1
|
Nosal CR, Majumdar A, Arroyo-Currás N, Freel Meyers CL. Trihydroxybenzaldoximes are Redox Cycling Inhibitors of ThDP-Dependent DXP Synthase. ACS Chem Biol 2025. [PMID: 40383931 DOI: 10.1021/acschembio.5c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Pathogenic bacteria must swiftly adapt to dynamic infection environments in order to survive and colonize in the host. 1-Deoxy-d-xylulose-5-phosphate synthase (DXPS) is thought to play a critical role in bacterial adaptation during infection and is a promising drug target. DXPS utilizes a thiamine diphosphate (ThDP) cofactor to catalyze the decarboxylative condensation of pyruvate and d-glyceraldehyde-3-phosphate (d-GAP) to form DXP, a precursor to isoprenoids and B vitamins. DXPS follows a ligand-gated mechanism in which pyruvate reacts with ThDP to form a long-lived lactyl-ThDP (LThDP) adduct which is coordinated by an active-site network of residues. d-GAP binding ostensibly disrupts this network to activate LThDP for decarboxylation. Our lab previously reported trihydroxybenzaldoxime inhibitors which are competitive with respect to d-GAP, and uncompetitive with respect to pyruvate, suggesting they bind after E-LThDP complex formation. Here, we conducted mechanistic studies to determine if these compounds inhibit DXPS by preventing LThDP activation or if they act as inducers of LThDP activation. We discovered that the catechol moiety of the trihydroxybenzaldoxime scaffold undergoes oxidation under alkaline aerobic conditions, and inhibitory potency is reduced under oxygen restriction. Leveraging long-range 1H-15N HSQC NMR and electrochemical measurements, we demonstrated that the oxidized form of the trihydroxybenzaldoxime induces LThDP decarboxylation and accepts electrons from the resulting carbanion, resulting in reduction to the catechol and formation of acetyl-ThDP which hydrolyzes to form acetate. Under aerobic conditions the catechol is reoxidized. Thus, these compounds act as redox cycling, substrate-wasting inhibitors of DXP formation. These findings uncover a novel activity and mechanism of DXPS inhibition which may have implications for DXPS-mediated redox activity in bacteria. Further exploration of redox active DXPS probes may provide new insights for inhibition strategies and selective probe development.
Collapse
Affiliation(s)
- Charles R Nosal
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Nosal CR, Majumdar A, Arroyo-Currás N, Freel Meyers CL. Trihydroxybenzaldoximes are redox cycling inhibitors of ThDP-dependent DXP synthase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641193. [PMID: 40093103 PMCID: PMC11908136 DOI: 10.1101/2025.03.03.641193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pathogenic bacteria must swiftly adapt to dynamic infection environments in order to survive and colonize in the host. 1-Deoxy-d-xylulose-5-phosphate synthase (DXPS) is thought to play a critical role in bacterial adaptation during infection and is a promising drug target. DXPS utilizes a thiamine diphosphate (ThDP) cofactor to catalyze the decarboxylative condensation of pyruvate and D-glyceraldehyde-3-phosphate (d-GAP) to form DXP, a precursor to isoprenoids and B vitamins. DXPS follows a ligand-gated mechanism in which pyruvate reacts with ThDP to form a long-lived lactyl-ThDP (LThDP) adduct which is coordinated by an active-site network of residues. d-GAP binding ostensibly disrupts this network to activate LThDP for decarboxylation. Our lab previously reported trihydroxybenzaldoximes inhibitors which are competitive with respect to D-GAP, and uncompetitive with respect to pyruvate, suggesting they bind after E-LThDP complex formation. Here, we conducted mechanistic studies to determine if these compounds inhibit DXPS by preventing LThDP activation or if they act as inducers of LThDP activation. We discovered that the catechol moiety of the trihydroxybenzaldoxime scaffold undergoes oxidation under alkaline aerobic conditions, and inhibitory potency is reduced under oxygen restriction. Leveraging long range 1H-15N HSQC NMR and electrochemical measurements, we demonstrated that the oxidized form of the trihydroxybenzaldoxime induces LThDP decarboxylation. The oxime moiety accepts electrons from the resulting carbanion, resulting in formation of acetyl-ThDP which hydrolyzes to form acetate. SAR studies revealed that the catechol attenuates the redox activity of the oxime moiety, and under aerobic conditions these compounds are oxidized and thus act as redox cycling inhibitors of DXPS. Further exploration of redox active DXPS probes may provide new insights for inhibition strategies and selective probe development.
