1
|
Gholizadeh M, Shareghi B, Farhadian S. Elucidating binding mechanisms of naringenin by alpha-chymotrypsin: Insights into non-binding interactions and complex formation. Int J Biol Macromol 2023; 253:126605. [PMID: 37660852 DOI: 10.1016/j.ijbiomac.2023.126605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
As an inevitable parameter in the description of enzyme properties, the investigation of enzyme-ligand interactions has attracted a lot of attention. Alpha-Chymotrypsin (α-Chy) is essential for protein digestion and plays an important role in human health. Naringenin (NAG) as a potent antioxidant has recently been applied in the pharmaceutical industry. Using multispectral methods and computational simulation techniques, the binding strength of NAG to α-Chy was investigated in this research. UV-vis and fluorescence quenching data showed significant spectral changes upon binding of NAG to α-Chy. As demonstrated by fluorescence techniques, NAG could employ a static quenching process to decrease the intrinsic fluorescence of α-Chy. Both circular dichroism (CD) and FTIR spectroscopic analyses revealed that binding of NAG to α-Chy caused more flexible conformation. The slight increases in RMSD (0.06 nm) were observed for the NAG-(α-Chy) compound was supported by the results of thermal stability data. Docking computation confirmed that hydrogen and Van der Waals interactions are the important forces, which is in exact agreement with thermodynamics studies. Kinetic analysis of the enzyme showed an increase in activity, which was consistent, with the MD simulation results. The findings from the in-silico studies were in complete agreement with the experimental results.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
2
|
Liu X, Sun B, Xu C, Zhang T, Zhang Y, Zhu L. Intrinsic mechanisms for the inhibition effect of graphene oxide on the catalysis activity of alpha amylase. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131389. [PMID: 37043854 DOI: 10.1016/j.jhazmat.2023.131389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Comprehending the interactions between graphene oxide (GO) and enzymes is critical for understanding the toxicities of GO. In this study, the inherent interactions of GO with α-amylase as a typical enzyme, and the impacts of GO on the conformation and biological activities of α-amylase were systematically investigated. The results reveal that GO formed ground-state complex with α-amylase primarily via hydrogen bonding and van der Waals interactions, thus quenching the intrinsic fluorescence of the protein statically. Particularly, the strong interactions altered the microenvironment of tyrosine and tryptophan residues, caused rearrangement of polypeptide structure, and reduced the contents of α-helices and β-sheets, thus changing the conformational structure of α-amylase. According to molecular docking results, GO binds with the amino acid residues (i.e., His299, Asp300, and His305) of α-amylase mainly through hydrogen bonding, which is in accordance with in vitro incubation experiments. As a consequence, the ability of α-amylase to catalyze starch hydrolysis into glucose was depressed by GO, suggesting that GO might cause dysfunction of α-amylase. This study discloses the intrinsic binding mechanisms of GO with α-amylase and provides novel insights into the adverse effects of GO as it enters organisms.
Collapse
Affiliation(s)
- Xinwei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Chunyi Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
3
|
Habibi A, Farhadian S, Shareghi B, Hashemi-Shahraki F. Structural change study of pepsin in the presence of spermidine trihydrochloride: Insights from spectroscopic to molecular dynamics methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122264. [PMID: 36652806 DOI: 10.1016/j.saa.2022.122264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Spermidine is an aliphatic polyamine that directs a set of biological processes. This work aimed to use UV-Vis spectroscopy, fluorescence spectroscopy, thermal stability, kinetic methods, docking, and molecular dynamic simulations to examine the influence of spermidine trihydrochloride (SP) on the structure and function of pepsin. The results of the fluorescence emission spectra indicated that spermidine could quench pepsin's intrinsic emission in a static quenching process, resulting in the formation of the pepsin-spermidine complex. The results discovered that spermidine had a strong affinity to the pepsin structure because of its high binding constant. The obtained results from spectroscopy and molecular dynamic approaches showed the binding interaction between spermidine and pepsin, induced micro-environmental modifications around tryptophan residues that caused a change in the tertiary and secondary structure of the enzyme. FTIR analysis showed hypochromic effects in the spectra of amide I and II and redistribution of the helical structure. Moreover, the molecular dynamic (MD) and docking studies confirmed the experimental data. Both experimental and molecular dynamics simulation results clarified that electrostatic bond interactions were dominant forces.
