1
|
O'Neal P, Washington K, Estes B, Chandran PL. A Facile and Versatile Platform for Cytosolic Delivery of Proteins in Nanoshells of DNA or RNA: Packaging Options in Multiplexed Delivery. Biomacromolecules 2025; 26:3084-3103. [PMID: 40310684 DOI: 10.1021/acs.biomac.5c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Polyethylenimine (PEI) polymers are used to compact DNA into nanoparticles for delivery into cells. We have shown that PEI-mannose polymers compact DNA into nanoshell-like particles, which can load proteins as well. Here we show that these DNA containers are uniquely versatile for scavenging proteins, irrespective of size, charge, and hydrophobicity from dilute solutions. The number of DNA containers for loading proteins can be controlled independently of the protein loading per container by changing the amounts of DNA and protein in solution. This provides control of the fraction of cells receiving the payload and the relative amounts of DNA and protein per cell. The proteins released inside cells retain enzymatic activity. The proposed technology provides a new way to approach protein delivery by hitchhiking proteins within a facile and well-established DNA-delivery mechanism and by utilizing sugar biophysics to load a wide range of proteins in a single-step process.
Collapse
Affiliation(s)
- Pilar O'Neal
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, 2300 sixth St. NW, Washington D.C. 20059, United States
| | - Kareem Washington
- Department of Genetics, College of Medicine, Howard University, 520 W St. NW, Washington D.C. 20059, United States
| | - Bram Estes
- Department of Protein Therapeutics, Amgen Inc, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Preethi L Chandran
- Department of Chemical Engineering, College of Engineering and Architecture, Howard University, 2300 sixth St. NW, Washington D.C. 20059, United States
| |
Collapse
|
2
|
Lin J, Li J. Transfection of unmodified oligodeoxynucleotide with polyethylenimine reduces the level of hepatitis B surface antigen. Front Microbiol 2025; 16:1600679. [PMID: 40376456 PMCID: PMC12078216 DOI: 10.3389/fmicb.2025.1600679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction The delivery of nucleic acid into cells using polyethylenimine (PEI) as non-viral carrier is a potential candidate technique for the treatment of hepatitis B virus (HBV) infection. Methods In the present study, PEI was used as cationic polymers and transfected with unmodified oligodeoxynucleotides in cell cultures and the BALB/c mouse model to investigate its efficiency in blocking HBV surface antigen (HBsAg) secretion. Results and discussion PEI/oligonucleotide complexes selectively inhibited HBsAg secretion in the culture supernatant, while there were no evident alterations in HBeAg and HBV DNA levels, thereby suggesting its potential inhibitory activity against the production of HBsAg. The complexes formed by PEI with double-stranded decoy oligonucleotides also suppressed HBsAg secretion but showed no expected interference with the intermediate levels of HBV transcription or replication. Furthermore, PEI/plasmid-DNA complexes demonstrated no influence on the expression levels of HBsAg, thus highlighting the specific effects of PEI/oligonucleotides exerted on HBsAg release. PEI-oligonucleotides transfection prior to the viral inoculation impaired HBV infection in HepG2-NCTP cells. Importantly, the PEI/oligonucleotide complex also induced the decline of HBsAg in hydrodynamically injected BALB/c mice. These findings demonstrate that transfection of PEI/oligonucleotide complexes can help effectively reduce HBsAg level and may offer a new potential avenue for the development of anti-HBV treatment.