Collapse
Affiliation(s)
- Charles R Nosal
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Chan AHY, Ho TCS, Fathoni I, Hamid R, Hirsch AKH, Saliba KJ, Leeper FJ. Evaluation of ketoclomazone and its analogues as inhibitors of 1-deoxy-d-xylulose 5-phosphate synthases and other thiamine diphosphate (ThDP)-dependent enzymes. RSC Med Chem 2024; 15:1773-1781. [PMID: 38784473 PMCID: PMC11110791 DOI: 10.1039/d4md00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides. Ketoclomazone is one of the earliest reported inhibitors of DXPS and antibacterial and herbicidal activities have been documented. This study investigated the activity of ketoclomazone on DXPS from various species, as well as the broader ThDP-dependent enzyme family. To gain further insights into the inhibition, we have prepared analogues of ketoclomazone and evaluated their activity in biochemical and computational studies. Our findings support the potential of ketoclomazone as a selective antibacterial agent.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Imam Fathoni
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Rawia Hamid
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Kevin J Saliba
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
4
|
Coco LB, Freel Meyers CL. An activity-based probe for antimicrobial target DXP synthase, a thiamin diphosphate-dependent enzyme. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1389620. [PMID: 39544285 PMCID: PMC11562961 DOI: 10.3389/fchbi.2024.1389620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This work reports an alkyl acetylphosphonate (alkylAP) activity-based probe (ABP) for 1-deoxy-d-xylulose 5-phosphate synthase DXPS, a promising antimicrobial target. This essential thiamin diphosphate (ThDP)-dependent enzyme operates at a branchpoint in bacterial central metabolism and is believed to play key roles in pathogen adaptation during infection. How different bacterial pathogens harness DXPS activity to adapt and survive within host environments remains incompletely understood, and tools for probing DXPS function in different contexts of infection are lacking. Here, we have developed alkylAP-based ABP 1, designed to react with the ThDP cofactor on active DXPS to form a stable C2α-phosphonolactylThDP adduct which subsequently crosslinks to the DXPS active site upon photoactivation. ABP 1 displays low micromolar potency against DXPS and dose-dependent labeling of DXPS that is blocked by alkylAP-based inhibitors. The probe displays selectivity for DXPS over ThDP-dependent enzymes and is capable of detecting active DXPS in a complex proteome. These studies represent an important advance toward development of tools to probe DXPS function in different contexts of bacterial infection, and for drug discovery efforts on this target.