Collapse
Affiliation(s)
- Atefeh Habibi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P.O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
4
|
Khan S, Siraj S, Shahid M, Haque MM, Islam A. Osmolytes: Wonder molecules to combat protein misfolding against stress conditions. Int J Biol Macromol 2023; 234:123662. [PMID: 36796566 DOI: 10.1016/j.ijbiomac.2023.123662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The proper functioning of any protein depends on its three dimensional conformation which is achieved by the accurate folding mechanism. Keeping away from the exposed stress conditions leads to cooperative unfolding and sometimes partial folding, forming the structures like protofibrils, fibrils, aggregates, oligomers, etc. leading to several neurodegenerative diseases like Parkinson's disease, Alzheimer's, Cystic fibrosis, Huntington, Marfan syndrome, and also cancers in some cases, too. Hydration of proteins is necessary, which may be achieved by the presence of organic solutes called osmolytes within the cell. Osmolytes belong to different classes in different organisms and play their role by preferential exclusion of osmolytes and preferential hydration of water molecules and achieves the osmotic balance in the cell otherwise it may cause problems like cellular infection, cell shrinkage leading to apoptosis and cell swelling which is also the major injury to the cell. Osmolyte interacts with protein, nucleic acids, intrinsically disordered proteins by non-covalent forces. Stabilizing osmolytes increases the Gibbs free energy of the unfolded protein and decreases that of folded protein and vice versa with denaturants (urea and guanidinium hydrochloride). The efficacy of each osmolyte with the protein is determined by the calculation of m value which reflects its efficiency with protein. Hence osmolytes can be therapeutically considered and used in drugs.
Collapse
Affiliation(s)
- Sobia Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Seerat Siraj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box: 173, Al Kharj, Saudi Arabia
| | | | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Investigation of the interaction behavior between quercetin and pepsin by spectroscopy and MD simulation methods. Int J Biol Macromol 2023; 227:1151-1161. [PMID: 36464189 DOI: 10.1016/j.ijbiomac.2022.11.296] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 10/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The ability of a therapeutic compound to bind to proteins is critical for characterizing its therapeutic impacts. We have selected quercetin (Qu), a most common flavonoid found in plants and vegetables among therapeutic molecules that are known to have anti-inflammatory, antioxidant, anti-genotoxic, and anti-cancer effects. The current study aimed to see how quercetin interacts with pepsin in an aqueous environment under physiological conditions. Absorbance and emission spectroscopy, circular dichroism (CD), and kinetic methods, as well as molecular dynamic (MD) simulation and docking, were applied to study the effects of Qu on the structure, dynamics, and kinetics of pepsin. Stern-Volmer (Ksv) constants were computed for the pepsin-quercetin complex at three temperatures, showing that Qu reduces enzyme emission spectra using a static quenching. With Qu binding, the Vmax and the kcat/Km values decreased. UV-vis absorption spectra, fluorescence emission spectroscopy, and CD result indicated that Qu binding to pepsin leads to microenvironmental changes around the enzyme, which can alter the enzyme's secondary structure. Therefore, quercetin caused alterations in the function and structure of pepsin. Thermodynamic parameters, MD binding, and docking simulation analysis showed that non-covalent reactions, including the hydrophobic forces, played a key role in the interaction of Qu with pepsin. The findings conclude of spectroscopic experiments were supported by molecular dynamics simulations and molecular docking results.
