell parameters of COF HFPTP-TAE were verified by powder X-ray diffraction (PXRD), small-angle X-ray scattering, and three-dimensional electron diffraction (3D ED). The appropriate pore size of the COF HFPTP-TAE facilitated the inclusion of enzyme lipase PS with a loading amount of 0.28 g g-1. The lipase⊂HFPTP-TAE (⊂ refers to "include in") composite exhibited high catalytic activity, good thermal stability, and a wide range of solvent tolerance. Specifically, it could catalyze the alcoholysis of aspirin methyl ester (AME) with high catalytic efficiency. Oriented one-dimensional (1D) channel mesopores in HFPTP-TAE accommodated lipase, meanwhile preventing them from aggregation, while windows on the wall of the 1D channel favored molecular diffusion; thus, this COF-enzyme design outperformed its amorphous isomer, two-dimensional (2D) mesoporous COF, 3D mesoporous COF with limited crystallinity, and mesoporous silica as an enzyme host.
Collapse
Affiliation(s)
- Haoyu Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jinbiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Rui Feng
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gaoli Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiandong Pang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Osamu Terasaki
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300350, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Liang J, Bin Zulkifli MY, Yong J, Du Z, Ao Z, Rawal A, Scott JA, Harmer JR, Wang J, Liang K. Locking the Ultrasound-Induced Active Conformation of Metalloenzymes in Metal-Organic Frameworks. J Am Chem Soc 2022; 144:17865-17875. [PMID: 36075889 DOI: 10.1021/jacs.2c06471] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancing the enzymatic activity inside metal-organic frameworks (MOFs) is a critical challenge in chemical technology and bio-technology, which, if addressed, will broaden their scope in energy, food, environmental, and pharmaceutical industries. Here, we report a simple yet versatile and effective strategy to optimize biocatalytic activity by using MOFs to rapidly "lock" the ultrasound (US)-activated but more fragile conformation of metalloenzymes. The results demonstrate that up to 5.3-fold and 9.3-fold biocatalytic activity enhancement of the free and MOF-immobilized enzymes could be achieved compared to those without US pretreatment, respectively. Using horseradish peroxidase as a model, molecular dynamics simulation demonstrates that the improved activity of the enzyme is driven by an opened gate conformation of the heme active site, which allows more efficient substrate binding to the enzyme. The intact heme active site is confirmed by solid-state UV-vis and electron paramagnetic resonance, while the US-induced enzyme conformation change is confirmed by circular dichroism spectroscopy and Fourier-transform infrared spectroscopy. In addition, the improved activity of the biocomposites does not compromise their stability upon heating or exposure to organic solvent and a digestion cocktail. This rapid locking and immobilization strategy of the US-induced active enzyme conformation in MOFs gives rise to new possibilities for the exploitation of highly efficient biocatalysts for diverse applications.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Muhammad Yazid Bin Zulkifli
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Zeping Du
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, New South Wale Australia
| | - Jason A Scott
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Queensland Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla 92093, California, United States
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, New South Wale, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wale, Australia
| |
Collapse
|
8
|
Feng Y, Xu Y, Liu S, Wu D, Su Z, Chen G, Liu J, Li G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214414] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Marsh C, Shearer GC, Knight BT, Paul-Taylor J, Burrows AD. Supramolecular aspects of biomolecule interactions in metal–organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Tashiro S, Nakata K, Hayashi R, Shionoya M. Multipoint Hydrogen Bonding-Based Molecular Recognition of Amino Acids and Peptide Derivatives in a Porous Metal-Macrocycle Framework: Residue-Specificity, Diastereoselectivity, and Conformational Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005803. [PMID: 33599118 DOI: 10.1002/smll.202005803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Porous crystals have great potential to exert space-specific functions such as multipoint molecular recognition. In order to rationally enhance the porous function, it is necessary to precisely control molecular recognition event in the pores. Hydrogen bonding is an effective tool for controlling molecular recognition. However, multiple hydrogen bonds, which are essentially the origin of high complementarity and specificity, remain difficult to innovate in porous crystals in an intelligent way. This paper demonstrates molecular recognition of amino acid and peptide derivatives by multipoint hydrogen bonding in a porous metal-macrocycle framework revealed by single-crystal X-ray diffraction analysis. l-Serine residues are site-selectively and residue-specifically adsorbed on the pore surface via multiple hydrogen bonds. A serine derivative is diastereoselectively recognized on the (P)- or (M)-side of the enantiomeric pore surface. Moreover, the conformation of the peptide is highly regulated, incorporating a poly-l-proline type I helix-like structure into the pore. These findings will bring deep scientific knowledge to the design of new porous crystals and functions.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kosuke Nakata