Collapse
Affiliation(s)
- Lauren B Coco
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Toci EM, Austin SL, Majumdar A, Woodcock HL, Freel Meyers CL. Disruption of an Active Site Network Leads to Activation of C2α-Lactylthiamin Diphosphate on the Antibacterial Target 1-Deoxy-d-xylulose-5-phosphate Synthase. Biochemistry 2024; 63:671-687. [PMID: 38393327 PMCID: PMC11015862 DOI: 10.1021/acs.biochem.3c00735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The bacterial metabolic enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde-3-phosphate (d-GAP). DXP is an essential bacteria-specific metabolite that feeds into the biosynthesis of isoprenoids, pyridoxal phosphate (PLP), and ThDP. DXPS catalyzes the activation of pyruvate to give the C2α-lactylThDP (LThDP) adduct that is long-lived on DXPS in a closed state in the absence of the cosubstrate. Binding of d-GAP shifts the DXPS-LThDP complex to an open state which coincides with LThDP decarboxylation. This gated mechanism distinguishes DXPS in ThDP enzymology. How LThDP persists on DXPS in the absence of cosubstrate, while other pyruvate decarboxylases readily activate LThDP for decarboxylation, is a long-standing question in the field. We propose that an active site network functions to prevent LThDP activation on DXPS until the cosubstrate binds. Binding of d-GAP coincides with a conformational shift and disrupts the network causing changes in the active site that promote LThDP activation. Here, we show that the substitution of putative network residues, as well as nearby residues believed to contribute to network charge distribution, predictably affects LThDP reactivity. Substitutions predicted to disrupt the network have the effect to activate LThDP for decarboxylation, resulting in CO2 and acetate production. In contrast, a substitution predicted to strengthen the network fails to activate LThDP and has the effect to shift DXPS toward the closed state. Network-disrupting substitutions near the carboxylate of LThDP also have a pronounced effect to shift DXPS to an open state. These results offer initial insights to explain the long-lived LThDP intermediate and its activation through disruption of an active site network, which is unique to DXPS. These findings have important implications for DXPS function in bacteria and its development as an antibacterial target.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven L Austin
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Chan AHY, Ho TCS, Irfan R, Hamid RAA, Rudge ES, Iqbal A, Turner A, Hirsch AKH, Leeper FJ. Design of thiamine analogues for inhibition of thiamine diphosphate (ThDP)-dependent enzymes: Systematic investigation through Scaffold-Hopping and C2-Functionalisation. Bioorg Chem 2023; 138:106602. [PMID: 37201323 DOI: 10.1016/j.bioorg.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Thiamine diphosphate (ThDP), the bioactive form of vitamin B1, is an essential coenzyme needed for processes of cellular metabolism in all organisms. ThDP-dependent enzymes all require ThDP as a coenzyme for catalytic activity, although individual enzymes vary significantly in substrate preferences and biochemical reactions. A popular way to study the role of these enzymes through chemical inhibition is to use thiamine/ThDP analogues, which typically feature a neutral aromatic ring in place of the positively charged thiazolium ring of ThDP. While ThDP analogues have aided work in understanding the structural and mechanistic aspects of the enzyme family, at least two key questions regarding the ligand design strategy remain unresolved: 1) which is the best aromatic ring? and 2) how can we achieve selectivity towards a given ThDP-dependent enzyme? In this work, we synthesise derivatives of these analogues covering all central aromatic rings used in the past decade and make a head-to-head comparison of all the compounds as inhibitors of several ThDP-dependent enzymes. Thus, we establish the relationship between the nature of the central ring and the inhibitory profile of these ThDP-competitive enzyme inhibitors. We also demonstrate that introducing a C2-substituent onto the central ring to explore the unique substrate-binding pocket can further improve both potency and selectivity.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Rimsha Irfan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Rawia A A Hamid
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Emma S Rudge
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Amjid Iqbal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Saudi Arabia
| | - Alex Turner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
7
|
Pires CV, Chawla J, Simmons C, Gibbons J, Adams JH. Heat-shock responses: systemic and essential ways of malaria parasite survival. Curr Opin Microbiol 2023; 73:102322. [PMID: 37130502 PMCID: PMC10247345 DOI: 10.1016/j.mib.2023.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Fever is a part of the human innate immune response that contributes to limiting microbial growth and development in many infectious diseases. For the parasite Plasmodium falciparum, survival of febrile temperatures is crucial for its successful propagation in human populations as well as a fundamental aspect of malaria pathogenesis. This review discusses recent insights into the biological complexity of the malaria parasite's heat-shock response, which involves many cellular compartments and essential metabolic processes to alleviate oxidative stress and accumulation of damaged and unfolded proteins. We highlight the overlap between heat-shock and artemisinin resistance responses, while also explaining how the malaria parasite adapts its fever response to fight artemisinin treatment. Additionally, we discuss how this systemic and essential fight for survival can also contribute to parasite transmission to mosquitoes.
