1
|
Sternicki LM, Poulsen SA. Native Mass Spectrometry: Insights and Opportunities for Targeted Protein Degradation. Anal Chem 2023; 95:18655-18666. [PMID: 38090751 DOI: 10.1021/acs.analchem.3c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Native mass spectrometry (nMS) is one of the most powerful biophysical methods for the direct observation of noncovalent protein interactions with both small molecules and other proteins. With the advent of targeted protein degradation (TPD), nMS is now emerging as a compelling approach to characterize the multiple fundamental interactions that underpin the TPD mechanism. Specifically, nMS enables the simultaneous observation of the multiple binary and ternary complexes [i.e., all combinations of E3 ligase, target protein of interest, and small molecule proximity-inducing reagents (such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues)], formed as part of the TPD equilibrium; this is not possible with any other biophysical method. In this paper we overview the proof-of-concept applications of nMS within the field of TPD and demonstrate how it is providing researchers with critical insight into the systems under study. We also provide an outlook on the scope and future opportunities offered by nMS as a core and agnostic biophysical tool for advancing research developments in TPD.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
2
|
Jia M, Song Y, Du C, Wysocki VH. Oxidized and Reduced Dimeric Protein Complexes Illustrate Contrasting CID and SID Charge Partitioning. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2166-2175. [PMID: 37590530 PMCID: PMC11716700 DOI: 10.1021/jasms.3c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Charge partitioning during the dissociation of protein complexes in the gas phase is influenced by many factors, such as interfacial interactions, protein flexibility, protein conformation, and dissociation methods. In the present work, two cysteine-containing homodimer proteins, β-lactoglobulin and α-lactalbumin, with the disulfide bonds intact and reduced, were used to gain insight into the charge partitioning behaviors of collision-induced dissociation (CID) and surface-induced dissociation (SID) processes. For these proteins, we find that restructuring dominates with CID and dissociation with symmetric charge partitioning dominates with SID, regardless of whether intramolecular disulfide bonds are oxidized or reduced. CID of the charge-reduced dimeric protein complex leads to a precursor with a slightly smaller collision cross section (CCS), greater stability, and more symmetrically distributed charges than the significantly expanded form produced by CID of the higher charged dimer. Collision-induced unfolding plots demonstrate that the unfolding-restructuring of the protein complexes initiates the charge migration of higher charge-state precursors. Overall, gas collisions reveal the charge-dependent restructuring/unfolding properties of the protein precursor, while surface collisions lead predominantly to more charge-symmetric monomer separation. CID's multiple low-energy collisions sequentially reorganize intra- and intermolecular bonds, while SID's large-step energy jump cleaves intermolecular interfacial bonds in preference to reorganizing intramolecular bonds. The activated population of precursors that have taken on energy without dissociating (populated in CID over a wide range of collision energies, populated in SID for only a narrow distribution of collision energies near the onset of dissociation) is expected to be restructured, regardless of the activation method.
Collapse
Affiliation(s)
- Mengxuan Jia
- The Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yang Song
- The Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chen Du
- The Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- The Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Du C, Cleary SP, Kostelic MM, Jones BJ, Kafader JO, Wysocki VH. Combining Surface-Induced Dissociation and Charge Detection Mass Spectrometry to Reveal the Native Topology of Heterogeneous Protein Complexes. Anal Chem 2023; 95:13889-13896. [PMID: 37672632 PMCID: PMC10874503 DOI: 10.1021/acs.analchem.3c02185] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Charge detection mass spectrometry (CDMS) enables the direct mass measurement of heterogeneous samples on the megadalton scale, as the charge state for a single ion is determined simultaneously with the mass-to-charge ratio (m/z). Surface-induced dissociation (SID) is an effective activation method to dissociate non-intertwined, non-covalent protein complexes without extensive gas-phase restructuring, producing various subcomplexes reflective of the native protein topology. Here, we demonstrate that using CDMS after SID on an Orbitrap platform offers subunit connectivity, topology, proteoform information, and relative interfacial strengths of the intact macromolecular assemblies. SID dissects the capsids (∼3.7 MDa) of adeno-associated viruses (AAVs) into trimer-containing fragments (3mer, 6mer, 9mer, 15mer, etc.) that can be detected by the individual ion mass spectrometry (I2MS) approach on Orbitrap instruments. SID coupled to CDMS provides unique structural insights into heterogeneous assemblies that are not readily obtained by traditional MS measurements.
Collapse
Affiliation(s)
- Chen Du
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sean P Cleary
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marius M Kostelic
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin J Jones
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jared O Kafader
- Departments of Chemistry, Molecular Biosciences, The Chemistry of Life Processes Institute, The Proteomics Center of Excellence at Northwestern University, Evanston, Illinois 60208, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Resource for Native MS Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Moore CC, Staroverov VN, Konermann L. Using Density Functional Theory for Testing the Robustness of Mobile-Proton Molecular Dynamics Simulations on Electrosprayed Ions: Structural Implications for Gaseous Proteins. J Phys Chem B 2023; 127:4061-4071. [PMID: 37116098 DOI: 10.1021/acs.jpcb.3c01581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Current experiments only provide low-resolution information on gaseous protein ions generated by electrospray ionization (ESI). Molecular dynamics (MD) simulations can yield complementary insights. Unfortunately, conventional MD does not capture the mobile nature of protons in gaseous proteins. Mobile-proton MD (MPMD) overcomes this limitation. Earlier MPMD data at 300 K indicated that protein ions generated by "native" ESI retain solution-like structures with a hydrophobic core and zwitterionic exterior [Bakhtiari, M.; Konermann, L. J. Phys. Chem. B 2019, 123, 1784-1796]. MPMD redistributes protons using electrostatic and proton affinity calculations. The robustness of this approach has never been scrutinized. Here, we close this gap by benchmarking MPMD against density functional theory (DFT) at the B3LYP/6-31G* level, which is well suited for predicting proton affinities. The computational cost of DFT necessitated the use of small peptides. The MPMD energetic ranking of proton configurations was found to be consistent with DFT single-point energies, implying that MPMD can reliably identify favorable protonation sites. Peptide MPMD runs converged to DFT-optimized structures only when applying 300-500 K temperature cycling, which was necessary to prevent trapping in local minima. Temperature cycling MPMD was then applied to gaseous protein ions. Native ubiquitin converted to slightly expanded structures with a zwitterionic core and a nonpolar exterior. Our data suggest that such inside-out protein structures are intrinsically preferred in the gas phase, and that they form in ESI experiments after moderate collisional excitation. This is in contrast to native ESI (with minimal collisional excitation, simulated by MPMD at 300 K), where kinetic trapping promotes the survival of solution-like structures. In summary, this work validates the MPMD approach for simulations on gaseous peptides and proteins.