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryunosuke Hayashi
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
11
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
12
|
Zhao D, Wang Y, Su Q, Li L, Zhou J. Lysozyme Adsorption on Porous Organic Cages: A Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12299-12308. [PMID: 32988201 DOI: 10.1021/acs.langmuir.0c02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, porous organic cages (POCs) have emerged as a novel porous material with many merits and are widely utilized in many application fields. In this work, for the first time, molecular dynamics simulations were performed to investigate the mechanism of lysozyme adsorption onto the CC3 crystal, a kind of widely studied POC material. The simulation results show that lysozyme adsorbs onto the surface of CC3 with "top end-on," "back-on," or "side-on" orientations. It is found that the van der Waals interaction is the primary contribution to the binding; the conformation of the lysozyme is well preserved during the adsorption process. This provides some evidence for its biocompatibility and feasibility in biorelated applications. Arginine plays an important role in mediating the adsorption through nonpolar aliphatic chains. More importantly, the distribution and structure of the water layer on the POC surface has a significant impact on adsorption. This study provides insights into the development of POC materials with defined morphologies for the adsorption of biomolecules and may help the rational design of biorelated systems.
Collapse
Affiliation(s)
- Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuqing Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Qianwen Su
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Tuan Kob TNA, Ismail MF, Abdul Rahman MB, Cordova KE, Mohammad Latif MA. Unraveling the Structural Dynamics of an Enzyme Encapsulated within a Metal–Organic Framework. J Phys Chem B 2020; 124:3678-3685. [DOI: 10.1021/acs.jpcb.0c02145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. N. A. Tuan Kob
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M. F. Ismail
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M. B. Abdul Rahman
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability (FORMS), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kyle E. Cordova
- Department of Chemistry and Berkeley Global Science Institute, University of California—Berkeley, Berkeley, California 94720, United States
- Materials Discovery Research Unit, Reticular Foundry, Royal Scientific Society, Amman 11941, Jordan
| | - M. A. Mohammad Latif
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability (FORMS), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Duan W, Zhao Z, An H, Zhang Z, Cheng P, Chen Y, Huang H. State-of-the-Art and Prospects of Biomolecules: Incorporation in Functional Metal–Organic Frameworks. Top Curr Chem (Cham) 2019; 377:34. [DOI: 10.1007/s41061-019-0258-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
|
15
|
Drout RJ, Robison L, Farha OK. Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Cui J, Ren S, Sun B, Jia S. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Zhang H, Jiang Y, Cui Z, Yin C. Force Field Benchmark of Amino Acids. 2. Partition Coefficients between Water and Organic Solvents. J Chem Inf Model 2018; 58:1669-1681. [DOI: 10.1021/acs.jcim.8b00493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Ziheng Cui
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Chunhua Yin
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
18
|
Han L, Guo T, Guo Z, Wang C, Zhang W, Shakya S, Ding H, Li H, Xu X, Ren Y, Zhang J. Molecular Mechanism of Loading Sulfur Hexafluoride in γ-Cyclodextrin Metal–Organic Framework. J Phys Chem B 2018; 122:5225-5233. [DOI: 10.1021/acs.jpcb.8b01420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liping Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Guo
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Guo
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shailendra Shakya
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanyu Ding
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haiyan Li
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yujie Ren
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jiwen Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
19
|
Zhang H, Yin C, Jiang Y, van der Spoel D. Force Field Benchmark of Amino Acids: I. Hydration and Diffusion in Different Water Models. J Chem Inf Model 2018; 58:1037-1052. [DOI: 10.1021/acs.jcim.8b00026] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunhua Yin
