1
|
Raghuraman P, Park S. Exploring the modulation of phosphorylation and SUMOylation-dependent NPR1 conformational switching on immune regulators TGA3 and WRKY70 through molecular simulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109711. [PMID: 40056739 DOI: 10.1016/j.plaphy.2025.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
NPR1 (Nonexpressor pathogenesis-related genes 1) is regulated by multisite phosphorylation and SUMOylation, serving as a master switch for effector-triggered plant immunity through a transcriptional activator (TGA3) and repressor (WRKY70) are experimentally well studied. However, the conformational relationship between the various phosphorylation, un-phosphorylation states, and SUMOylation's role in the functional switch remains unclear. Using deep learning-based molecular modeling, docking, and multi-nanosecond simulations (totaling 2 μs) with end-state free energy calculations, we unveil how different phosphorylation states impact the dynamic stability of NPR1's four phospho-serine residues (Ser11, Ser15, Ser55, & Ser59) and binding of the TGA3-WRKY70 over SUMOylation. Results from our simulations show that the salicylic-acid induced P-Ser11/15NPR1-SUMO3 stabilizes helices and the flexible activation loop (α22Lys423 - α1Arg50 & L35Asp467-Arg51α51, and Gly27L3), thereby switching association with TGA3. The inter-helix salt-bridge formed (L10Arg99-Glu323α9 and α14Glu280-Pro264L6) between the phosphorylated NPR1-SUMO3-TGA3 engage in tight control of conformational regulation were disengaged in the unphosphorylated system. The P-Ser55/59NPR1-SUMO3-WRKY70 reorients itself and forms an electrostatic and hydrogen bond with Lys145α7 - L2Asp26, L6Arg99 - Leu293L18 and Lys262L15 - Glu241L15, α13Val239 (α310), & L17Leu267 keeps complex stable and quiescent compare to unphosphorylated NPR1-WRKY70. Subsequently, the essential dynamic and secondary structural analysis reveals that the phosphorylation inhibits the α516 (long helix) formation and reduces the communication space between the 460α25-βturn3-α30-L42590 (NPR1) and 90L9-L10107 (SUMO3), making the binding more suitable for TGA3 (260βturn-L6270) and WRKY70 (230L15-L16265) via activation loop. These findings, which reveal the atomic and structural details of the NPR1's post-translational modification, will illuminate future investigations into enhancing plant immunity.
Collapse
Affiliation(s)
- P Raghuraman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
2
|
In Silico Discovery of Anticancer Peptides from Sanghuang. Int J Mol Sci 2022; 23:ijms232213682. [PMID: 36430160 PMCID: PMC9693127 DOI: 10.3390/ijms232213682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Anticancer peptide (ACP) is a short peptide with less than 50 amino acids that has been discovered in a variety of foods. It has been demonstrated that traditional Chinese medicine or food can help treat cancer in some cases, which suggests that ACP may be one of the therapeutic ingredients. Studies on the anti-cancer properties of Sanghuangporus sanghuang have concentrated on polysaccharides, flavonoids, triterpenoids, etc. The function of peptides has not received much attention. The purpose of this study is to use computer mining techniques to search for potential anticancer peptides from 62 proteins of Sanghuang. We used mACPpred to perform sequence scans after theoretical trypsin hydrolysis and discovered nine fragments with an anticancer probability of over 0.60. The study used AlphaFold 2 to perform structural modeling of the first three ACPs discovered, which had blast results from the Cancer PPD database. Using reverse docking technology, we found the target proteins and interacting residues of two ACPs with an unknown mechanism. Reverse docking results predicted the binding modes of the ACPs and their target protein. In addition, we determined the active part of ACPs by quantum chemical calculation. Our study provides a framework for the future discovery of functional peptides from foods. The ACPs discovered have the potential to be used as drugs in oncology clinical treatment after further research.
Collapse
|
3
|
Scherf M, Danquah BD, Koy C, Lorenz P, Steinbeck F, Neamtu A, Thiesen H, Glocker MO. Epitope Fine Mapping by Mass Spectrometry: Investigations of Immune Complexes Consisting of Monoclonal Anti-HpTGEKP Antibody and Zinc Finger Protein Linker Phospho-Hexapeptides. Chembiochem 2022; 23:e202200390. [PMID: 35950614 PMCID: PMC9826235 DOI: 10.1002/cbic.202200390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Indexed: 01/11/2023]
Abstract
Accurate formation of antibody-antigen complexes has been relied on in both, multitudes of scientific projects and ample therapeutic and diagnostic applications. Mass spectrometrically determined dissociation behavior of immune complexes with the anti-HpTGEKP antibody revealed that the ten most frequently occurring phospho-hexapeptide linker sequences from C2H2 zinc finger proteins could be divided into two classes: orthodox binders, where strong noncovalent interactions developed as anticipated, and unorthodox binders with deviating structures and weaker binding. Phosphorylation of threonine was compulsory for antibody binding in an orthodox manner. Gas phase dissociation energy determinations of seven C2H2 zinc finger protein linker phospho-hexapeptides with orthodox binding properties revealed a bipolar binding motif of the antibody paratope. Epitope peptides, which in addition to the negatively charged phospho-threonine residue were C-terminally flanked by positively charged residues provided stronger binding, i. e. dissociation was endothermic, than peptides with acidic amino acid residues at these positions, for which dissociation was exothermic.