Collapse
Affiliation(s)
- Conrad C Moore
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Viktor N Staroverov
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Fu D, Habtegabir SG, Wang H, Feng S, Han Y. Understanding of protomers/deprotomers by combining mass spectrometry and computation. Anal Bioanal Chem 2023:10.1007/s00216-023-04574-1. [PMID: 36737499 DOI: 10.1007/s00216-023-04574-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Multifunctional compounds may form different prototropic isomers under different conditions, which are known as protomers/deprotomers. In biological systems, these protomer/deprotomer isomers affect the interaction modes and conformational landscape between compounds and enzymes and thus present different biological activities. Study on protomers/deprotomers is essentially the study on the acidity/basicity of each intramolecular functional group and its effect on molecular structure. In recent years, the combination of mass spectrometry (MS) and computational chemistry has been proven to be a powerful and effective means to study prototropic isomers. MS-based technologies are developed to discriminate and characterize protomers/deprotomers to provide structural information and monitor transformations, showing great superiority than other experimental methods. Computational chemistry is used to predict the thermodynamic stability of protomers/deprotomers, provide the simulated MS/MS spectra, infrared spectra, and calculate collision cross-section values. By comparing the theoretical data with the corresponding experimental results, the researchers can not only determine the protomer/deprotomer structure, but also investigate the structure-activity relationship in a given system. This review covers various MS methods and theoretical calculations and their devotion to isomer discrimination, structure identification, conformational transformation, and phase transition investigation of protomers/deprotomers.
Collapse
Affiliation(s)
- Dali Fu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Sara Girmay Habtegabir
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Haodong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Shijie Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China
| | - Yehua Han
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, People's Republic of China.
| |
Collapse
|
6
|
Wang B, Tieleman DP. Release of nanodiscs from charged nano-droplets in the electrospray ionization revealed by molecular dynamics simulations. Commun Chem 2023; 6:21. [PMID: 36717705 PMCID: PMC9886951 DOI: 10.1038/s42004-023-00818-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Electrospray ionization (ESI) is essential for application of mass spectrometry in biological systems, as it prevents the analyte being split into fragments. However, due to lack of a clear understanding of the mechanism of ESI, the interpretation of mass spectra is often ambiguous. This is a particular challenge for complex biological systems. Here, we focus on systems that include nanodiscs as membrane environment, which are essential for membrane proteins. We performed microsecond atomistic molecular dynamics simulations to study the release of nanodiscs from highly charged nano-droplets into the gas phase, the late stage of ESI. We observed two distinct major scenarios, highlighting the diversity of morphologies of gaseous product ions. Our simulations are in reasonable agreement with experimental results. Our work provides a detailed atomistic view of the ESI process of a heterogeneous system (lipid nanodisc), which may give insights into the interpretation of mass spectra of all lipid-protein systems.
Collapse
Affiliation(s)
- Beibei Wang
- grid.20513.350000 0004 1789 9964Centre for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 People’s Republic of China
| | - D. Peter Tieleman
- grid.22072.350000 0004 1936 7697Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, T2N 1N4 Canada
| |
Collapse
|
7
|
Nash S, Vachet RW. Gas-Phase Unfolding of Protein Complexes Distinguishes Conformational Isomers. J Am Chem Soc 2022; 144:22128-22139. [PMID: 36414315 DOI: 10.1021/jacs.2c09573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteins can adopt different conformational states that are important for their biological function and, in some cases, can be responsible for their dysfunction. The essential roles that proteins play in biological systems make distinguishing the structural differences between these conformational states both fundamentally and practically important. Here, we demonstrate that collision-induced unfolding (CIU), in combination with ion mobility-mass spectrometry (IM-MS) measurements, distinguish subtly different conformational states for protein complexes. Using the open and closed states of the β-lactoglobulin (βLG) dimer as a model, we show that these two conformational isomers unfold during collisional activation to generate distinct states that are readily separated by IM-MS. Extensive molecular modeling of the CIU process reproduces the distinct unfolding intermediates and identifies the molecular details that explain why the two conformational states unfold in distinct ways. Strikingly, the open conformational state forms new electrostatic interactions upon collisional heating, while the closed state does not. These newly formed electrostatic interactions involve residues on the loop differentially positioned in the two βLG conformational isomers, highlighting that gas-phase unfolding pathways reflect aspects of solution structure. This combination of experiment and theory provides a path forward for distinguishing subtly different conformational isomers for protein complexes via gas-phase unfolding experiments. Our results also have implications for understanding how protein complexes dissociate in the gas phase, indicating that current models need to be refined to explain protein complex dissociation.
Collapse
Affiliation(s)
- Stacey Nash
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 United States
| |
Collapse
|
8
|
Cao Y, Wu N, Li HD, Xue JW, Wang R, Yang T, Wang JH. Efficient Pathogen Capture and Sensing Promoted by Dynamic Deformable Nanointerfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203962. [PMID: 36328708 DOI: 10.1002/smll.202203962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The M13 bacteriophage (M13 phage) has emerged as an attractive bionanomaterial due to its chemistry/gene modifiable feature and unique structures. Herein, a dynamic deformable nanointerface is fabricated taking advantage of the unique feature of the M13 phage for ultrasensitive detection of pathogens. PIII proteins at the tip of the M13 phage are genetically modified to display 6His peptide for site-specific anchoring onto Ni-NTA microbeads, whereas pVIII proteins along the side of the M13 phage are orderly arranged with thousands of aptamers and their complementary strands (c-apt). The flexible M13 nanofibers with rich recognition sites act as octopus tentacles, resulting in a 19-fold improvement in the capture affinity toward the target. The competitive binding of the target pathogen releases c-apts and initiates rolling circle amplification (RCA). The sway motion of M13 nanofibers accelerates the diffusion of c-apts, thus promoting RCA efficiency. Benefiting from the strengthened capture ability toward the target and the accelerated RCA process, three-orders of magnitude improvement in the sensitivity is achieved, with a detection limit of 8 cfu mL-1 for Staphylococcus aureus. The promoted capture ability and assay performance highlights the essential role of the deformable feature of the engineered interface. This may provide inspiration for the construction of more efficient reaction interfaces.