Collapse
Affiliation(s)
- Camilla V Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Jyotsna Chawla
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Caroline Simmons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Justin Gibbons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
8
|
Johnston ML, Bonett EM, DeColli AA, Freel Meyers CL. Antibacterial Target DXP Synthase Catalyzes the Cleavage of d-Xylulose 5-Phosphate: a Study of Ketose Phosphate Binding and Ketol Transfer Reaction. Biochemistry 2022; 61:1810-1823. [PMID: 35998648 PMCID: PMC9531112 DOI: 10.1021/acs.biochem.2c00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner. In addition to its role in isoprenoid biosynthesis, DXP is required for ThDP and pyridoxal phosphate biosynthesis. Due to its function as a branch-point enzyme and its demonstrated substrate and catalytic promiscuity, we hypothesize that DXPS could be key for bacterial adaptation in the dynamic metabolic landscape during infection. Prior work in the Freel Meyers laboratory has illustrated that DXPS displays relaxed specificity toward donor and acceptor substrates and varies acceptor specificity according to the donor used. We have reported that DXPS forms dihydroxyethyl (DHE)ThDP from ketoacid or aldehyde donor substrates via decarboxylation and deprotonation, respectively. Here, we tested other DHE donors and found that DXPS cleaves d-xylulose 5-phosphate (X5P) at C2-C3, producing DHEThDP through a third mechanism involving d-GAP elimination. We interrogated DXPS-catalyzed reactions using X5P as a donor substrate and illustrated (1) production of a semi-stable enzyme-bound intermediate and (2) O2, H+, and d-erythrose 4-phosphate act as acceptor substrates, highlighting a new transketolase-like activity of DXPS. Furthermore, we examined X5P binding to DXPS and suggest that the d-GAP binding pocket plays a crucial role in X5P binding and turnover. Overall, this study reveals a ketose-cleavage reaction catalyzed by DXPS, highlighting the remarkable flexibility for donor substrate usage by DXPS compared to other C-C bond-forming enzymes.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eucolona M. Bonett
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Gierse RM, Oerlemans R, Reddem ER, Gawriljuk VO, Alhayek A, Baitinger D, Jakobi H, Laber B, Lange G, Hirsch AKH, Groves MR. First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization. Sci Rep 2022; 12:7221. [PMID: 35508530 PMCID: PMC9068908 DOI: 10.1038/s41598-022-11205-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a “fork-like” motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design.
Collapse
Affiliation(s)
- Robin M Gierse
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Rick Oerlemans
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Eswar R Reddem
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Victor O Gawriljuk
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.,São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Dominik Baitinger
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany
| | - Harald Jakobi
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Bernd Laber
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Gudrun Lange
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany. .,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Matthew R Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.