Collapse
Affiliation(s)
- Maximilian Scherf
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Bright D. Danquah
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Cornelia Koy
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| | - Peter Lorenz
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany
| | - Felix Steinbeck
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Andrei Neamtu
- Department of PhysiologyGr. T. Popa University of Medicine and Pharmacy of IasiStr. Universitatii nr. 16Iasi Jud.Romania
| | - Hans‐Jürgen Thiesen
- Institute of ImmunologyUniversity Medicine RostockSchillingallee 7018059RostockGermany,Gesellschaft für Individualisierte Medizin mbH (IndyMed)Industriestrasse 1518069RostockGermany
| | - Michael O. Glocker
- Proteome Center RostockUniversity Medicine Rostock and University of RostockSchillingallee 6918059RostockGermany
| |
Collapse
|
4
|
He Y, Liu K, Han L, Han W. Clustering Analysis, Structure Fingerprint Analysis, and Quantum Chemical Calculations of Compounds from Essential Oils of Sunflower (Helianthus annuus L.) Receptacles. Int J Mol Sci 2022; 23:ijms231710169. [PMID: 36077567 PMCID: PMC9456235 DOI: 10.3390/ijms231710169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Sunflower (Helianthus annuus L.) is an appropriate crop for current new patterns of green agriculture, so it is important to change sunflower receptacles from waste to useful resource. However, there is limited knowledge on the functions of compounds from the essential oils of sunflower receptacles. In this study, a new method was created for chemical space network analysis and classification of small samples, and applied to 104 compounds. Here, t-SNE (t-Distributed Stochastic Neighbor Embedding) dimensions were used to reduce coordinates as node locations and edge connections of chemical space networks, respectively, and molecules were grouped according to whether the edges were connected and the proximity of the node coordinates. Through detailed analysis of the structural characteristics and fingerprints of each classified group, our classification method attained good accuracy. Targets were then identified using reverse docking methods, and the active centers of the same types of compounds were determined by quantum chemical calculation. The results indicated that these compounds can be divided into nine groups, according to their mean within-group similarity (MWGS) values. The three families with the most members, i.e., the d-limonene group (18), α-pinene group (10), and γ-maaliene group (nine members) determined the protein targets, using PharmMapper. Structure fingerprint analysis was employed to predict the binding mode of the ligands of four families of the protein targets. Thence, quantum chemical calculations were applied to the active group of the representative compounds of the four families. This study provides further scientific information to support the use of sunflower receptacles.
Collapse
Affiliation(s)
| | | | - Lu Han
- Correspondence: (L.H.); (W.H.)