Collapse
Affiliation(s)
- Ying Cao
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Na Wu
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Hui-Da Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jing-Wen Xue
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Rui Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
9
|
Eldrid C, Cragnolini T, Ben-Younis A, Zou J, Raleigh DP, Thalassinos K. Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations. Anal Chem 2022; 94:16113-16121. [PMID: 36350278 PMCID: PMC9685592 DOI: 10.1021/acs.analchem.2c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.
Collapse
Affiliation(s)
- Charles Eldrid
- School
of Biological Sciences, University of Southampton, SouthamptonSO16 1BJ, U.K.
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
| | - Tristan Cragnolini
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, LondonWC1E 7HX, U.K.
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
| | - Junjie Zou
- Department
of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Daniel P. Raleigh
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
- Department
of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, LondonWC1E 7HX, U.K.
| |
Collapse
|
10
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
12
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
14
|
Rolland AD, Biberic LS, Prell JS. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:369-381. [PMID: 35073092 PMCID: PMC11404549 DOI: 10.1021/jasms.1c00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: β-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lejla S Biberic
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
15
|
Filho MS, Massi L, Millet A, Michel D, Moussa W, Ronco C, Benhida R. Energy-resolved mass spectrometry to investigate nucleobase triplexes – a study applied to triplex-forming artificial nucleobases. NEW J CHEM 2022. [DOI: 10.1039/d2nj00665k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper discloses the use of an energy-resolved mass spectrometric-based approach to assess the stabilities of base triplexes encompassing artificial nucleobases by using variable energy collision-induced dissociation.
Collapse
Affiliation(s)
- Mauro Safir Filho
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Lionel Massi
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Antoine Millet
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Dylan Michel
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Wafa Moussa
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Cyril Ronco
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
- Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco
| |
Collapse
|
16
|
Harvey SR, Ben-Nissan G, Sharon M, Wysocki VH. Surface-Induced Dissociation for Protein Complex Characterization. Methods Mol Biol 2022; 2500:211-237. [PMID: 35657596 PMCID: PMC11892799 DOI: 10.1007/978-1-0716-2325-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID. Substructural information obtained using this method is consistent with the solved complex structure, when a structure exists. This provides confidence that the method can also be used to obtain substructural information for unknowns, providing insight into subunit connectivity and arrangements. High-energy SID can also provide information on proteoforms present. Previously SID has been limited to a few in-house modified instruments and here we focus on SID implemented within an in-house-modified Q Exactive UHMR. However, SID is currently commercially available within the Waters Select Series Cyclic IMS instrument. Projects are underway that involve the NIH-funded native MS resource (nativems.osu.edu), instrument vendors, and third-party vendors, with the hope of bringing the technology to more platforms and labs in the near future. Currently, nMS resource staff can perform SID experiments for interested research groups.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. Anal Bioanal Chem 2021; 413:7205-7214. [PMID: 34389878 PMCID: PMC8362873 DOI: 10.1007/s00216-021-03601-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community—the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native MS as a means of characterizing its interactions with both the host cell–surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work, we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
18
|
Liaci AM, Steigenberger B, Telles de Souza PC, Tamara S, Gröllers-Mulderij M, Ogrissek P, Marrink SJ, Scheltema RA, Förster F. Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. Mol Cell 2021; 81:3934-3948.e11. [PMID: 34388369 DOI: 10.1016/j.molcel.2021.07.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo-microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. Molecular dynamics simulations indicate that this unique architecture generates specificity for SPs based on the length of their hydrophobic segments.
Collapse
Affiliation(s)
- A Manuel Liaci
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Barbara Steigenberger
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Paulo Cesar Telles de Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands; Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS and University of Lyon, Lyon, France
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Mariska Gröllers-Mulderij
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Patrick Ogrissek
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands; Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
20
|
Yang Y, Ivanov DG, Kaltashov IA. The challenge of structural heterogeneity in the native mass spectrometry studies of the SARS-CoV-2 spike protein interactions with its host cell-surface receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34189525 DOI: 10.1101/2021.06.20.449191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Native mass spectrometry (MS) enjoyed tremendous success in the past two decades in a wide range of studies aiming at understanding the molecular mechanisms of physiological processes underlying a variety of pathologies and accelerating the drug discovery process. However, the success record of native MS has been surprisingly modest with respect to the most recent challenge facing the biomedical community â€" the novel coronavirus infection (COVID-19). The major reason for the paucity of successful studies that use native MS to target various aspects of SARS-CoV-2 interaction with its host is the extreme degree of structural heterogeneity of the viral protein playing a key role in the host cell invasion. Indeed, the SARS-CoV-2 spike protein (S-protein) is extensively glycosylated, presenting a formidable challenge for native mass spectrometry (MS) as a means of characterizing its interactions with both the host cell-surface receptor ACE2 and the drug candidates capable of disrupting this interaction. In this work we evaluate the utility of native MS complemented with the experimental methods using gas-phase chemistry (limited charge reduction) to obtain meaningful information on the association of the S1 domain of the S-protein with the ACE2 ectodomain, and the influence of a small synthetic heparinoid on this interaction. Native MS reveals the presence of several different S1 oligomers in solution and allows the stoichiometry of the most prominent S1/ACE2 complexes to be determined. This enables meaningful interpretation of the changes in native MS that are observed upon addition of a small synthetic heparinoid (the pentasaccharide fondaparinux) to the S1/ACE2 solution, confirming that the small polyanion destabilizes the protein/receptor binding.
Collapse
|
21
|
Song JH, Wagner ND, Yan J, Li J, Huang RYC, Balog AJ, Newitt JA, Chen G, Gross ML. Native mass spectrometry and gas-phase fragmentation provide rapid and in-depth topological characterization of a PROTAC ternary complex. Cell Chem Biol 2021; 28:1528-1538.e4. [PMID: 34081921 DOI: 10.1016/j.chembiol.2021.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a new direction in small-molecule therapeutics whereby a heterobifunctional linker to a protein of interest (POI) induces its ubiquitination-based proteolysis by recruiting an E3 ligase. Here, we show that charge reduction, native mass spectrometry, and gas-phase activation methods combine for an in-depth analysis of a PROTAC-linked ternary complex. Electron capture dissociation (ECD) of the intact POI-PROTAC-VCB complex (a trimeric subunit of an E3 ubiquitin ligase) promotes POI dissociation. Collision-induced dissociation (CID) causes elimination of the nonperipheral PROTAC, producing an intact VCB-POI complex not seen in solution but consistent with PROTAC-induced protein-protein interactions. In addition, we used ion mobility spectrometry (IMS) and collisional activation to identify the source of this unexpected dissociation. Together, the evidence shows that this integrated approach can be used to screen for ternary complex formation and PROTAC-protein contacts and may report on PROTAC-induced protein-protein interactions, a characteristic correlated with PROTAC selectivity and efficacy.