| |
Collapse
|
10
|
Zhu D, Johannsen S, Masini T, Simonin C, Haupenthal J, Illarionov B, Andreas A, Awale M, Gierse RM, van der Laan T, van der Vlag R, Nasti R, Poizat M, Buhler E, Reiling N, Müller R, Fischer M, Reymond JL, Hirsch AKH. Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening. Chem Sci 2022; 13:10686-10698. [PMID: 36320685 PMCID: PMC9491098 DOI: 10.1039/d2sc02371g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action. We identified two drug-like antitubercular hits with submicromolar inhibition constants against the target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) with a new mode of action and promising activity against drug-resistant tuberculosis.![]()
Collapse
Affiliation(s)
- Di Zhu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Céline Simonin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Mahendra Awale
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robin M Gierse
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Tridia van der Laan
- Department of Mycobacteria, National Institute of Public Health and the Environment (RIVM), Diagnostics and Laboratory Surveillance (IDS) Infectious Diseases Research Antonie van Leeuwenhoeklaan 9 3721 MA Bilthoven The Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Rita Nasti
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Mael Poizat
- Symeres Kadijk 3 9747 AT Groningen The Netherlands
| | - Eric Buhler
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité Bâtiment Condorcet 75205 Paris Cedex 13 France
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
11
|
The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite. Nat Commun 2021; 12:4563. [PMID: 34315897 PMCID: PMC8316339 DOI: 10.1038/s41467-021-24814-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/09/2021] [Indexed: 01/02/2023] Open
Abstract
The emergence and spread of Plasmodium falciparum parasites resistant to front-line antimalarial artemisinin-combination therapies (ACT) threatens to erase the considerable gains against the disease of the last decade. Here, we develop a large-scale phenotypic screening pipeline and use it to carry out a large-scale forward-genetic phenotype screen in P. falciparum to identify genes allowing parasites to survive febrile temperatures. Screening identifies more than 200 P. falciparum mutants with differential responses to increased temperature. These mutants are more likely to be sensitive to artemisinin derivatives as well as to heightened oxidative stress. Major processes critical for P. falciparum tolerance to febrile temperatures and artemisinin include highly essential, conserved pathways associated with protein-folding, heat shock and proteasome-mediated degradation, and unexpectedly, isoprenoid biosynthesis, which originated from the ancestral genome of the parasite’s algal endosymbiont-derived plastid, the apicoplast. Apicoplast-targeted genes in general are upregulated in response to heat shock, as are other Plasmodium genes with orthologs in plant and algal genomes. Plasmodium falciparum parasites appear to exploit their innate febrile-response mechanisms to mediate resistance to artemisinin. Both responses depend on endosymbiont-derived genes in the parasite’s genome, suggesting a link to the evolutionary origins of Plasmodium parasites in free-living ancestors. Repeating fever is a hallmark of malaria. Here, a large-scale forward genetic screen in malaria-causing Plasmodium falciparum identifies genes associated with parasite tolerance to host fever, including apicoplast targeted isoprenoid biosynthesis—sharing features with artemisinin resistance.
Collapse
|
12
|
Prejanò M, Medina FE, Ramos MJ, Russo N, Fernandes PA, Marino T. How the Destabilization of a Reaction Intermediate Affects Enzymatic Efficiency: The Case of Human Transketolase. ACS Catal 2020; 10:2872-2881. [PMID: 33828899 PMCID: PMC8016368 DOI: 10.1021/acscatal.9b04690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Indexed: 12/16/2022]
Abstract
![]()
Atomic
resolution X-ray crystallography has shown that an intermediate
(the X5P-ThDP adduct) of the catalytic cycle of transketolase (TK)
displays a significant, putatively highly energetic, out-of-plane
distortion in a sp2 carbon
adjacent to a lytic bond, suggested to lower the barrier of the subsequent
step, and thus was postulated to embody a clear-cut demonstration
of the intermediate destabilization effect. The lytic
bond of the subsequent rate-limiting step was very elongated in the
X-ray structure (1.61 Å), which was proposed to be a consequence
of the out-of-plane distortion. Here we use high-level QM and QM/MM
calculations to study the intermediate destabilization effect. We show that the intrinsic energy penalty for the observed
distortion is small (0.2 kcal·mol–1) and that
the establishment of a favorable hydrogen bond within X5P-ThDP, instead
of enzyme steric strain, was found to be the main cause for the distortion.