Collapse
Affiliation(s)
- Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
6
|
Surface chemistry of graphene tailoring the activity of digestive enzymes by modulating interfacial molecular interactions. J Colloid Interface Sci 2023; 630:179-192. [DOI: 10.1016/j.jcis.2022.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
7
|
Yadollahi E, Shareghi B, Farhadian S. Binding parameters and molecular dynamics of Trypsin-Acid Yellow 17 complexation as a function of concentration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121589. [PMID: 35872431 DOI: 10.1016/j.saa.2022.121589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Acid Yellow 17 is a kind of azo dye used in food, textile, and cosmetics. Several studies explain the toxicity of azo dye for our body, but one could not find further information about the effects of these dyes on human macromolecules. In the current study, the interaction of AY17 with trypsin is investigated using several techniques. The UV analysis displayed that the absorption of trypsin could be decreased in the presence of this color. The fluorescence investigation indicated that a static form of quenching happens, and a 50% decrease in the fluorescence intensity, also showed the Vander Waals and hydrogen bond are the main forces in the interaction of this color and trypsin. Furthermore, we can observe that the Tm point of trypsin decreases from 46.5 to 42. On the other hand, the CD results were indicated that the interaction of this color with trypsin could decrease the percent of turn, coil and α-helix in trypsin structure. The computational study was undertaken to obtain more information about the interaction between trypsin and AY17. The results were in agreement with the experimental investigation and indicated that the interaction between this color and trypsin leads to less compactness in the trypsin structure.
Collapse
Affiliation(s)
- Elham Yadollahi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
8
|
Asemi-Esfahani Z, Shareghi B, Farhadian S, Momeni L. Food additive dye–lysozyme complexation: Determination of binding constants and binding sites by fluorescence spectroscopy and modeling methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Insight into the binding of alpha-linolenic acid (ALA) on Human Serum Albumin using spectroscopic and molecular dynamics (MD) studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
A systematic exploration reveals the potential of spermidine for hypopigmentation treatment through the stabilization of melanogenesis-associated proteins. Sci Rep 2022; 12:14478. [PMID: 36008447 PMCID: PMC9411574 DOI: 10.1038/s41598-022-18629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Spermidine (SPD), a polyamine naturally present in living organisms, is known to prolong the lifespan of animals. In this study, the role of SPD in melanogenesis was investigated, showing potential as a pigmenting agent. SPD treatment increased melanin production in melanocytes in a dose dependent manner. Computational analysis with RNA-sequencing data revealed the alteration of protein degradation by SPD treatment without changes in the expressions of melanogenesis-related genes. Indeed, SPD treatment significantly increased the stabilities of tyrosinase-related protein (TRP)-1 and -2 while inhibiting ubiquitination, which was confirmed by treatment of proteasome inhibitor MG132. Inhibition of protein synthesis by cycloheximide (CHX) showed that SPD treatment increased the resistance of TRP-1 and TRP-2 to protein degradation. To identify the proteins involved in SPD transportation in melanocytes, the expression of several solute carrier (SLC) membrane transporters was assessed and, among 27 transporter genes, SLC3A2, SLC7A1, SLC18B1, and SLC22A18 were highly expressed, implying they are putative SPD transporters in melanocytes. Furthermore, SLC7A1 and SLC22A18 were downregulated by SPD treatment, indicating their active involvement in polyamine homeostasis. Finally, we applied SPD to a human skin equivalent and observed elevated melanin production. Our results identify SPD as a potential natural product to alleviate hypopigmentation.
Collapse
|
11
|
Bisht B, Dey P, Singh AK, Pant S, Mehata MS. Spectroscopic Investigation on the Interaction of Direct Yellow-27 with Protein (BSA). Methods Appl Fluoresc 2022; 10. [PMID: 35977534 DOI: 10.1088/2050-6120/ac8a8b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
Direct yellow 27 (DY-27) interaction with bovine serum albumin (BSA) was investigated using multi-spectroscopic techniques to understand the toxicity mechanism. Fluorescence quenching of BSA by DY-27 was observed as a result of the formation of a BSA-DY27 complex with a binding constant of 1.19 × 105M-1and followed a static quenching mechanism with a quenching constant Ksvof 7.25 × 104M-1. The far UV circular dichroism spectra revealed the conformational changes in the secondary structure of BSA in the presence of DY-27. The calculated average lifetime of BSA is 6.04 ns and is nearly constant (5.99 ns) in the presence of dye and supports the proposed quenching mechanism. The change in free energy (ΔG) was calculated to be -28.96 kJ mol-1and confirmed the spontaneity of the binding process. Further, docking studies have been conducted to gain more insights into the interactions between DY-27 and serum albumin.