Collapse
Affiliation(s)
- Jong Hee Song
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jing Yan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jing Li
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Richard Y-C Huang
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Aaron J Balog
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - John A Newitt
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Guodong Chen
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
22
|
Harvey SR, VanAernum ZL, Wysocki VH. Surface-Induced Dissociation of Anionic vs Cationic Native-Like Protein Complexes. J Am Chem Soc 2021; 143:7698-7706. [PMID: 33983719 DOI: 10.1021/jacs.1c00855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Characterizing protein-protein interactions, stoichiometries, and subunit connectivity is key to understanding how subunits assemble into biologically relevant, multisubunit protein complexes. Native mass spectrometry (nMS) has emerged as a powerful tool to study protein complexes due to its low sample consumption and tolerance for heterogeneity. In nMS, positive mode ionization is routinely used and charge reduction, through the addition of solution additives, is often used, as the resulting lower charge states are often considered more native-like. When fragmented by surface-induced dissociation (SID), charge reduced complexes often give increased structural information over their "normal-charged" counterparts. A disadvantage of solution phase charge reduction is that increased adduction, and hence peak broadening, is often observed. Previous studies have shown that protein complexes ionized using negative mode generally form lower charge states relative to positive mode. Here we demonstrate that the lower charged protein complex anions activated by surface collisions fragment in a manner consistent with their solved structures, hence providing substructural information. Negative mode ionization in ammonium acetate offers the advantage of charge reduction without the peak broadening associated with solution phase charge reduction additives and provides direct structural information when coupled with SID. SID of 20S human proteasome (a 28-mer comprised of four stacked heptamer rings in an αββα formation), for example, provides information on both substructure (e.g., splitting into a 7α ring and the corresponding ββα 21-mer, and into α dimers and trimers to provide connectivity around the 7 α ring) and proteoform information on monomers.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary L VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Konermann L, Aliyari E, Lee JH. Mobile Protons Limit the Stability of Salt Bridges in the Gas Phase: Implications for the Structures of Electrosprayed Protein Ions. J Phys Chem B 2021; 125:3803-3814. [PMID: 33848419 DOI: 10.1021/acs.jpcb.1c00944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrosprayed protein ions can retain native-like conformations. The intramolecular contacts that stabilize these compact gas-phase structures remain poorly understood. Recent work has uncovered abundant salt bridges in electrosprayed proteins. Salt bridges are zwitterionic BH+/A- contacts. The low dielectric constant in the vacuum strengthens electrostatic interactions, suggesting that salt bridges could be a key contributor to the retention of compact protein structures. A problem with this assertion is that H+ are mobile, such that H+ transfer can convert salt bridges into neutral B0/HA0 contacts. This possible salt bridge annihilation puts into question the role of zwitterionic motifs in the gas phase, and it calls for a detailed analysis of BH+/A- versus B0/HA0 interactions. Here, we investigate this issue using molecular dynamics (MD) simulations and electrospray experiments. MD data for short model peptides revealed that salt bridges with static H+ have dissociation energies around 700 kJ mol-1. The corresponding B0/HA0 contacts are 1 order of magnitude weaker. When considering the effects of mobile H+, BH+/A- bond energies were found to be between these two extremes, confirming that H+ migration can significantly weaken salt bridges. Next, we examined the protein ubiquitin under collision-induced unfolding (CIU) conditions. CIU simulations were conducted using three different MD models: (i) Positive-only runs with static H+ did not allow for salt bridge formation and produced highly expanded CIU structures. (ii) Zwitterionic runs with static H+ resulted in abundant salt bridges, culminating in much more compact CIU structures. (iii) Mobile H+ simulations allowed for the dynamic formation/annihilation of salt bridges, generating CIU structures intermediate between scenarios (i) and (ii). Our results uncover that mobile H+ limit the stabilizing effects of salt bridges in the gas phase. Failure to consider the effects of mobile H+ in MD simulations will result in unrealistic outcomes under CIU conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justin H Lee
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
24
|
Sever AIM, Yin V, Konermann L. Interrogating the Quaternary Structure of Noncanonical Hemoglobin Complexes by Electrospray Mass Spectrometry and Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:270-280. [PMID: 33124417 DOI: 10.1021/jasms.0c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various activation methods are available for the fragmentation of gaseous protein complexes produced by electrospray ionization (ESI). Such experiments can potentially yield insights into quaternary structure. Collision-induced dissociation (CID) is the most widely used fragmentation technique. Unfortunately, CID of protein complexes is dominated by the ejection of highly charged monomers, a process that does not yield any structural insights. Using hemoglobin (Hb) as a model system, this work examines under what conditions CID generates structurally informative subcomplexes. Native ESI mainly produced tetrameric Hb ions. In addition, "noncanonical" hexameric and octameric complexes were observed. CID of all these species [(αβ)2, (αβ)3, and (αβ)4] predominantly generated highly charged monomers. In addition, we observed hexamer → tetramer + dimer dissociation, implying that hexamers have a tetramer··dimer architecture. Similarly, the observation of octamer → two tetramer dissociation revealed that octamers have a tetramer··tetramer composition. Gas-phase candidate structures of Hb assemblies were produced by molecular dynamics (MD) simulations. Ion mobility spectrometry was used to identify the most likely candidates. Our data reveal that the capability of CID to produce structurally informative subcomplexes depends on the fate of protein-protein interfaces after transfer into the gas phase. Collapse of low affinity interfaces conjoins the corresponding subunits and favors CID via monomer ejection. Structurally informative subcomplexes are formed only if low affinity interfaces do not undergo a major collapse. However, even in these favorable cases CID is still dominated by monomer ejection, requiring careful analysis of the experimental data for the identification of structurally informative subcomplexes.