| | | |
Collapse
|
5
|
Zhang Y, Zhang Y, Zhao Y, Wu W, Meng W, Zhou Y, Qiu Y, Li C. Protection against ulcerative colitis and colorectal cancer by evodiamine via anti‑inflammatory effects. Mol Med Rep 2022; 25:188. [PMID: 35362542 PMCID: PMC8985202 DOI: 10.3892/mmr.2022.12704] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Evodiamine (Evo) is an alkaloid that can be extracted from the berry fruit Evodia rutaecarpa and has been reported to exert various pharmacological effects, such as antidiarrheal, antiemetic and antiulcer effects. In vivo, the potential effects of Evo were investigated in a mouse model of dextran sodium sulfate (DSS)‑induced ulcerative colitis (UC) and in adenomatous polyposis coli (Apc)MinC/Gpt C57BL/6 mice with colorectal cancer (CRC), where the latter harbours a point‑mutation in the Apc gene. Evo suppressed the degree of weight loss and colon shortening induced by DSS, decreased the disease activity index value and ameliorated the pathological alterations in the colon of mice with UC as examined via H&E staining of colon tissues. In addition, Evo decreased the number and size of colonic tumors in ApcMinC/Gpt mice. Proteomics (colon tissues), ELISA (colon tissues and serum) and western blotting (colon tissues) results revealed that Evo inhibited NF‑κB to mediate the levels of various cytokines, including, in the DSS‑induced UC model, IL‑1β, IL‑2, IL‑6, IL‑8, TNF‑α, IFN‑γ (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα, S100a9, TLR4 and MyD88 (western blotting of colon tissues), and, in the colorectal cancer model, IL‑1β, IL‑2, IL‑6, IL‑15, IL‑17, IL‑22, TNF‑α (ELISA of colon tissues and serum), NF‑κB, IKKα+β, IκBα and S100a9 (western blotting of colon tissues), to achieve its anti‑inflammatory and antitumor effects. In vitro, Evo also reduced the viability of the colon cancer cell line SW480, inhibited mitochondrial membrane potential (MMP detection), caused G2/M‑phase arrest (cell cycle detection) and suppressed the translocation of phosphorylated‑NF‑κB from the cytoplasm into the nucleus (immunofluorescence of p‑NF‑κB). Theoretical evidence (MD simulations) suggest that Evo may bind to the ordered domain (α‑helix) of NF‑κB to influence this protein. The protein secondary structure changes were analyzed by the cpptraj module in Amber. In addition, these data provide experimental evidence that Evo may be an effective agent for treating UC and CRC.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhao
- Department of Pharmacy, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wanyue Wu
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiqi Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yulin Zhou
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130119, P.R. China
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
6
|
Wang B, Yan Y, Ding CF. Metal-organic framework-based sample preparation in proteomics. J Chromatogr A 2022; 1671:462971. [DOI: 10.1016/j.chroma.2022.462971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
|
7
|
Teng S, Hao J, Bi H, Li C, Zhang Y, Zhang Y, Han W, Wang D. The Protection of Crocin Against Ulcerative Colitis and Colorectal Cancer via Suppression of NF-κB-Mediated Inflammation. Front Pharmacol 2021; 12:639458. [PMID: 33841156 PMCID: PMC8025585 DOI: 10.3389/fphar.2021.639458] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In China, the incidence of ulcerative colitis (UC) is increasing every year, but the etiology of UC remains unclear. UC is known to increase the risk of colorectal cancer (CRC). The aim of this study was to investigate the protective effects of crocin against UC and CRC in mouse models. Methods: Crocin was used to treat the dextran sodium sulfate (DSS)-induced UC mice for 3 weeks, and ApcMinC/Gpt mice with colorectal cancer for 8 weeks. Proteomics screening was used to detect changes in the protein profiles of colon tissues of UC mice. Enzyme-linked immunosorbent assays and western blot were used to verify these changes. Results: Crocin strongly reduced the disease activity index scores of UC mice, and improved the pathological symptoms of the colonic epithelium. The anti-inflammatory effects of crocin were indicated by its regulation of the activity of various cytokines, such as interleukins, via the modulation of nuclear factor kappa-B (NF-κB) signaling. Crocin significantly suppressed tumor growth in ApcMinC/Gpt mice and ameliorated pathological alterations in the colon and liver, but had no effects on spleen and kidney. Additionally, crocin significantly decreased the concentrations of interleukins and tumor necrosis factor-α in the sera and colon tissues, suggesting its anti-inflammatory effects related to NF-κB signaling. Finally, 12-h incubation of SW480 cells with crocin caused cell cycle arrest, enhanced the apoptotic rate, promoted the dissipation of mitochondrial membrane potential, and the over-accumulation of reactive oxygen species. From the theoretical analyses, phosphorylated residues on S536 may enhance the protein-protein interactions which may influence the conformational changes in the secondary structure of NF-κB. Conclusion: The protective effects of crocin on UC and CRC were due to its suppression of NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun, China
| | - Hui Bi
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Congcong Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Han
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
Li C, Wang J, Li Y, Chen B, Tao J, Wang X, Yang H, Liu Y, Tong Y, Han W. Molecular mechanisms of metal ions in regulating the catalytic efficiency of D-psicose 3-epimerase revealed by multiple short molecular dynamic simulations and free energy predictions. J Biomol Struct Dyn 2020; 39:1887-1897. [PMID: 32193997 DOI: 10.1080/07391102.2020.1737232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jing Wang
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemistry Co. Ltd, Changchun, Jilin, China
| | - Bo Chen
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemistry Co. Ltd, Changchun, Jilin, China
