1
|
Tian Y, Chen Y, Liu Y, Li H, Dai Z. Elemental Two-Dimensional Materials for Li/Na-Ion Battery Anode Applications. CHEM REC 2022; 22:e202200123. [PMID: 35758546 DOI: 10.1002/tcr.202200123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Two-dimensional (2D) nanostructure is currently the subject in the fields of new energy storage and devices. During the past years, a broad range of 2D materials represented by graphene have been developed and endow with excellent electrochemical properties. Among them, elemental 2D materials (Xenes) are an emerged material family for Li/Na-ion battery (LIB/SIB) anodes. Compared with other 2D materials and bulk materials, Xenes may exhibit some great superiorities for Li/Na storage, including excellent conductivity, fast ion diffusion and large active sites exposure. In this review, we provide a systematic summary of the recent progress and achievements of Xenes as well as their applications in LIBs/SIBs. The broad categorization of Xenes from group IIIA to VIA has been concisely outlined, and the related details in syntheses, structures and Li/Na-ion storage properties are reviewed. Further, the latest research progress of Xenes in Li/Na ion batteries are summarized, together with mechanism discussions. Finally, the challenges and prospects of Xenes applied to Li/Na ion battery are proposed based on its current developments.
Collapse
Affiliation(s)
- Yahui Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaoda Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Hui Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhengfei Dai
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
2
|
Morel B, Carrasco-Jiménez MP, Jurado S, Conejero-Lara F. Rapid Conversion of Amyloid-Beta 1-40 Oligomers to Mature Fibrils through a Self-Catalytic Bimolecular Process. Int J Mol Sci 2021; 22:6370. [PMID: 34198692 PMCID: PMC8232289 DOI: 10.3390/ijms22126370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
The formation of fibrillar aggregates of the amyloid beta peptide (Aβ) in the brain is one of the hallmarks of Alzheimer's disease (AD). A clear understanding of the different aggregation steps leading to fibrils formation is a keystone in therapeutics discovery. In a recent study, we showed that Aβ40 and Aβ42 form dynamic micellar aggregates above certain critical concentrations, which mediate a fast formation of more stable oligomers, which in the case of Aβ40 are able to evolve towards amyloid fibrils. Here, using different biophysical techniques we investigated the role of different fractions of the Aβ aggregation mixture in the nucleation and fibrillation steps. We show that both processes occur through bimolecular interplay between low molecular weight species (monomer and/or dimer) and larger oligomers. Moreover, we report here a novel self-catalytic mechanism of fibrillation of Aβ40, in which early oligomers generate and deliver low molecular weight amyloid nuclei, which then catalyze the rapid conversion of the oligomers to mature amyloid fibrils. This fibrillation catalytic activity is not present in freshly disaggregated low-molecular weight Aβ40 and is, therefore, a property acquired during the aggregation process. In contrast to Aβ40, we did not observe the same self-catalytic fibrillation in Aβ42 spheroidal oligomers, which could neither be induced to fibrillate by the Aβ40 nuclei. Our results reveal clearly that amyloid fibrillation is a multi-component process, in which dynamic collisions between different interacting species favor the kinetics of amyloid nucleation and growth.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - María P Carrasco-Jiménez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Samuel Jurado
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología e Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
3
|
van der Munnik NP, Moss MA, Uline MJ. Obstacles to translating the promise of nanoparticles into viable amyloid disease therapeutics. Phys Biol 2019; 16:021002. [PMID: 30620933 DOI: 10.1088/1478-3975/aafc66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanoparticles (NPs) constitute a powerful therapeutic platform with exciting prospects as potential inhibitors of amyloid-[Formula: see text] (Aβ) aggregation, a process associated with Alzheimer's disease (AD). Researchers have synthesized and tested a large collection of NPs with disparate sizes, shapes, electrostatic properties and surface ligands that evoke a variety of responses on Aβ aggregation. In spite of a decade of research on the NP-Aβ system and many promising experimental results, NPs have failed to progress to any level of clinical trials for AD. A theoretical framework with which to approach this physical system is presented featuring two simple metrics, (1) the extent to which NPs adsorb Aβ, and (2) the degree to which interaction with a NP alters Aβ conformation relative to aggregation propensity. Most of our current understanding of these two interactions has been gained through experimentation, and many of these studies are reviewed herein. We also provide a potential roadmap for studies that we believe could produce viable NPs as an effective AD therapeutic platform.
Collapse
Affiliation(s)
- N P van der Munnik
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States of America. Chemical Engineering Department, University of South Carolina, Columbia, SC 29208, United States of America
| | | | | |
Collapse
|
4
|
Kashchiev D. Growth probability and formation time of the individual Oosawa-Kasai protein fibril. Phys Rev E 2018; 98:012412. [PMID: 30110800 DOI: 10.1103/physreve.98.012412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 12/23/2022]
Abstract
Protein fibrils are currently of great academic and practical interest because of their involvement in scores of severe human diseases and their promising use in various high-technology devices. The Oosawa-Kasai (OK) model of protein self-assembly into fibrils has been widely used to gain mechanistic insight into the process of fibril formation and growth. Here this model is employed to obtain exact and mathematically simple expressions for the probability P_{n} of an individual fibril of n protein monomers to grow to a macroscopically large size and for the mean time τ_{n} that such a fibril needs for its formation. These expressions quantify the increase of P_{n} and the decrease of τ_{n} with increasing the concentration of monomeric protein in the solution. When used for analysis of experimental P_{n} and τ_{n} data, they make it possible to determine the parameters characterizing fibril nucleation and growth in the framework of the OK model. Finally, an expression is found for the mean time of the first appearance of an n-sized fibril in the protein solution. The results obtained are applicable to the formation of other aggregates corresponding to the OK fibrils, such as the one-dimensional Kossel-Stranski crystals and Ising ferromagnets.