Collapse
Affiliation(s)
- Alexander I M Sever
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor Yin
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
25
|
Bellamy‐Carter J, O'Grady L, Passmore M, Jenner M, Oldham NJ. Decoding Protein Gas‐Phase Stability with Alanine Scanning and Collision‐Induced Unfolding Ion Mobility Mass Spectrometry. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/anse.202000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Louisa O'Grady
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Munro Passmore
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Matthew Jenner
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Neil J. Oldham
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
26
|
Zhou M, Lantz C, Brown KA, Ge Y, Paša-Tolić L, Loo JA, Lermyte F. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem Sci 2020; 11:12918-12936. [PMID: 34094482 PMCID: PMC8163214 DOI: 10.1039/d0sc04392c] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
In biology, it can be argued that if the genome contains the script for a cell's life cycle, then the proteome constitutes an ensemble cast of actors that brings these instructions to life. Their interactions with each other, co-factors, ligands, substrates, and so on, are key to understanding nearly any biological process. Mass spectrometry is well established as the method of choice to determine protein primary structure and location of post-translational modifications. In recent years, top-down fragmentation of intact proteins has been increasingly combined with ionisation of noncovalent assemblies under non-denaturing conditions, i.e., native mass spectrometry. Sequence, post-translational modifications, ligand/metal binding, protein folding, and complex stoichiometry can thus all be probed directly. Here, we review recent developments in this new and exciting field of research. While this work is written primarily from a mass spectrometry perspective, it is targeted to all bioanalytical scientists who are interested in applying these methods to their own biochemistry and chemical biology research.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Madison WI 53706 USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California-Los Angeles Los Angeles CA 90095 USA
| | - Frederik Lermyte
- Department of Chemistry, Institute of Chemistry and Biochemistry, Technical University of Darmstadt 64287 Darmstadt Germany
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège 4000 Liège Belgium
- School of Engineering, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
27
|
Abi-Ghanem J, Rabin C, Porrini M, Rosu F, Gabelica V. Compaction of RNA Hairpins and Their Kissing Complexes in Native Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2035-2043. [PMID: 32812759 DOI: 10.1021/jasms.0c00060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When electrosprayed from typical native MS solution conditions, RNA hairpins and kissing complexes acquire charge states at which they get significantly more compact in the gas phase than their initial structure in solution. Here, we also show the limits of using force field molecular dynamics to interpret the structures of nucleic acid complexes in the gas phase, as the predicted CCS distributions do not fully match the experimental ones. We suggest that higher level calculation levels should be used in the future.
Collapse
Affiliation(s)
- Josephine Abi-Ghanem
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| | - Clémence Rabin
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| | - Massimiliano Porrini
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| | - Frédéric Rosu
- Univ Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Bordeaux, France
| |
Collapse
|
28
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Zhou M, Liu W, Shaw JB. Charge Movement and Structural Changes in the Gas-Phase Unfolding of Multimeric Protein Complexes Captured by Native Top-Down Mass Spectrometry. Anal Chem 2020; 92:1788-1795. [PMID: 31869201 DOI: 10.1021/acs.analchem.9b03469] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extent to which noncovalent protein complexes retain native structure in the gas phase is highly dependent on experimental conditions. Energetic collisions with background gas can cause structural changes ranging from unfolding to subunit dissociation. Additionally, recent studies have highlighted the role of charge in such structural changes, but the mechanism is not completely understood. In this study, native top down (native TD) mass spectrometry was used to probe gas-phase structural changes of alcohol dehydrogenase (ADH, 4mer) under varying degrees of in-source activation. Changes in covalent backbone fragments produced by electron capture dissociation (ECD) or 193 nm ultraviolet photodissociation (UVPD) were attributed to structural changes of the ADH 4mer. ECD fragments indicated unfolding started at the N-terminus, and the charge states of UVPD fragments enabled monitoring of charge migration to the unfolded regions. Interestingly, UVPD fragments also indicated that the charge at the "unfolding" N-terminus of ADH decreased at high in-source activation energies after the initial increase. We proposed a possible "refolding-after-unfolding" mechanism, as further supported by monitoring hydrogen elimination from radical a-ions produced by UVPD at the N-terminus of ADH. However, "refolding-after-unfolding" with increasing in-source activation was not observed for charge-reduced ADH, which likely adopted compact structures that are resistant to both charge migration and unfolding. When combined, these results support a charge-directed unfolding mechanism for protein complexes. Overall, an experimental framework was outlined for utilizing native TD to generate structure-informative mass spectral signatures for protein complexes that complement other structure characterization techniques, such as ion mobility and computational modeling.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard , Richland , Washington 99354 , United States
| | - Weijing Liu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard , Richland , Washington 99354 , United States
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard , Richland , Washington 99354 , United States
| |
Collapse
|
30
|
Heidemann J, Kölbel K, Konijnenberg A, Van Dyck J, Garcia-Alai M, Meijers R, Sobott F, Uetrecht C. Further insights from structural mass spectrometry into endocytosis adaptor protein assemblies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 447:116240. [PMID: 33244295 PMCID: PMC7116418 DOI: 10.1016/j.ijms.2019.116240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As a fundament in many biologically relevant processes, endocytosis in its different guises has been arousing interest for decades and still does so. This is true for the actual transport and its initiation alike. In clathrin-mediated endocytosis, a comparatively well understood endocytic pathway, a set of adaptor proteins bind specific lipids in the plasma membrane, subsequently assemble and thus form a crucial bridge from clathrin to actin for the ongoing process. These adaptor proteins are highly interesting themselves and the subject of this manuscript. Using many of the instruments that are available now in the mass spectrometry toolbox, we added some facets to the picture of how these minimal assemblies may look, how they form, and what influences the structure. Especially, lipids in the adaptor protein complexes result in reduced charging of a normal sized complex due to their specific binding position. The results further support our structural model of a double ring structure with interfacial lipids.
Collapse
Affiliation(s)
- Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Knut Kölbel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Albert Konijnenberg
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
| | - Jeroen Van Dyck
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Frank Sobott
- University of Antwerp, Biomolecular & Analytical Mass Spectrometry, Chemistry Dept. Campus Groenenborger V4, Groenenborgerlaan, 171 2020, Antwerp, Belgium
- Astbury Centre for Structural Molecular and Cellular Biology, School of Molecular and Cellular Biology, University of Leeds, LS3 9JT, United Kingdom
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Corresponding author. Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
31
|
McAlary L, Harrison JA, Aquilina JA, Fitzgerald SP, Kelso C, Benesch JL, Yerbury JJ. Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and Dissociation Landscape Is Modulated by Salt Bridge Formation. Anal Chem 2019; 92:1702-1711. [DOI: 10.1021/acs.analchem.9b01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Julian A. Harrison
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - J. Andrew Aquilina
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | - Celine Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Justin L.P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Department, University of Oxford, Oxford OX1 3QZ, U.K
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
32
|
Hong S, Bush MF. Collision-Induced Unfolding Is Sensitive to the Polarity of Proteins and Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2430-2437. [PMID: 31502225 DOI: 10.1007/s13361-019-02326-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Collision-induced unfolding (CIU) uses ion mobility to probe the structures of ions of proteins and noncovalent complexes as a function of the extent of gas-phase activation prior to analysis. CIU can be sensitive to domain structures, isoform identities, and binding partners, which makes it appealing for many applications. Almost all previous applications of CIU have probed cations. Here, we evaluate the application of CIU to anions and compare the results for anions with those for cations. Towards that end, we developed a "similarity score" that we used to quantify the differences between the results of different CIU experiments and evaluate the significance of those differences relative to the variance of the underlying measurements. Many of the differences between anions and cations that were identified can be attributed to the lower absolute charge states of anions. For example, the extents of the increase in collision cross section over the full range of energies depended strongly on absolute charge state. However, over intermediate energies, there are significant difference between anions and cations with the same absolute charge state. Therefore, CIU is sensitive to the polarity of protein ions. Based on these results, we propose that the utility of CIU to differentiate similar proteins or noncovalent complexes may also depend on polarity. More generally, these results indicate that the relationship between the structures and dynamics of native-like cations and anions deserve further attention and that future studies may benefit from integrating results from ions of both polarities.