As the net energetic effect of the distortion is small, the establishment
of the internal hydrogen bond (−0.6 kcal·mol–1) offsets the associated penalty. This makes the distorted structure
more stable than the nondistorted one. Even though the energy contributions
determined here are close to the accuracy of the computational methods
in estimating penalties for geometric distortions, our data show that
the intermediate destabilization effect provides
a small contribution to the observed reaction rate and does not represent
a catalytic effect that justifies the many orders of magnitude which
enzymes accelerate reaction rates. The results help to understand
the intrinsic enzymatic machinery behind enzyme’s amazing proficiency.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Fabiola E. Medina
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
13
|
Berta D, Buigues PJ, Badaoui M, Rosta E. Cations in motion: QM/MM studies of the dynamic and electrostatic roles of H + and Mg 2+ ions in enzyme reactions. Curr Opin Struct Biol 2020; 61:198-206. [PMID: 32065923 DOI: 10.1016/j.sbi.2020.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Here we discuss current trends in the simulations of enzymatic reactions focusing on phosphate catalysis. The mechanistic details of the proton transfers coupled to the phosphate cleavage is one of the key challenges in QM/MM calculations of these and other enzyme catalyzed reactions. The lack of experimental information offers both an opportunity for computations as well as often unresolved controversies. We discuss the example of small GTPases including the important human Ras protein. The high dimensionality and chemical complexity of these reactions demand carefully chosen computational techniques both in terms of the underlying quantum chemical theory and the sampling of the conformational ensemble. We also point out the important role of Mg2+ ions, and recent advances in their transient involvement in the catalytic mechanisms.
Collapse
Affiliation(s)
- Dénes Berta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Pedro J Buigues
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Magd Badaoui
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom
| | - Edina Rosta
- Department of Chemistry, King's College London, London, SE1 1DB, United Kingdom.
| |
Collapse
|
14
|
Prejanò M, Medina FE, Fernandes PA, Russo N, Ramos MJ, Marino T. The Catalytic Mechanism of Human Transketolase. Chemphyschem 2019; 20:2881-2886. [PMID: 31489766 DOI: 10.1002/cphc.201900650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Indexed: 01/10/2023]
Abstract
We have computationally determined the catalytic mechanism of human transketolase (hTK) using a cluster model approach and density functional theory calculations. We were able to determine all the relevant structures, bringing solid evidences to the proposed experimental mechanism, and to add important detail to the structure of the transition states and the energy profile associated with catalysis. Furthermore, we have established the existence of a crucial intermediate of the catalytic cycle, in agreement with experiments. The calculated data brought new insights to hTK's catalytic mechanism, providing free-energy values for the chemical reaction, as well as adding atomistic detail to the experimental mechanism.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| | - Fabiola Estefany Medina
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro Alexandrino Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| | - Maria Joao Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| |
Collapse
|
15
|
Chen PYT, DeColli AA, Freel Meyers CL, Drennan CL. X-ray crystallography-based structural elucidation of enzyme-bound intermediates along the 1-deoxy-d-xylulose 5-phosphate synthase reaction coordinate. J Biol Chem 2019; 294:12405-12414. [PMID: 31239351 PMCID: PMC6699841 DOI: 10.1074/jbc.ra119.009321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/16/2019] [Indexed: 01/07/2023] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) into 1-deoxy-d-xylulose 5-phosphate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters Kmd-GAP and Kmpyruvate (54 ± 3 and 11 ± 1 μm, respectively) and comparable catalytic activity (kcat = 45 ± 2 min-1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2α-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2α-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-resolution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.