Collapse
Affiliation(s)
- Junyu Lin
- Research Center for Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Zheng D, Lu ZG, Li J, Dong J, Zhang X, Zhang X, Cao D. Unveiling the Interaction Mechanism of siRNA with Lipid Bilayers of Different Types for siRNA-Based Therapy. J Phys Chem B 2025; 129:2872-2881. [PMID: 40052816 DOI: 10.1021/acs.jpcb.4c07520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
siRNA-based therapy is a new approach for the treatment of diseases, including cancer, viral infections, and so forth. When liposomes serve as an effective siRNA carrier, unveiling the siRNA-liposome interaction mechanism becomes extremely significant for siRNA-based therapy. Here, we investigate the interactions between siRNA and liposomes with different types of lipid molecules and find that the stable adsorption of siRNA on the phosphoethanolamine (PE) bilayer liposome mainly relies on hydrogen bonding between the siRNA phosphate groups and the ethanolamine structure of PE lipid molecules. On the contrary, the stability of the adsorption of siRNA on the phosphorylcholine (PC) bilayer liposome is often determined by electrostatic interactions, and the adsorption stability can be modulated by calcium ions. The concept of "bridging" is also invoked to reveal the adsorption mechanism of siRNA on the lipid bilayer after adding calcium ions. We found that adding divalent calcium ions can better regulate the stability of siRNA adsorption on the PC lipid bilayer, but calcium ions cannot regulate the adsorption of siRNA on the PE lipid bilayer, which is determined by H-bonds. In short, this work reveals the different adsorption mechanisms of siRNA on liposomes, which provides a physical insight into siRNA-based therapy at the molecular level.
Collapse
Affiliation(s)
- Dongfang Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Li
- College of Medical Engineering and The Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Junjun Dong
- All-Innovation (Beijing) Biotechnology Co., Ltd, Beijing 100194, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Ziebarth JD, Shadman H, Wang Y. Insights from Computational Studies of Polymeric Systems for Nucleic Acid Delivery. Mol Pharm 2025; 22:1160-1173. [PMID: 39957182 DOI: 10.1021/acs.molpharmaceut.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The safe and efficient delivery of nucleic acids into cells is a critical step in the success of gene and cell therapies. Although viral vectors are the predominant tools in current gene and cell therapy practices, they present significant challenges including high costs and safety concerns. Nonviral delivery systems for nucleic acids show immense potential for future medicine, particularly as nucleic acid therapeutics continue to be developed for the treatment of a wide range of diseases, including cancer. Significant research efforts, both experimental and computational, have been devoted to the development, characterization, and understanding of nonviral delivery processes. While numerous reviews have documented these research advancements, few have specifically addressed the contributions from computational studies. In this review, we provide an overview of the insights gained from computational and theoretical studies of polymeric systems for nucleic acid delivery. We also highlight future directions where computational and experimental approaches could synergize to advance the field.
Collapse
Affiliation(s)
- Jesse Dylan Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Hossain Shadman
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
5
|
Lunt G, Hashemi N, Mahajan S, Tang T. Martini compatible coarse-grained model of polyethylenimine for pulmonary gene delivery. Sci Rep 2025; 15:4377. [PMID: 39910324 PMCID: PMC11799348 DOI: 10.1038/s41598-025-88848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Pulmonary gene delivery has demonstrated high specificity for respiratory diseases, offering great control on dosage of therapeutics and side effects. On the other hand, intrinsic barriers in pulmonary systems impose new challenges such as crossing the pulmonary surfactant and evading mucus entrapment. Differences in hydrophobicity of plasma membrane and pulmonary surfactant require different chemistries of gene carriers to improve efficacy. Large-scale coarse-grained (CG) molecular dynamics simulations would facilitate the screening of gene carriers and understanding of the molecular mechanisms involved in pulmonary delivery. Among non-viral carriers, polyethyleneimine (PEI) has been a promising candidate that can be synthesized with various molecular weight, degree of branching, and functionalization. In this work, CG models are developed for PEI and its lipid-functionalized form, within the Martini framework, to provide a platform for exploring structure-function relationships of PEI-based pulmonary delivery systems. Special attention is focused on parameterizing the non-bonded interactions associated with CG PEI, to ensure compatibility with Martini proteins, short interfering RNA, and phospholipids that are essential components in pulmonary gene delivery. The non-bonded parameters are validated by comparing all-atom (AA) and CG potential of mean force (PMF) curves, where the root-mean-square deviations between the AA and CG PMF curves are shown to be comparable to or smaller than those reported in Martini literature.