Collapse
Affiliation(s)
- Seoyeon Hong
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
33
|
Seffernick J, Harvey SR, Wysocki VH, Lindert S. Predicting Protein Complex Structure from Surface-Induced Dissociation Mass Spectrometry Data. ACS CENTRAL SCIENCE 2019; 5:1330-1341. [PMID: 31482115 PMCID: PMC6716128 DOI: 10.1021/acscentsci.8b00912] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 05/23/2023]
Abstract
Recently, mass spectrometry (MS) has become a viable method for elucidation of protein structure. Surface-induced dissociation (SID), colliding multiply charged protein complexes or other ions with a surface, has been paired with native MS to provide useful structural information such as connectivity and topology for many different protein complexes. We recently showed that SID gives information not only on connectivity and topology but also on relative interface strengths. However, SID has not yet been coupled with computational structure prediction methods that could use the sparse information from SID to improve the prediction of quaternary structures, i.e., how protein subunits interact with each other to form complexes. Protein-protein docking, a computational method to predict the quaternary structure of protein complexes, can be used in combination with subunit structures from X-ray crystallography and NMR in situations where it is difficult to obtain an experimental structure of an entire complex. While de novo structure prediction can be successful, many studies have shown that inclusion of experimental data can greatly increase prediction accuracy. In this study, we show that the appearance energy (AE, defined as 10% fragmentation) extracted from SID can be used in combination with Rosetta to successfully evaluate protein-protein docking poses. We developed an improved model to predict measured SID AEs and incorporated this model into a scoring function that combines the RosettaDock scoring function with a novel SID scoring term, which quantifies agreement between experiments and structures generated from RosettaDock. As a proof of principle, we tested the effectiveness of these restraints on 57 systems using ideal SID AE data (AE determined from crystal structures using the predictive model). When theoretical AEs were used, the RMSD of the selected structure improved or stayed the same in 95% of cases. When experimental SID data were incorporated on a different set of systems, the method predicted near-native structures (less than 2 Å root-mean-square deviation, RMSD, from native) for 6/9 tested cases, while unrestrained RosettaDock (without SID data) only predicted 3/9 such cases. Score versus RMSD funnel profiles were also improved when SID data were included. Additionally, we developed a confidence measure to evaluate predicted model quality in the absence of a crystal structure.
Collapse
|
34
|
Lee JH, Pollert K, Konermann L. Testing the Robustness of Solution Force Fields for MD Simulations on Gaseous Protein Ions. J Phys Chem B 2019; 123:6705-6715. [DOI: 10.1021/acs.jpcb.9b04014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Justin H. Lee
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Katja Pollert
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
35
|
Rolland AD, Prell JS. Computational Insights into Compaction of Gas-Phase Protein and Protein Complex Ions in Native Ion Mobility-Mass Spectrometry. Trends Analyt Chem 2019; 116:282-291. [PMID: 31983791 PMCID: PMC6979403 DOI: 10.1016/j.trac.2019.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is a rapidly growing field for studying the composition and structure of biomolecules and biomolecular complexes using gas-phase methods. Typically, ions are formed in native IM-MS using gentle nanoelectrospray ionization conditions, which in many cases can preserve condensed-phase stoichiometry. Although much evidence shows that large-scale condensed-phase structure, such as quaternary structure and topology, can also be preserved, it is less clear to what extent smaller-scale structure is preserved in native IM-MS. This review surveys computational and experimental efforts aimed at characterizing compaction and structural rearrangements of protein and protein complex ions upon transfer to the gas phase. A brief summary of gas-phase compaction results from molecular dynamics simulations using multiple common force fields and a wide variety of protein ions is presented and compared to literature IM-MS data.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University
of Oregon, Eugene, OR, USA, 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University
of Oregon, Eugene, OR, USA, 97403-1253
- Materials Science Institute, 1252 University of Oregon,
Eugene, OR, USA 97403-1252
| |
Collapse
|
36
|
VanAernum ZL, Gilbert JD, Belov ME, Makarov AA, Horning SR, Wysocki VH. Surface-Induced Dissociation of Noncovalent Protein Complexes in an Extended Mass Range Orbitrap Mass Spectrometer. Anal Chem 2019; 91:3611-3618. [PMID: 30688442 PMCID: PMC6516482 DOI: 10.1021/acs.analchem.8b05605] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Native mass spectrometry continues to develop as a significant complement to traditional structural biology techniques. Within native mass spectrometry (MS), surface-induced dissociation (SID) has been shown to be a powerful activation method for the study of noncovalent complexes of biological significance. High-resolution mass spectrometers have become increasingly adapted to the analysis of high-mass ions and have demonstrated their importance in understanding how small mass changes can affect the overall structure of large biomolecular complexes. Herein we demonstrate the first adaptation of surface-induced dissociation in a modified high-mass-range, high-resolution Orbitrap mass spectrometer. The SID device was designed to be installed in the Q Exactive series of Orbitrap mass spectrometers with minimal disruption of standard functions. The performance of the SID-Orbitrap instrument has been demonstrated with several protein complex and ligand-bound protein complex systems ranging from 53 to 336 kDa. We also address the effect of ion source temperature on native protein-ligand complex ions as assessed by SID. Results are consistent with previous findings on quadrupole time-of-flight instruments and suggest that SID coupled to high-resolution MS is well-suited to provide information on the interface interactions within protein complexes and ligand-bound protein complexes.