Collapse
Affiliation(s)
- Babita Bisht
- Department of Physics, Kumaun University, D.S.B. Campus, Kumaun University, Nainital, 263002, India, Nainital, 263001, INDIA
| | - Pinki Dey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2033, Australia, Sydney, 2052, AUSTRALIA
| | - Avinash Kumar Singh
- Special Centre for Nanoscience, Jawaharlal Nehru University, Munirka, New Delhi, Delhi, 110067, INDIA
| | - Sanjay Pant
- Department of Physics, Kumaun University, D.S.B. Campus, Kumaun University, Nainital, 263002, India, Nainital, 263001, INDIA
| | - Mohan Singh Mehata
- Applied Physics, Delhi Technological University, Bawana Road, Delhi, 110042, Delhi, Delhi, 110042, INDIA
| |
Collapse
|
12
|
Nai X, Chen Y, Zhang Q, Hao S, Xuan H, Liu J. Interaction between Caffeic Acid Phenethyl Ester (CAPE) and Protease: Monitoring by Spectroscopic and Molecular Docking Approaches. LUMINESCENCE 2022; 37:1025-1036. [PMID: 35445518 DOI: 10.1002/bio.4262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/09/2022]
Abstract
The interaction of one anticancer drug (caffeic acid phenethyl ester, CAPE) with three proteases (trypsin, pepsin and α-chymotrypsin) has been investigated with multispectral methods and molecular docking. As an active components in propolis, the findings are of great benefit to metabolism, design and stuctural modification of drugs. The results show that CAPE has an obvious ability to quench the trypsin, pepsin, or α-chymotrypsin fluorescence mainly through a static quenching procedure. Trypsin has the largest binding affinity to CAPE, and α-chymotrypsin has the smallest binding affinity to CAPE. The data obtained from thermodynamic parameters and molecular docking prove that the spontaneously interaction between CAPE and each protease is mainly due to a combination of Van der Waals (vdW) force and hydrogen bond (H-bond), controlled by enthalpy-driven process. The binding force, strength, position, and the number of H-bond are further obtained from the results of molecular docking. Through ultraviolet spectroscopy, dynamic light scattering (DLS) and circular dichroism (CD) experiments, the change in the protease secondary structure induced by CAPE was observed. Additionally, the addition of protease had a positive impact on the antioxidative activity of CAPE, and α-chymotrypsin has the greatest impact on the removal of DPPH free radicals by CAPE.
Collapse
Affiliation(s)
- Xiao Nai
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| |
Collapse
|
13
|
Rogóż W, Pożycka J, Owczarzy A, Kulig K, Maciążek-Jurczyk M. Comparison of Losartan and Furosemide Interaction with HSA and Their Influence on HSA Antioxidant Potential. Pharmaceuticals (Basel) 2022; 15:499. [PMID: 35631326 PMCID: PMC9144853 DOI: 10.3390/ph15050499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022] Open
Abstract
Serum albumin (HSA) is the most important protein in human body. Due to the antioxidant activity, HSA influences homeostasis maintenance and transport of drugs as well as other substances. It is noteworthy that ligands, such as popular drugs, modulate the antioxidant activity of HSA. The aim of this study was to analyze the influence of losartan (LOS) and furosemide (FUR) on HSA antioxidant properties as well as the interaction between these drugs and protein using calorimetric and spectroscopic methods. LOS and FUR showed the high affinity for human serum albumin, and the binding reactions between them were spontaneous and exothermic. LOS and FUR, separately and together in the system, have no significant impact on the secondary HSA structure; however they have significant impact on the tertiary HSA structure. LOS and FUR mixed with HSA have the ability to scavenge free radicals, and the ligand(s)-HSA interactions were synergistic.