| | - Xiaoyan Wang
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Hengzheng Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Yingrui Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemistry Co. Ltd, Changchun, Jilin, China.,Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Zhu J, Li C, Yang H, Guo X, Huang T, Han W. Computational Study on the Effect of Inactivating/Activating Mutations on the Inhibition of MEK1 by Trametinib. Int J Mol Sci 2020; 21:ijms21062167. [PMID: 32245216 PMCID: PMC7139317 DOI: 10.3390/ijms21062167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Activation of the mitogen-activated protein kinase (MAPK) signaling pathway regulated by human MAP kinase 1 (MEK1) is associated with the carcinogenesis and progression of numerous cancers. In addition, two active mutations (P124S and E203K) have been reported to enhance the activity of MEK1, thereby eventually leading to the tumorigenesis of cancer. Trametinib is an MEK1 inhibitor for treating EML4-ALK-positive, EGFR-activated, and KRAS-mutant lung cancers. Therefore, in this study, molecular docking and molecular dynamic (MD) simulations were performed to explore the effects of inactive/active mutations (A52V/P124S and E203K) on the conformational changes of MEK1 and the changes in the interaction of MEK1 with trametinib. Moreover, steered molecular dynamic (SMD) simulations were further utilized to compare the dissociation processes of trametinib from the wild-type (WT) MEK1 and two active mutants (P124S and E203K). As a result, trametinib had stronger interactions with the non-active MEK1 (WT and A52V mutant) than the two active mutants (P124S and E203K). Moreover, two active mutants may make the allosteric channel of MEK1 wider and shorter than that of the non-active types (WT and A52V mutant). Hence, trametinib could dissociate from the active mutants (P124S and E203K) more easily compared with the WT MEK1. In summary, our theoretical results demonstrated that the active mutations may attenuate the inhibitory effects of MEK inhibitor (trametinib) on MEK1, which could be crucial clues for future anti-cancer treatment.
Collapse
|
10
|
Ma T, Deng J, Ma S, Zhao W, Chang Z, Yu K, Yang J. Structural Mechanism of Barriers to Interspecies Seeding Transmissibility of Full-Length Prion Protein Amyloid. Chembiochem 2019; 20:2757-2766. [PMID: 31161647 DOI: 10.1002/cbic.201900218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 12/13/2022]
Abstract
A puzzling feature of prion diseases is the cross-species barriers. The detailed molecular mechanisms underlying these interspecies barriers remain poorly understood because of a lack of high-resolution structural information on the scrapie isoform of the prion protein (PrPSc ). In this study we identified the critical role of the residues 165/167 in the barrier to seeding mouse PrP (mPrP) fibril seeds to human cellular prion protein (PrPC ). Solid-state NMR revealed a C-terminal β-sheet core spanning residues 165-230 and the packing arrangement of mPrP fibrils. Residues 165/167 are located on one end of the fibril core. Molecular dynamics simulations demonstrated that the stabilities of the seeding-induced β-strand structures are significantly impacted by hydrogen bonds involving the side chain of residue 167 and steric resistance involving residue 165. These findings suggest that the α2-β2 loop containing residues 165/167 could be the initial site of seed-template conformational conversion.
Collapse
Affiliation(s)
- Tao Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and, Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and, Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shaojie Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and, Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and, Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and, Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Kunqian Yu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and, Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
| |
Collapse
|
11
|
Probing inhibition mechanisms of adenosine deaminase by using molecular dynamics simulations. PLoS One 2018; 13:e0207234. [PMID: 30444912 PMCID: PMC6239307 DOI: 10.1371/journal.pone.0207234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminase (ADA) catalyzes the deamination of adenosine, which is important in purine metabolism. ADA is ubiquitous to almost all human tissues, and ADA abnormalities have been reported in various diseases, including rheumatoid arthritis. ADA can be divided into two conformations based on the inhibitor that it binds to: open and closed forms. Here, we chose three ligands, namely, FR117016 (FR0), FR221647 (FR2) (open form), and HDPR (PRH, closed form), to investigate the inhibition mechanism of ADA and its effect on ADA through molecular dynamics simulations. In open forms, Egap and electrostatic potential (ESP) indicated that electron transfer might occur more easily in FR0 than in FR2. Binding free energy and hydrogen bond occupation revealed that the ADA-FR0 complex had a more stable structure than ADA-FR2. The probability of residues Pro159 to Lys171 of ADA-FR0 and ADA-FR2 to form a helix moderately increased compared with that in nonligated ADA. In comparison with FR0 and FR2 PRH could maintain ADA in a closed form to inhibit the function of ADA. The α7 helix (residues Thr57 to Ala73) of ADA in the closed form was mostly unfastened because of the effect of PRH. The number of H bonds and the relative superiority of the binding free energy indicated that the binding strength of PRH to ADA was significantly lower than that of an open inhibitor, thereby supporting the comparison of the inhibitory activities of the three ligands. Alanine scanning results showed that His17, Gly184, Asp295, and Asp296 exerted the greatest effects on protein energy, suggesting that they played crucial roles in binding to inhibitors. This study served as a theoretical basis for the development of new ADA inhibitors.