Collapse
Affiliation(s)
- Graham Lunt
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Niloofar Hashemi
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Subhamoy Mahajan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
6
|
Meinhard S, Erdmann F, Lucas H, Krabbes M, Krüger S, Wölk C, Mäder K. T14diLys/DOPE Liposomes: An Innovative Option for siRNA-Based Gene Knockdown? Pharmaceutics 2024; 17:25. [PMID: 39861674 PMCID: PMC11769127 DOI: 10.3390/pharmaceutics17010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bringing small interfering RNA (siRNA) into the cell cytosol to achieve specific gene silencing is an attractive but also very challenging option for improved therapies. The first step for successful siRNA delivery is the complexation with a permanent cationic or ionizable compound. This protects the negatively charged siRNA and enables transfection through the cell membrane. The current study explores the performance of the innovative, ionizable lipid 2-Tetradecylhexadecanoic acid-(2-bis{[2-(2,6-diamino-1-oxohexyl)amino]ethyl}aminoethyl)-amide (T14diLys), in combination with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), for siRNA delivery and the impact of the production method (sonication vs. extrusion) on the particle properties. METHODS Liposomes were produced either with sonication or extrusion and characterized. The extruded liposomes were combined with siRNA at different N/P ratios and investigated in terms of size zeta potential, encapsulation efficiency, lipoplex stability against RNase A, and knockdown efficiency using enhanced green fluorescent protein (eGFP)-marked colon adenocarcinoma cells. RESULTS The liposomes prepared by extrusion were smaller and had a narrower size distribution than the sonicated ones. The combination of siRNA and liposomes at a nitrogen-to-phosphate (N/P) ratio of 5 had optimal particle properties, high encapsulation efficiency, and lipoplex stability. Gene knockdown tests confirmed this assumption. CONCLUSIONS Liposomes produced with extrusion were more reproducible and provided enhanced particle properties. The physicochemical characterization and in vitro experiments showed that an N/P ratio of 5 was the most promising ratio for siRNA delivery.
Collapse
Affiliation(s)
- Sophie Meinhard
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
| | - Frank Erdmann
- Department of Pharmaceutical Pharmacology and Toxicology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany;
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Henrike Lucas
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Maria Krabbes
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Strasse 15A, 04317 Leipzig, Germany; (M.K.); (C.W.)
| | - Stephanie Krüger
- Biocenter, Microscopy Unit, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany;
| | - Christian Wölk
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Strasse 15A, 04317 Leipzig, Germany; (M.K.); (C.W.)
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| |
Collapse
|
7
|
Elola MD, Rodriguez J, Elola MT, Giorgi E, De Marzi MC. A Computational Study of the siRNA-Silica Nanoparticle Binding Process. J Phys Chem B 2024; 128:11573-11586. [PMID: 39549032 DOI: 10.1021/acs.jpcb.4c05134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Molecular dynamics simulations were performed to investigate the structural and energetic features related to the direct binding of a short interfering RNA (siRNA) molecule on a silica nanoparticle functionalized with 3-aminopropyltriethoxysilane (APTES) groups, immersed in a sodium chloride aqueous solution at physiological concentration. Three different grafting densities of APTES were evaluated, namely, 2.7, 1.3, and 0.65 nm-2. Structural features as a function of the grafting density were analyzed and characterized in terms of density field profiles, pair correlation functions, and hydrogen bonding. The analysis of the orientation of siRNA during the binding process suggested that the oligonucleotide anchors to the surface by one of their ends in a tilted arrangement and subsequently, it rotates toward a surface-parallel stabilized configuration. Free energy of binding between siRNA and the silica nanoparticle was computed using the adaptive biasing force scheme. The results indicate that the binding process is essentially barrierless and consistent with a thermodynamically spontaneous reaction, yielding the largest binding free energy, of about ∼-36 kcal/mol at the largest APTES grafting density. However, a favorable binding was also observed at the lowest APTES density (∼-16 kcal/mol). a fact that would be advantageous to facilitate the further release of siRNA within the cell.