Collapse
Affiliation(s)
- Percival Yang-Ting Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alicia A. DeColli
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, To whom correspondence may be addressed:
Dept. of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. Tel.:
410-502-4807; Fax:
410-955-3023; E-mail:
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, A Howard Hughes Medical Institute investigator and a senior fellow of the Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR). To whom correspondence may be addressed:
Depts. of Biology and Chemistry, Massachusetts Institute of Technology, 31 Ames St., Bldg. 68-680, Cambridge, MA 02139. Tel.:
617-253-5622; Fax:
617-258-7847; E-mail:
| |
Collapse
|
16
|
Planas F, McLeish MJ, Himo F. Computational characterization of enzyme-bound thiamin diphosphate reveals a surprisingly stable tricyclic state: implications for catalysis. Beilstein J Org Chem 2019; 15:145-159. [PMID: 30745990 PMCID: PMC6350894 DOI: 10.3762/bjoc.15.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 12/05/2022] Open
Abstract
Thiamin diphosphate (ThDP)-dependent enzymes constitute a large class of enzymes that catalyze a diverse range of reactions. Many are involved in stereospecific carbon–carbon bond formation and, consequently, have found increasing interest and utility as chiral catalysts in various biocatalytic applications. All ThDP-catalyzed reactions require the reaction of the ThDP ylide (the activated state of the cofactor) with the substrate. Given that the cofactor can adopt up to seven states on an enzyme, identifying the factors affecting the stability of the pre-reactant states is important for the overall understanding of the kinetics and mechanism of the individual reactions. In this paper we use density functional theory calculations to systematically study the different cofactor states in terms of energies and geometries. Benzoylformate decarboxylase (BFDC), which is a well characterized chiral catalyst, serves as the prototypical ThDP-dependent enzyme. A model of the active site was constructed on the basis of available crystal structures, and the cofactor states were characterized in the presence of three different ligands (crystallographic water, benzoylformate as substrate, and (R)-mandelate as inhibitor). Overall, the calculations reveal that the relative stabilities of the cofactor states are greatly affected by the presence and identity of the bound ligands. A surprising finding is that benzoylformate binding, while favoring ylide formation, provided even greater stabilization to a catalytically inactive tricyclic state. Conversely, the inhibitor binding greatly destabilized the ylide formation. Together, these observations have significant implications for the reaction kinetics of the ThDP-dependent enzymes, and, potentially, for the use of unnatural substrates in such reactions.
Collapse
Affiliation(s)
- Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis IN 46202, USA
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
17
|
Strobbe S, De Lepeleire J, Van Der Straeten D. From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:1862. [PMID: 30619424 PMCID: PMC6305313 DOI: 10.3389/fpls.2018.01862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 05/11/2023]
Abstract
Humans are highly dependent on plants to reach their dietary requirements, as plant products contribute both to energy and essential nutrients. For many decades, plant breeders have been able to gradually increase yields of several staple crops, thereby alleviating nutritional needs with varying degrees of success. However, many staple crops such as rice, wheat and corn, although delivering sufficient calories, fail to satisfy micronutrient demands, causing the so called 'hidden hunger.' Biofortification, the process of augmenting nutritional quality of food through the use of agricultural methodologies, is a pivotal asset in the fight against micronutrient malnutrition, mainly due to vitamin and mineral deficiencies. Several technical advances have led to recent breakthroughs. Nutritional genomics has come to fruition based on marker-assisted breeding enabling rapid identification of micronutrient related quantitative trait loci (QTL) in the germplasm of interest. As a complement to these breeding techniques, metabolic engineering approaches, relying on a continuously growing fundamental knowledge of plant metabolism, are able to overcome some of the inevitable pitfalls of breeding. Alteration of micronutrient levels does also require fundamental knowledge about their role and influence on plant growth and development. This review focuses on our knowledge about provitamin A (beta-carotene), vitamin C (ascorbate) and the vitamin E group (tocochromanols). We begin by providing an overview of the functions of these vitamins in planta, followed by highlighting some of the achievements in the nutritional enhancement of food crops via conventional breeding and genetic modification, concluding with an evaluation of the need for such biofortification interventions. The review further elaborates on the vast potential of creating nutritionally enhanced crops through multi-pathway engineering and the synergistic potential of conventional breeding in combination with genetic engineering, including the impact of novel genome editing technologies.