Collapse
Affiliation(s)
| | | | | | | | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (W.R.); (J.P.); (A.O.); (K.K.)
| |
Collapse
|
14
|
|
15
|
Multi spectroscopy and molecular modeling aspects related to drug interaction of aspirin with alpha chymotrypsin; structural change and protease activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Mohammadi M, Shareghi B, Farhadian S, Momeni L, Saboury AA. The interaction of xylitol with carboxypeptidase A: The influence of xylitol on enzyme structure and activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Moradi S, Shareghi B, Saboury AA, Farhadian S. The influence of Cadaverine on the structure, stability, and activity of acid phosphatase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Investigation on the interaction behavior between safranal and pepsin by spectral and MD simulation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Evaluation of interactions between food colorant, tartrazine, and Apo-transferrin using spectroscopic analysis and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116715] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Luo H, Li H, Liu Y, Yang L, Xiao Q, Huang S. Investigation on conformational variation and activity of trypsin affected by black phosphorus quantum dots via multi-spectroscopy and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119746. [PMID: 33819763 DOI: 10.1016/j.saa.2021.119746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Binding interaction between black phosphorus quantum dots (BPQDs) and trypsin was researched deeply to illustrate the variations on conformation and activity of trypsin affected by BPQDs via multi-spectroscopy and molecular modeling. Experimental results implied that inherent fluorescence of trypsin was quenched by BPQDs via static fluorescence quenching mode. BPQDs bound with trypsin to construct ground-state complex under the binding forces of van der Waal interaction and hydrophobic interaction, resulting in the conformational change of trypsin to be more hydrophilic and incompact. The result of molecular modeling indicated that BPQDs interacted with trypsin at its allosteric site and inhibited the activity of trypsin via non-competitive manner. Finally, BPQDs efficiently inhibited the digestion activity of trypsin on human serum albumin, human cervical carcinoma HeLa cells, and human lung adenocarcinoma A549 cells. This work not only explores the in-depth understanding on the influence of BPQDs on proteinases but also paves the way for further application of BPQDs on human beings for diseases treatments.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Haimei Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
22
|
|
23
|
Mohammadi M, Shareghi B, Farhadian S, Saboury AA. The effect of sorbitol on the structure and activity of carboxypeptidase A: Insights from a spectroscopic and computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115710] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Raeessi-babaheydari E, Farhadian S, Shareghi B. The interaction of the green tea polyphenol (catechin) with pepsin: Insights from spectroscopic to molecular dynamics studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
The interaction of Naphthol Yellow S (NYS) with pepsin: Insights from spectroscopic to molecular dynamics studies. Int J Biol Macromol 2020; 165:1842-1851. [DOI: 10.1016/j.ijbiomac.2020.10.093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
|
26
|
Xiao Q, Liang J, Luo H, Li H, Yang J, Huang S. Investigations of conformational structures and activities of trypsin and pepsin affected by food colourant allura red. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Huang S, Li H, Liu Y, Yang L, Wang D, Xiao Q. Investigations of conformational structure and enzymatic activity of trypsin after its binding interaction with graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122285. [PMID: 32105952 DOI: 10.1016/j.jhazmat.2020.122285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/07/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Herein, interaction between graphene oxide (GO) and trypsin was systematically characterized for deep investigations of conformational structure and enzymatic activity of trypsin affected by GO. Results indicated that GO bound with trypsin to form ground state complex with molar ratio of 1 to 1. Intrinsic fluorescence of trypsin was statically quenched by GO through van der Waal interaction, hydrophobic interaction, hydrogen bond, and electrostatic interaction. Both tertiary structure and secondary structure of trypsin were changed obviously after its binding with trypsin, resulting in the structure transformation of trypsin from the β-sheet structure to the α-helix structure. Since GO bound with the allosteric site of trypsin to inhibit its enzymatic activity via non-competitive manner, GO efficiently protected human serum albumin and human cervical carcinoma HeLa cells from the digestion of trypsin. These results explored the exact binding mechanism of GO with protease, which provides more important information for possible biological risk of GO on human beings.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Haimei Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Liyun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Dan Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Guangxi Teachers Education University, Nanning, 530001, PR China.