Collapse
|
37
|
Marklund EG, Benesch JL. Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Curr Opin Struct Biol 2019; 54:50-58. [PMID: 30743182 DOI: 10.1016/j.sbi.2018.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022]
Abstract
Structural dynamics underpin biological function at the molecular level, yet many biophysical and structural biology approaches give only a static or averaged view of proteins. Native mass spectrometry yields spectra of the many states and interactions in the structural ensemble, but its spatial resolution is limited. Conversely, molecular dynamics simulations are innately high-resolution, but have a limited capacity for exploring all structural possibilities. The two techniques hence differ fundamentally in the information they provide, returning data that reflect different length scales and time scales, making them natural bedfellows. Here we discuss how the combination of native mass spectrometry with molecular dynamics simulations is enabling unprecedented insights into a range of biological questions by interrogating the motions of proteins, their assemblies, and interactions.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75 123, Uppsala, Sweden.
| | - Justin Lp Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
38
|
Pitts-McCoy AM, Harrilal CP, McLuckey SA. Gas-Phase Ion/Ion Chemistry as a Probe for the Presence of Carboxylate Groups in Polypeptide Cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:329-338. [PMID: 30341581 PMCID: PMC6347497 DOI: 10.1007/s13361-018-2079-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 05/31/2023]
Abstract
The reactivity of 1-hydroxybenzoyl triazole (HOBt) esters with the carboxylate functionality present in peptides is demonstrated in the gas phase with a doubly deprotonated dianion. The reaction forms an anhydride linkage at the carboxylate site. Upon ion trap collisional-induced dissociation (CID) of the modified peptide, the resulting spectrum shows a nominal loss of the mass of the reagent and a water molecule. Analogous phenomenology was also noted for model peptide cations that likely contain zwitterionic/salt-bridged motifs in reactions with a negatively charged HOBt ester. Control experiments indicate that a carboxylate group is the likely reactive site, rather than other possible nucleophilic sites present in the peptide. These observations suggest that HOBt ester chemistry may be used as a chemical probe for the presence and location of carboxylate groups in net positively charged polypeptide ions. As an illustration, deprotonated sulfobenzoyl HOBt was reacted with the [M+7H]7+ ion of ubiquitin. The ion was shown to react with the reagent and CID of the covalent reaction product yielded an abundant [M+6H-H2O]6+ ion. Comparison of the CID product ion spectrum of this ion with that of the water loss product generated from CID of the unmodified [M+6H]6+ ion revealed the glutamic acid at residue 64 as a reactive site, suggesting that it is present in the deprotonated form. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anthony M Pitts-McCoy
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Christopher P Harrilal
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
39
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
40
|
Dyachenko A, Tamara S, Heck AJR. Distinct Stabilities of the Structurally Homologous Heptameric Co-Chaperonins GroES and gp31. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:7-15. [PMID: 29736602 PMCID: PMC6318259 DOI: 10.1007/s13361-018-1910-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 05/06/2023]
Abstract
The GroES heptamer is the molecular co-chaperonin that partners with the tetradecamer chaperonin GroEL, which assists in the folding of various nonnative polypeptide chains in Escherichia coli. Gp31 is a structural and functional analogue of GroES encoded by the bacteriophage T4, becoming highly expressed in T4-infected E. coli, taking over the role of GroES, favoring the folding of bacteriophage proteins. Despite being slightly larger, gp31 is quite homologous to GroES in terms of its tertiary and quaternary structure, as well as in its function and mode of interaction with the chaperonin GroEL. Here, we performed a side-by-side comparison of GroES and gp31 heptamer complexes by (ion mobility) tandem mass spectrometry. Surprisingly, we observed quite distinct fragmentation mechanisms for the GroES and gp31 heptamers, whereby GroES displays a unique and unusual bimodal charge distribution in its released monomers. Not only the gas-phase dissociation but also the gas-phase unfolding of GroES and gp31 were found to be very distinct. We rationalize these observations with the similar discrepancies we observed in the thermal unfolding characteristics and surface contacts within GroES and gp31 in the solution. From our data, we propose a model that explains the observed simultaneous dissociation pathways of GroES and the differences between GroES and gp31 gas-phase dissociation and unfolding. We conclude that, although GroES and gp31 exhibit high homology in tertiary and quaternary structure, they are quite distinct in their solution and gas-phase (un)folding characteristics and stability. Graphical Abstract.
Collapse
Affiliation(s)
- Andrey Dyachenko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Mistarz UH, Chandler SA, Brown JM, Benesch JLP, Rand KD. Probing the Dissociation of Protein Complexes by Means of Gas-Phase H/D Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:45-57. [PMID: 30460642 DOI: 10.1007/s13361-018-2064-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 05/16/2023]
Abstract
Gas-phase hydrogen/deuterium exchange measured by mass spectrometry (gas-phase HDX-MS) is a fast method to probe the conformation of protein ions. The use of gas-phase HDX-MS to investigate the structure and interactions of protein complexes is however mostly unharnessed. Ionizing proteins under conditions that maximize preservation of their native structure (native MS) enables the study of solution-like conformation for milliseconds after electrospray ionization (ESI), which enables the use of ND3-gas inside the mass spectrometer to rapidly deuterate heteroatom-bound non-amide hydrogens. Here, we explored the utility of gas-phase HDX-MS to examine protein-protein complexes and inform on their binding surface and the structural consequences of gas-phase dissociation. Protein complexes ranging from 24 kDa dimers to 395 kDa 24mers were analyzed by gas-phase HDX-MS with subsequent collision-induced dissociation (CID). The number of exchangeable sites involved in complex formation could, therefore, be estimated. For instance, dimers of cytochrome c or α-lactalbumin incorporated less deuterium/subunit than their unbound monomer counterparts, providing a measure of the number of heteroatom-bound side-chain hydrogens involved in complex formation. We furthermore studied if asymmetric charge-partitioning upon dissociation of protein complexes caused intermolecular H/D migration. In larger multimeric protein complexes, the dissociated monomer showed a significant increase in deuterium. This indicates that intermolecular H/D migration occurs as part of the asymmetric partitioning of charge during CID. We discuss several models that may explain this increase deuterium content and find that a model where only deuterium involved in migrating charge can account for most of the deuterium enrichment observed on the ejected monomer. In summary, the deuterium content of the ejected subunit can be used to estimate that of the intact complex with deviations observed for large complexes accounted for by charge migration. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Ulrik H Mistarz
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Shane A Chandler
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jeffery M Brown
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
42
|
Hansen K, Lau AM, Giles K, McDonnell JM, Struwe WB, Sutton BJ, Politis A. A Mass-Spectrometry-Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angew Chem Int Ed Engl 2018; 57:17194-17199. [PMID: 30408305 PMCID: PMC6392142 DOI: 10.1002/anie.201812018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/09/2022]
Abstract
Immunoglobulins are biomolecules involved in defence against foreign substances. Flexibility is key to their functional properties in relation to antigen binding and receptor interactions. We have developed an integrative strategy combining ion mobility mass spectrometry (IM-MS) with molecular modelling to study the conformational dynamics of human IgG antibodies. Predictive models of all four human IgG subclasses were assembled and their dynamics sampled in the transition from extended to collapsed state during IM-MS. Our data imply that this collapse of IgG antibodies is related to their intrinsic structural features, including Fab arm flexibility, collapse towards the Fc region, and the length of their hinge regions. The workflow presented here provides an accurate structural representation in good agreement with the observed collision cross section for these flexible IgG molecules. These results have implications for studying other nonglobular flexible proteins.