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Jiang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, Beijing 100029, China
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| |
Collapse
|
20
|
Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 2018; 9:1293. [PMID: 29615605 PMCID: PMC5882967 DOI: 10.1038/s41467-018-03650-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023] Open
Abstract
Effective transfection of genetic molecules such as DNA usually relies on vectors that can reversibly uptake and release these molecules, and protect them from digestion by nuclease. Non-viral vectors meeting these requirements are rare due to the lack of specific interactions with DNA. Here, we design a series of four isoreticular metal-organic frameworks (Ni-IRMOF-74-II to -V) with progressively tuned pore size from 2.2 to 4.2 nm to precisely include single-stranded DNA (ssDNA, 11–53 nt), and to achieve reversible interaction between MOFs and ssDNA. The entire nucleic acid chain is completely confined inside the pores providing excellent protection, and the geometric distribution of the confined ssDNA is visualized by X-ray diffraction. Two MOFs in this series exhibit excellent transfection efficiency in mammalian immune cells, 92% in the primary mouse immune cells (CD4+ T cell) and 30% in human immune cells (THP-1 cell), unrivaled by the commercialized agents (Lipo and Neofect). Non-viral vectors are important for transfection but can be limited in the uptake, protection and release of ssDNA. Here, the authors report on the design of metal-organic-framework vectors with precisely controlled pore geometry and demonstrate the vector in the transfection of immune cells.
Collapse
|
21
|
Liu X, Qi W, Wang Y, Su R, He Z. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks. NANOSCALE 2017; 9:17561-17570. [PMID: 29112218 DOI: 10.1039/c7nr06019j] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal-organic frameworks (MOFs) have drawn extensive research interest as candidates for enzyme immobilization owing to their tunable porosity, high surface area, and excellent chemical/thermal stability. Herein, we report a facile and universal strategy for enzyme immobilization using highly stable hierarchically porous metal-organic frameworks (HP-MOFs). The HP-MOFs were stable over a wide pH range (pH = 2-11 for HP-DUT-5) and met the catalysis conditions of most enzymes. The as-prepared hierarchical micro/mesoporous MOFs with mesoporous defects showed a superior adsorption capacity towards enzymes. The maximum adsorption capacity of HP-DUT-5 for glucose oxidase (GOx) and uricase was 208 mg g-1 and 225 mg g-1, respectively. Furthermore, we constructed two multi-enzyme biosensors for glucose and uric acid (UA) by immobilizing GOx and uricase with horseradish peroxidase (HRP) on HP-DUT-5, respectively. These sensors were efficiently applied in the colorimetric detection of glucose and UA and showed good sensitivity, selectivity, and recyclability.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China and Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
22
|
Zhang H, Jiang Y, Yan H, Cui Z, Yin C. Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration. J Chem Inf Model 2017; 57:2763-2775. [DOI: 10.1021/acs.jcim.7b00485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haiyang Zhang
- Department
of Biological Science and Engineering, School of Chemistry and Biological
Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Yang Jiang
- Beijing
Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Hai Yan
- Department
of Biological Science and Engineering, School of Chemistry and Biological
Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| | - Ziheng Cui
- Beijing
Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Box 53, 100029 Beijing, China
| | - Chunhua Yin
- Department
of Biological Science and Engineering, School of Chemistry and Biological
Engineering, University of Science and Technology Beijing, 100083 Beijing, China
| |
Collapse
|
23
|
Yahyaei M, Mehrnejad F, Naderi-manesh H, Rezayan AH. Follicle-stimulating hormone encapsulation in the cholesterol-modified chitosan nanoparticles via molecular dynamics simulations and binding free energy calculations. Eur J Pharm Sci 2017; 107:126-137. [PMID: 28693957 DOI: 10.1016/j.ejps.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/02/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
|
24
|
Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P. Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications. Acc Chem Res 2017; 50:1423-1432. [PMID: 28489346 DOI: 10.1021/acs.accounts.7b00090] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many living organisms are capable of producing inorganic materials of precisely controlled structure and morphology. This ubiquitous process is termed biomineralization and is observed in nature from the macroscale (e.g., formation of exoskeletons) down to the nanoscale (e.g., mineral storage and transportation in proteins). Extensive research efforts have pursued replicating this chemistry with the overarching aims of synthesizing new materials of unprecedented physical properties and understanding the complex mechanisms that occur at the biological-inorganic interface. Recently, we demonstrated that a class of porous materials termed metal-organic frameworks (MOFs) can spontaneously form on protein-based hydrogels via a process analogous to natural matrix-mediated biomineralization. Subsequently, this strategy was extended to functional biomacromolecules, including proteins and DNA, which have been shown to seed and accelerate crystallization of MOFs. Alternative strategies exploit co-precipitating agents such as polymers to induce MOF particle formation thus facilitating protein encapsulation within the porous crystals. In these examples the rigid molecular architecture of the MOF was found to form a protective coating around the biomacromolecule offering improved stability to external environments that would normally lead to its degradation. In this way, the MOF shell mimics the protective function of a biomineralized exoskeleton. Other methodologies have also been explored to encapsulate enzymes within MOF structures, including the fabrication of polycrystalline hollow MOF microcapsules that preserve the original enzyme functionality over several batch reaction cycles. The potential to design MOFs of varied pore size and chemical functionality has underpinned studies describing the postsynthesis infiltration of enzymes into MOF pore networks and bioconjugation strategies for the decoration of the MOF outer surface, respectively. These methods and configurations allow for customized biocomposites. MOF biocomposites have been extended from simple proteins to complex biological systems including viruses, living yeast cells, and bacteria. Indeed, a noteworthy result was that cells encapsulated within a crystalline MOF shell remain viable after exposure to a medium containing lytic enzymes. Furthermore, the cells can adsorb nutrients (glucose) through the MOF shell but cease reproducing until the MOF casing is removed, at which point normal cellular activity is fully restored. The field of MOF biocomposites is expansive and rapidly developing toward different applied research fields including protection and delivery of biopharmaceuticals, biosensing, biocatalysis, biobanking, and cell and virus manipulation. This Account describes the current progress of MOFs toward biotechnological applications highlighting the different strategies for the preparation of biocomposites, the developmental milestones, the challenges, and the potential impact of MOFs to the field.
Collapse
Affiliation(s)
- Christian Doonan
- School
of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Raffaele Riccò
- Institute
of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Kang Liang
- CSIRO Private Bag 10, Clayton South, Victoria 3169 Australia
| | - Darren Bradshaw
- School
of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Paolo Falcaro
- School
of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute
of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| |
Collapse
|
25
|
Zaboli M, Raissi H. DFT and MD study of adsorption sensitivity of aluminium phosphide nanotube towards some air pollutant gas molecules. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1295453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Zaboli
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
26
|
Lian X, Fang Y, Joseph E, Wang Q, Li J, Banerjee S, Lollar C, Wang X, Zhou HC. Enzyme–MOF (metal–organic framework) composites. Chem Soc Rev 2017; 46:3386-3401. [DOI: 10.1039/c7cs00058h] [Citation(s) in RCA: 791] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the syntheses and applications of metal–organic framework (MOF)–enzyme composites with specific emphasis on the merits MOFs bring to the immobilized enzymes.
Collapse
Affiliation(s)
- Xizhen Lian
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Yu Fang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Qi Wang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Jialuo Li
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Sayan Banerjee
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Xuan Wang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Hong-Cai Zhou
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
27
|
Cai Q, Zhang L, Zhao P, Lun X, Li W, Guo Y, Hou X. A joint experimental-computational investigation: Metal organic framework as a vortex assisted dispersive micro-solid-phase extraction sorbent coupled with UPLC-MS/MS for the simultaneous determination of amphenicols and their metabolite in aquaculture water. Microchem J 2017. [DOI: 10.1016/j.microc.2016.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Chen S, Wen L, Svec F, Tan T, Lv Y. Magnetic metal–organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis. RSC Adv 2017. [DOI: 10.1039/c7ra02291c] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Magnetic metal–organic frameworks have been prepared as scaffolds for spatial co-location and positional assembly of multi-enzymes enabling enhanced cascade biocatalysis.
Collapse
Affiliation(s)
- Sijia Chen
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liyin Wen
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|