| |
Collapse
|
28
|
Moradi S, Shareghi B, Saboury AA, Farhadian S. Investigation on the interaction of acid phosphatase with putrescine using docking, simulations methods and multispectroscopic techniques. Int J Biol Macromol 2020; 150:90-101. [DOI: 10.1016/j.ijbiomac.2020.02.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
|
29
|
Liu M, Liu T, Shi Y, Zhao Y, Yan H, Sun B, Wang Q, Wang Z, Han J. Comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme: binding ability, activity and stability. Food Funct 2020; 10:8182-8194. [PMID: 31696185 DOI: 10.1039/c9fo01888c] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polyphenols showing a variety of beneficial effects will interact with multiple proteases after administration. The interactions of oxyresveratrol and piceatannol with trypsin and lysozyme were investigated using fluorescence spectroscopy, UV-vis absorption spectroscopy, circular dichroism spectroscopy, differential scanning calorimetry and molecular docking. Fluorescence quenching results and UV-vis absorption difference spectra revealed that the quenching process was a static mode initiated by ground-state complex formation. The different binding ability of oxyresveratrol and piceatannol with trypsin and lysozyme was discussed based on their different molecular structures. Moreover, the major driving force for the binding process was elucidated as hydrogen bonding and van der Waals forces by the negative enthalpy and entropy changes. Synchronous fluorescence, three-dimensional fluorescence and circular dichroism spectral analysis suggested that the binding of oxyresveratrol and piceatannol to trypsin and lysozyme induced some microenvironmental and conformational changes of the two enzymes. The thermal stability of the enzymes in the presence of polyphenols was studied based on the change in melting temperature by differential scanning calorimetry. The above experimental results were validated by the protein-ligand docking studies which showed the location of the two ligands in the enzymes and the surrounding amino acid residues. Furthermore, enzyme activity assays indicated that the enzymatic activity of trypsin and lysozyme was inhibited by oxyresveratrol and piceatannol. The effect of trypsin and lysozyme on the antioxidant activity and stability of oxyresveratrol and piceatannol was also investigated. In conclusion, the comparative study on the interaction of oxyresveratrol and piceatannol with trypsin and lysozyme showed that the positions of hydroxyl groups of the polyphenols had an important influence on their interaction with enzymes and their antioxidant activity and stability as well as the enzyme activities. The obtained results are expected to provide a theoretical basis for the application of polyphenols in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Min Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Moradi S, Shareghi B, Saboury AA. Spectroscopic analysis of the interaction between Co3O4 nanoparticles and acid phosphatase. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02583-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Mohammadi M, Shareghi B, Akbar Saboury A. Comparative studies on the interaction of spermidine with carboxypeptidase A using multispectroscopic and docking methods. Int J Biol Macromol 2020; 147:821-831. [PMID: 31751718 DOI: 10.1016/j.ijbiomac.2019.09.242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Carboxypeptidase A (CPA) (EC 3.4.17.1) is one of the main members of the M14 family that release one amino acid from the C-terminal region of the polypeptides at each time. The purpose of the present study was to study the effect of spermidine (NH2(CH2)3NH(CH2)4NH2) on the conformation, thermal stability, and activity of native CPA from bovine pancreas, by employing ultraviolet-visible (UV-Vis) spectroscopy, intrinsic fluorescence, thermal stability, circular dichroism (CD), kinetic techniques and molecular docking. It was found that the decrease in the CPA, UV-Vis absorption could be due to the formation of the CPA-spermidine complexes. The results of fluorescence spectroscopic measurements at the temperatures of 308 and 318 K also revealed that spermidine had the capability to quench the intrinsic fluorescence of CPA with the static mode. Further, the thermodynamic parameters, (Gibbs free-energy, enthalpy and entropy changes) showed that the binding process of spermidine to CPA was spontaneous and the main force in stabilizing the complex was the van der Waals and hydrogen interactions, along with the molecular docking results. In addition, CD spectra and fluorescence results revealed that spermidine had a partial effect on the CPA structure, leading to some changes in its secondary structure. The Tm studies of the CPA-spermidine complex also indicated that the Tm values were enhanced with increasing the spermidine concentration. Kinetic studies further showed that by spermidine binding, the Vmax value and activity of the enzyme were increased.