Collapse
Affiliation(s)
- Kjetil Hansen
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Andy M. Lau
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | | | | | | | - Brian J. Sutton
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonUK
| | - Argyris Politis
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| |
Collapse
|
43
|
Hansen K, Lau AM, Giles K, McDonnell JM, Struwe WB, Sutton BJ, Politis A. A Mass‐Spectrometry‐Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kjetil Hansen
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| | - Andy M. Lau
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| | - Kevin Giles
- Waters Corp. Stamford Road Wilmslow SK9 4AX UK
| | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics King's College London UK
| | | | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics King's College London UK
| | - Argyris Politis
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
44
|
Busch F, Van Aernum ZL, Ju Y, Yan J, Gilbert JD, Quintyn RS, Bern M, Wysocki VH. Localization of Protein Complex Bound Ligands by Surface-Induced Dissociation High-Resolution Mass Spectrometry. Anal Chem 2018; 90:12796-12801. [PMID: 30299922 PMCID: PMC7307135 DOI: 10.1021/acs.analchem.8b03263] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface-induced dissociation (SID) is a powerful means of deciphering protein complex quaternary structures due to its capability of yielding dissociation products that reflect the native structures of protein complexes in solution. Here we explore the suitability of SID to locate the ligand binding sites in protein complexes. We studied C-reactive protein (CRP) pentamer, which contains a ligand binding site within each subunit, and cholera toxin B (CTB) pentamer, which contains a ligand binding site between each adjacent subunit. SID dissects ligand-bound CRP into subcomplexes with each subunit carrying predominantly one ligand. In contrast, SID of ligand-bound CTB results in the generation of subcomplexes with a ligand distribution reflective of two subunits contributing to each ligand binding site. SID thus has potential application in localizing sites of small ligand binding for multisubunit protein-ligand complexes.
Collapse
Affiliation(s)
- Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zachary L. Van Aernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yue Ju
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Joshua D. Gilbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Royston S. Quintyn
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Marshall Bern
- Protein Metrics Inc., 20863 Stevens Creek Blvd., Suite 450, Cupertino, California 95014, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
45
|
Kulesza A, Marklund EG, MacAleese L, Chirot F, Dugourd P. Bringing Molecular Dynamics and Ion-Mobility Spectrometry Closer Together: Shape Correlations, Structure-Based Predictors, and Dissociation. J Phys Chem B 2018; 122:8317-8329. [DOI: 10.1021/acs.jpcb.8b03825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Kulesza
- Université de Lyon, F-69622, Lyon, France
- CNRS et
Université
Lyon 1, UMR5306, Institut Lumière Matière, France
| | - Erik G. Marklund
- Department of Chemistry − BMC, Uppsala University, Box 576, SE-751 23, Uppsala, Sweden
| | - Luke MacAleese
- Université de Lyon, F-69622, Lyon, France
- CNRS et
Université
Lyon 1, UMR5306, Institut Lumière Matière, France
| | - Fabien Chirot
- Université
Lyon, Université Claude Bernard Lyon 1, Ens de Lyon, CNRS,
Institut des Sciences Analytiques UMR 5280, F-69100, Villeurbanne, France
| | - Philippe Dugourd
- Université de Lyon, F-69622, Lyon, France
- CNRS et
Université
Lyon 1, UMR5306, Institut Lumière Matière, France
| |
Collapse
|
46
|
Metwally H, Duez Q, Konermann L. Chain Ejection Model for Electrospray Ionization of Unfolded Proteins: Evidence from Atomistic Simulations and Ion Mobility Spectrometry. Anal Chem 2018; 90:10069-10077. [DOI: 10.1021/acs.analchem.8b02926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Quentin Duez
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc, 23, Mons 7000, Belgium
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
47
|
Konermann L, Metwally H, McAllister RG, Popa V. How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. Methods 2018; 144:104-112. [DOI: 10.1016/j.ymeth.2018.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022] Open
|
48
|
Zhou M, Yan J, Romano CA, Tebo BM, Wysocki VH, Paša-Tolić L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:723-733. [PMID: 29388167 PMCID: PMC7305857 DOI: 10.1007/s13361-017-1882-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 05/11/2023]
Abstract
Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Jing Yan
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
49
|
Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 2018; 42:51-59. [DOI: 10.1016/j.cbpa.2017.10.022] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
|
50
|
Dixit SM, Polasky DA, Ruotolo BT. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future. Curr Opin Chem Biol 2018; 42:93-100. [PMID: 29207278 PMCID: PMC5828980 DOI: 10.1016/j.cbpa.2017.11.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 01/30/2023]
Abstract
Rapidly characterizing the three-dimensional structures of proteins and the multimeric machines they form remains one of the great challenges facing modern biological and medical sciences. Ion mobility-mass spectrometry based techniques are playing an expanding role in characterizing these functional complexes, especially in drug discovery and development workflows. Despite this expansion, ion mobility-mass spectrometry faces many challenges, especially in the context of detecting small differences in protein tertiary structure that bear functional consequences. Collision induced unfolding is an ion mobility-mass spectrometry method that enables the rapid differentiation of subtly-different protein isoforms based on their unfolding patterns and stabilities. In this review, we summarize the modern implementation of such gas-phase unfolding experiments and provide an overview of recent developments in both methods and applications.
Collapse
Affiliation(s)
- Sugyan M Dixit
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, United States
| | - Daniel A Polasky
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109, United States.
| |
Collapse
|