Collapse
Affiliation(s)
- Dimo Kashchiev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, ul. Acad. G. Bonchev 11, Sofia 1113, Bulgaria
| |
Collapse
|
5
|
Herrera MG, Pizzuto M, Lonez C, Rott K, Hütten A, Sewald N, Ruysschaert JM, Dodero VI. Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1417-1427. [DOI: 10.1016/j.nano.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
|
6
|
Wang J, Yamamoto T, Bai J, Cox SJ, Korshavn KJ, Monette M, Ramamoorthy A. Real-time monitoring of the aggregation of Alzheimer's amyloid-β via 1H magic angle spinning NMR spectroscopy. Chem Commun (Camb) 2018; 54:2000-2003. [PMID: 29411841 DOI: 10.1039/c8cc00167g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton magic-angle-spinning NMR used for real-time analysis of amyloid aggregation reveals that mechanical rotation of Aβ1-40 monomers increases the rate of formation of aggregates, and that the increasing lag-time with peptide concentration suggests the formation of growth-incompetent species. EGCG's ability to shift off-pathway aggregation is also demonstrated.
Collapse
Affiliation(s)
- Jian Wang
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Shaw M, Bella A, Ryadnov MG. CREIM: Coffee Ring Effect Imaging Model for Monitoring Protein Self-Assembly in Situ. J Phys Chem Lett 2017; 8:4846-4851. [PMID: 28933862 DOI: 10.1021/acs.jpclett.7b02147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein self-assembly is fundamental to nanotechnology. Self-assembling structures are produced under static in vitro conditions typically forming over hours. In contrast, hydrodynamic intracellular environments employ far shorter time scales to compartmentalize highly concentrated protein solutions. Herein, we exploit the radial capillary flow within a drying sessile droplet (the coffee ring effect) to emulate dynamic native environments and monitor an archetypal protein assembly in situ using high-speed super-resolution imaging. We demonstrate that the assembly can be empirically driven to completion within minutes to seconds without apparent changes in supramolecular morphology. The model offers a reliable tool for the diagnosis and engineering of self-assembling systems under nonequilibrium conditions.
Collapse
Affiliation(s)
- Michael Shaw
- National Physical Laboratory , Hampton Road, Teddington, TW11 0LW, United Kingdom
- Department of Computer Science, University College London , London, WC1 6BT, United Kingdom
| | - Angelo Bella
- National Physical Laboratory , Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory , Hampton Road, Teddington, TW11 0LW, United Kingdom
| |
Collapse
|
8
|
Kamgar-Parsi K, Hong L, Naito A, Brooks CL, Ramamoorthy A. Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship between peptide concentration and aggregation lag time. J Biol Chem 2017; 292:14963-14976. [PMID: 28739873 PMCID: PMC5592673 DOI: 10.1074/jbc.m117.791236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Indexed: 11/06/2022] Open
Abstract
The role of the peptide hormone calcitonin in skeletal protection has led to its use as a therapeutic for osteoporosis. However, calcitonin aggregation into amyloid fibrils limits its therapeutic efficacy, necessitating a modification of calcitonin's aggregation kinetics. Here, we report a direct relationship between human calcitonin (hCT) concentration and aggregation lag time. This kinetic trend was contrary to the conventional understanding of amyloid aggregation and persisted over a range of aggregation conditions, as confirmed by thioflavin-T kinetics assays, CD spectroscopy, and transmission EM. Dynamic light scattering, 1H NMR experiments, and seeded thioflavin-T assay results indicated that differences in initial peptide species contribute to this trend more than variations in the primary nucleus formation rate. On the basis of kinetics modeling results, we propose a mechanism whereby a structural conversion of hCT monomers is needed before incorporation into the fibril. Our kinetic mechanism recapitulates the experimentally observed relationship between peptide concentration and lag time and represents a novel mechanism in amyloid aggregation. Interestingly, hCT at low pH and salmon calcitonin (sCT) exhibited the canonical inverse relationship between concentration and lag time. Comparative studies of hCT and sCT with molecular dynamics simulations and CD indicated an increased α-helical structure in sCT and low-pH hCT monomers compared with neutral-pH hCT, suggesting that α-helical monomers represent a growth-competent species, whereas unstructured random coil monomers represent a growth-incompetent species. Our finding that initial monomer concentration is positively correlated with lag time in hCT aggregation could help inform future efforts for improving therapeutic applications of CT.
Collapse
Affiliation(s)
- Kian Kamgar-Parsi
- From the Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Liu Hong
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, and
| | - Charles L Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
9
|
Auer S. Simple Model of the Effect of Solution Conditions on the Nucleation of Amyloid Fibrils. J Phys Chem B 2017; 121:8893-8901. [DOI: 10.1021/acs.jpcb.7b05400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Auer
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|