Collapse
Affiliation(s)
- Mozhgan Mohammadi
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
32
|
Huang S, Li H, Luo H, Yang L, Zhou Z, Xiao Q, Liu Y. Conformational structure variation of human serum albumin after binding interaction with black phosphorus quantum dots. Int J Biol Macromol 2020; 146:405-414. [DOI: 10.1016/j.ijbiomac.2020.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/02/2023]
|
33
|
Rajabi M, Farhadian S, Shareghi B, Asgharzadeh S, Momeni L. Noncovalent interactions of bovine trypsin with curcumin and effect on stability, structure, and function. Colloids Surf B Biointerfaces 2019; 183:110287. [DOI: 10.1016/j.colsurfb.2019.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 01/20/2023]
|
34
|
Momeni L, Shareghi B, Farhadian S, Raisi F. Making bovine trypsin more stable and active by Erythritol: A multispectroscopic analysis, docking and computational simulation methods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Asgharzadeh S, Shareghi B, Farhadian S. Experimental and theoretical investigations on the interaction of l-methionine molecules with α-chymotrypsin in the aqueous solution using various methods. Int J Biol Macromol 2019; 131:548-556. [PMID: 30876904 DOI: 10.1016/j.ijbiomac.2019.03.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022]
Abstract
l-Methionine (l-Met) is one of the necessary amino acids that play unparalleled roles, influencing both the protein structure and metabolism. Understanding the interactions between proteins and small molecules can be realized by various perspectives, and this is significant for the progression of basic sciences and drug development. In this study, the variations in the stability, function, and structure of α-Chymotrypsin (α-Chy) in the presence of l-Met were investigated using spectroscopic and computational approaches. The results of the UV-vis absorption demonstrated that α-Chy had a maximum peak at 280 nm due to the Trp residue. Hyperchromism shift was seen in the presence of l-Met. Ground state system was formed in the presence of l-Met, as confirmed by the fluorescence studies. Fluorescence variations also revealed static quenching. The CD spectra also represented the alteration of the enzyme with an increase in the α-helix and a decrease in the β-sheet. The activity of α-Chy was incremented in the presence of l-Met. Therefore, l-Met served as an activator. Molecular docking results also indicated a negative amount for the Gibbs free energy of the binding of l-Met to the enzyme. α-Chy became more stable in the presence of l-Met, based on the molecular dynamics simulation.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
36
|
Mohammadi M, Shareghi B, Akbar Saboury A, Farhadian S. Spermine as a possible endogenous allosteric activator of carboxypeptidase A: multispectroscopic and molecular simulation studies. J Biomol Struct Dyn 2019; 38:101-113. [DOI: 10.1080/07391102.2019.1567387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mozhgan Mohammadi
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
37
|
Rajabi M, Shareghi B, Farhadian S, Momeni L. Evaluation of maltose on conformation and activity parameters of trypsin. J Biomol Struct Dyn 2019; 37:4557-4562. [DOI: 10.1080/07391102.2018.1553739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mina Rajabi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Lida Momeni
- Department of Biology, Faculty of Science, University of Payam Noor, Iran
| |
Collapse
|
38
|
Millan S, Satish L, Bera K, Sahoo H. Binding and inhibitory effect of the food colorants Sunset Yellow and Ponceau 4R on amyloid fibrillation of lysozyme. NEW J CHEM 2019. [DOI: 10.1039/c8nj05827j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Amyloid fibrillogenesis of proteins is known to be the root cause of a large number of diseases like Parkinson's, Alzheimer's, and Huntington's disease, spongiform encephalopathy, amyloid polyneuropathy, type-II diabetes, etc.
Collapse
Affiliation(s)
- Sabera Millan
- Department of Chemistry
- National Institute of Technology (NIT)
- Rourkela-769008, Sundergarh
- India
| | - Lakkoji Satish
- Department of Chemistry
- National Institute of Technology (NIT)
- Rourkela-769008, Sundergarh
- India
| | - Krishnendu Bera
- CEITEC MU
- Masaryk University
- Kamenice 753/5
- 625 00 Brno
- Czech Republic
| | - Harekrushna Sahoo
- Department of Chemistry
- National Institute of Technology (NIT)
- Rourkela-769008, Sundergarh
- India
| |
Collapse
|
39
|
Ren G, Sun H, Guo J, Fan J, Li G, Xu S. Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking. Food Funct 2019; 10:3291-3302. [DOI: 10.1039/c9fo00183b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanism of the interaction between resveratrol and trypsin and its effect on their biological activity.