Collapse
|
12
|
Liu Y, Wan Y, Zhu J, Yu Z, Tian X, Han J, Zhang Z, Han W. Theoretical Study on Zearalenol Compounds Binding with Wild Type Zearalenone Hydrolase and V153H Mutant. Int J Mol Sci 2018; 19:ijms19092808. [PMID: 30231501 PMCID: PMC6165071 DOI: 10.3390/ijms19092808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
Zearalenone hydrolase (ZHD) is the only reported α/β-hydrolase that can detoxify zearalenone (ZEN). ZHD has demonstrated its potential as a treatment for ZEN contamination that will not result in damage to cereal crops. Recent researches have shown that the V153H mutant ZHD increased the specific activity against α-ZOL, but decreased its specific activity to β-ZOL. To understand whyV153H mutation showed catalytic specificity for α-ZOL, four molecular dynamics simulations combining with protein network analysis for wild type ZHD α-ZOL, ZHD β-ZOL, V153H α-ZOL, and V153H β-ZOL complexes were performed using Gromacs software. Our theoretical results indicated that the V153H mutant could cause a conformational switch at the cap domain (residues Gly161–Thr190) to affect the relative position catalytic residue (H242). Protein network analysis illustrated that the V153H mutation enhanced the communication with the whole protein and residues with high betweenness in the four complexes, which were primarily assembled in the cap domain and residues Met241 to Tyr245 regions. In addition, the existence of α-ZOL binding to V153H mutation enlarged the distance from the OAE atom in α-ZOL to the NE2 atom in His242, which prompted the side chain of H242 to the position with catalytic activity, thereby increasing the activity of V153H on the α-ZOL. Furthermore, α-ZOL could easily form a right attack angle and attack distance in the ZHD and α-ZOL complex to guarantee catalytic reaction. The alanine scanning results indicated that modifications of the residues in the cap domain produced significant changes in the binding affinity for α-ZOL and β-ZOL. Our results may provide useful theoretical evidence for the mechanism underlying the catalytic specificity of ZHD.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| | - Youzhong Wan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| | - Zhengfei Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| | - Xiaopian Tian
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| | - Jiarui Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun 130023, China.
| |
Collapse
|
13
|
He S, Kyaw YME, Tan EKM, Bekale L, Kang MWC, Kim SSY, Tan I, Lam KP, Kah JCY. Quantitative and Label-Free Detection of Protein Kinase A Activity Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars. Anal Chem 2018; 90:6071-6080. [PMID: 29697974 DOI: 10.1021/acs.analchem.7b05417] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The activity of extracellular protein kinase A (PKA) is known to be a biomarker for cancer. However, conventional PKA assays based on colorimetric, radioactive, and fluorometric techniques suffer from intensive labeling-related preparations, background interference, photobleaching, and safety concerns. While surface-enhanced Raman spectroscopy (SERS)-based assays have been developed for various enzymes to address these limitations, their use in probing PKA activity is limited due to subtle changes in the Raman spectrum with phosphorylation. Here, we developed a robust colloidal SERS-based scheme for label-free quantitative measurement of PKA activity using gold nanostars (AuNS) as a SERS substrate functionalized with bovine serum albumin (BSA)-kemptide (Kem) bioconjugate (AuNS-BSA-Kem), where BSA conferred colloidal stability and Kem is a high-affinity peptide substrate for PKA. By performing principle component analysis (PCA) on the SERS spectrum, we identified two Raman peaks at 725 and 1395 cm-1, whose ratiometric intensity change provided a quantitative measure of Kem phosphorylation by PKA in vitro and allowed us to distinguish MDA-MB-231 and MCF-7 breast cancer cells known to overexpress extracellular PKA catalytic subunits from noncancerous human umbilical vein endothelial cells (HUVEC) based on their PKA activity in cell culture supernatant. The outcome demonstrated potential application of AuNS-BSA-Kem as a SERS probe for cancer screening based on PKA activity.
Collapse
Affiliation(s)
- Shuai He
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | - Yi Mon Ei Kyaw
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | | | - Laurent Bekale
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | - Malvin Wei Cherng Kang
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583
| | - Susana Soo-Yeon Kim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
| | - Ivan Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
| | - James Chen Yong Kah
- Department of Biomedical Engineering , National University of Singapore , Singapore 117583.,NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore 117456
| |
Collapse
|