Collapse
|
18
|
Englund E, Shabestary K, Hudson EP, Lindberg P. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound. Metab Eng 2018; 49:164-177. [PMID: 30025762 DOI: 10.1016/j.ymben.2018.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 11/25/2022]
Abstract
Of the two natural metabolic pathways for making terpenoids, biotechnological utilization of the mevalonate (MVA) pathway has enabled commercial production of valuable compounds, while the more recently discovered but stoichiometrically more efficient methylerythritol phosphate (MEP) pathway is underdeveloped. We conducted a study on the overexpression of each enzyme in the MEP pathway in the unicellular cyanobacterium Synechocystis sp. PCC 6803, to identify potential targets for increasing flux towards terpenoid production, using isoprene as a reporter molecule. Results showed that the enzymes Ipi, Dxs and IspD had the biggest impact on isoprene production. By combining and creating operons out of those genes, isoprene production was increased 2-fold compared to the base strain. A genome-scale model was used to identify targets upstream of the MEP pathway that could redirect flux towards terpenoids. A total of ten reactions from the Calvin-Benson-Bassham cycle, lower glycolysis and co-factor synthesis pathways were probed for their effect on isoprene synthesis by co-expressing them with the MEP enzymes, resulting in a 60% increase in production from the best strain. Lastly, we studied two isoprene synthases with the highest reported catalytic rates. Only by expressing them together with Dxs and Ipi could we get stable strains that produced 2.8 mg/g isoprene per dry cell weight, a 40-fold improvement compared to the initial strain.
Collapse
Affiliation(s)
- Elias Englund
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden; School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Kiyan Shabestary
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Elton P Hudson
- School of Biotechnology, KTH - Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
19
|
Planas F, Sheng X, McLeish MJ, Himo F. A Theoretical Study of the Benzoylformate Decarboxylase Reaction Mechanism. Front Chem 2018; 6:205. [PMID: 29998094 PMCID: PMC6028569 DOI: 10.3389/fchem.2018.00205] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Density functional theory calculations are used to investigate the detailed reaction mechanism of benzoylformate decarboxylase, a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate yielding benzaldehyde and carbon dioxide. A large model of the active site is constructed on the basis of the X-ray structure, and it is used to characterize the involved intermediates and transition states and evaluate their energies. There is generally good agreement between the calculations and available experimental data. The roles of the various active site residues are discussed and the results are compared to mutagenesis experiments. Importantly, the calculations identify off-cycle intermediate species of the ThDP cofactor that can have implications on the kinetics of the reaction.
Collapse
Affiliation(s)
- Ferran Planas
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Xiang Sheng
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Wang X, Dowd CS. The Methylerythritol Phosphate Pathway: Promising Drug Targets in the Fight against Tuberculosis. ACS Infect Dis 2018; 4:278-290. [PMID: 29390176 DOI: 10.1021/acsinfecdis.7b00176] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe infectious disease in need of new chemotherapies especially for drug-resistant cases. To meet the urgent requirement of new TB drugs with novel modes of action, the TB research community has been validating numerous targets from several biosynthetic pathways. The methylerythritol phosphate (MEP) pathway is utilized by Mtb for the biosynthesis of isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate (DMAPP), the universal five-carbon building blocks of isoprenoids. While being a common biosynthetic pathway in pathogens, the MEP pathway is completely absent in humans. Due to its unique presence in pathogens as well as the essentiality of the MEP pathway in Mtb, the enzymes in this pathway are promising targets for the development of new drugs against tuberculosis. In this Review, we discuss three enzymes in the MEP pathway: 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (IspC/DXR), and 2 C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF), which appear to be the most promising antitubercular drug targets. Structural and mechanistic features of these enzymes are reviewed, as well as selected inhibitors that show promise as antitubercular agents.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| |
Collapse
|
21
|
Abstract
In this review, we analyze the enzyme DXS, the first and rate-limiting protein in the methylerythritol 4-phosphate pathway. This pathway was discovered in 1996 and is one of two known metabolic pathways for the biosynthesis of the universal building blocks for isoprenoids. It promises to offer new targets for the development of anti-infectives against the human pathogens, malaria or tuberculosis. We mapped the sequence conservation of 1-deoxy-xylulose-5-phosphate synthase on the protein structure and analyzed it in comparison with previously identified druggable pockets. We provide a recent overview of known inhibitors of the enzyme. Taken together, this sets the stage for future structure-based drug design.
Collapse
|