Collapse
Affiliation(s)
- Guoyan Ren
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - He Sun
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Jinying Guo
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Jinling Fan
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Gen Li
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| | - Saiwen Xu
- College of Food and Bioengineering
- Henan University of Science and Technology
- Luoyang 471023
- China
| |
Collapse
|
40
|
Hosseini-Koupaei M, Shareghi B, Saboury AA, Davar F, Sirotkin VA, Hosseini-Koupaei MH, Enteshari Z. Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. Int J Biol Macromol 2018; 122:732-744. [PMID: 30408449 DOI: 10.1016/j.ijbiomac.2018.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/14/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
Here, CuO nanoparticles were synthesized using Sambucus nigra (elderberry) fruit extract. Further, the binding of proteinase K, as a model enzyme with green synthesized nanoparticles was investigated. The results demonstrated that the structural changes in enzyme were induced by the binding of nanoparticles. These changes were accompanied by the decrease in the Michaelis-Menten constant at 298 K. This means that the enzyme affinity for the substrate was increased. Thermodynamic parameters of protein stability and protein-ligand binding were estimated from the spectroscopic measurements at 298-333 K. Depending on the temperature, CuO nanoparticles showed a dual effect on the thermodynamic stability and binding affinity of enzyme. Nanoparticles increase the stability of the native state of enzyme at room temperature. On the other hand, nanoparticles stabilize the unfolded state of enzyme at 310-333 K. An overall favorable Gibbs energy change was observed for the binding process at 298-333 K. The enzyme-nanoparticle binding is enthalpically driven at room temperature. It was concluded that hydrogen bonding plays a key role in the interaction of enzyme with nanoparticles at 298-310 K. At higher temperatures, the protein-ligand binding is entropically driven. This means that hydrophobic association plays a major role in the proteinase K-CuO binding at 310-333 K.
Collapse
Affiliation(s)
- Mansoore Hosseini-Koupaei
- Department of Biology, Faculty of Science, University of Shahrekord, Shahrekord, P. O. Box .115, Iran; Department of Biology, Naghshe Jahan Institute of Higher Education, Isfahan, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, University of Shahrekord, Shahrekord, P. O. Box .115, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Vladimir A Sirotkin
- Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kremlevskaya str., 18, Kazan 420008, Russia
| | | | - Zahra Enteshari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
41
|
Momeni L, Shareghi B, Farhadian S, Vaziri S, Saboury AA, Raisi F. A molecular simulation and spectroscopic approach to the binding affinity between trypsin and 2-propanol and protein conformation. Int J Biol Macromol 2018; 119:477-485. [DOI: 10.1016/j.ijbiomac.2018.07.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 01/29/2023]
|
42
|
Exploring the effect of 5-Fluorouracil on conformation, stability and activity of lysozyme by combined approach of spectroscopic and theoretical studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:23-31. [DOI: 10.1016/j.jphotobiol.2017.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023]
|
43
|
The functional and structural stabilization of trypsin by sucrose. Int J Biol Macromol 2017; 99:343-349. [DOI: 10.1016/j.ijbiomac.2017.02.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 11/18/2022]
|
44
|
Khammari A, Saboury AA, Karimi-Jafari MH, Khoobi M, Ghasemi A, Yousefinejad S, Abou-Zied OK. Insights into the molecular interaction between two polyoxygenated cinnamoylcoumarin derivatives and human serum albumin. Phys Chem Chem Phys 2017; 19:10099-10115. [DOI: 10.1039/c7cp00681k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Drug–protein interactions based on the thermodynamics approach, curve resolution analysis and computational methods at molecular levels.
Collapse
Affiliation(s)
- Anahita Khammari
- Institute of Biochemistry and Biophysics and Center of Excellence in Biothermodynamics
- University of Tehran
- Tehran
- Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics and Center of Excellence in Biothermodynamics
- University of Tehran
- Tehran
- Iran
| | | | - Mehdi Khoobi
- Department of Medicinal Chemistry
- Faculty of Pharmacy and Pharmaceutical Science Research Center
- Tehran University of Medical Science
- Tehran
- Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics and Center of Excellence in Biothermodynamics
- University of Tehran
- Tehran
- Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences
- School of Health
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Osama K. Abou-Zied
- Department of Chemistry
- Faculty of Science
- Sultan Qaboos University
- Muscat
- Sultanate of Oman
| |
Collapse
|