Collapse
Affiliation(s)
- María Dolores Elola
- Gerencia de Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, San Martín, 1650 Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN) CNEA-CONICET, San Martín, 1650 Buenos Aires, Argentina
| | - Javier Rodriguez
- Gerencia de Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, San Martín, 1650 Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN) CNEA-CONICET, San Martín, 1650 Buenos Aires, Argentina
- ECyT, UNSAM, Martín de Irigoyen 3100, San Martín, 1650 Buenos Aires, Argentina
| | - María Teresa Elola
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, 1113 Buenos Aires, Argentina
- CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, 1113 Buenos Aires, Argentina
| | - Exequiel Giorgi
- CONICET-Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Av. Constitución y Ruta 5, Luján, 6700 Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Laboratorio de Inmunología, Universidad Nacional de Luján, Av. Constitución y Ruta 5, Luján, 6700 Buenos Aires, Argentina
| | - Mauricio César De Marzi
- CONICET-Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Av. Constitución y Ruta 5, Luján, 6700 Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Laboratorio de Inmunología, Universidad Nacional de Luján, Av. Constitución y Ruta 5, Luján, 6700 Buenos Aires, Argentina
| |
Collapse
|
8
|
Qi J, Li Y, Yao X, Li G, Xu W, Chen L, Xie Z, Gu J, Wu H, Li Z. Rational design of ROS scavenging and fluorescent gold nanoparticles to deliver siRNA to improve plant resistance to Pseudomonas syringae. J Nanobiotechnology 2024; 22:446. [PMID: 39075467 PMCID: PMC11285324 DOI: 10.1186/s12951-024-02733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Bacterial diseases are one of the most common issues that result in crop loss worldwide, and the increasing usage of chemical pesticides has caused the occurrence of resistance in pathogenic bacteria and environmental pollution problems. Nanomaterial mediated gene silencing is starting to display powerful efficiency and environmental friendliness for improving plant disease resistance. However, the internalization of nanomaterials and the physiological mechanisms behind nano-improved plant disease resistance are still rarely understood. We engineered the polyethyleneimine (PEI) functionalized gold nanoparticles (PEI-AuNPs) with fluorescent properties and ROS scavenging activity to act as siRNA delivery platforms. Besides the loading, protection, and delivery of nucleic acid molecules in plant mature leaf cells by PEI-AuNPs, its fluorescent property further enables the traceability of the distribution of the loaded nucleic acid molecules in cells. Additionally, the PEI-AuNPs-based RNAi delivery system successfully mediated the silencing of defense-regulated gene AtWRKY1. Compared to control plants, the silenced plants performed better resistance to Pseudomonas syringae, showing a reduced bacterial number, decreased ROS content, increased antioxidant enzyme activities, and improved chlorophyll fluorescence performance. Our results showed the advantages of AuNP-based RNAi technology in improving plant disease resistance, as well as the potential of plant nanobiotechnology to protect agricultural production.
Collapse
Affiliation(s)
- Jie Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yanhui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xue Yao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guangjing Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenying Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Lingling Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhouli Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiangjiang Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 511464, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 511464, China.
| | - Zhaohu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
9
|
Tiwade PB, Ma Y, VanKeulen-Miller R, Fenton OS. A Lung-Expressing mRNA Delivery Platform with Tunable Activity in Hypoxic Environments. J Am Chem Soc 2024; 146:17365-17376. [PMID: 38874565 DOI: 10.1021/jacs.4c04565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Messenger RNA (mRNA) delivery platforms often facilitate protein expression in the liver following intravenous injection and have been optimized for use in normally oxygenated cells (21% O2 atmosphere). However, there is a growing need for mRNA therapy in diseases affecting non-liver organs, such as the lungs. Additionally, many diseases are characterized by hypoxia (<21% O2 atmosphere), a state of abnormally low oxygenation in cells and tissues that can reduce the efficacy of mRNA therapies by upwards of 80%. Here, we report a Tunable Lung-Expressing Nanoparticle Platform (TULEP) for mRNA delivery, whose properties can be readily tuned for optimal expression in hypoxic environments. Briefly, our study begins with the synthesis and characterization of a novel amino acrylate polymer that can be effectively complexed with mRNA payloads into TULEPs. We study the efficacy and mechanism of mRNA delivery using TULEP, including analysis of the cellular association, endocytosis mechanisms, endosomal escape, and protein expression in a lung cell line. We then evaluate TULEP under hypoxic conditions and address hypoxia-related deficits in efficacy by making our system tunable with adenosine triphosphate (ATP). Finally, we conclude our study with an in vivo analysis of mRNA expression, biodistribution, and tolerability of the TULEP platform in mice. In presenting these data, we hope that our work highlights the utility of TULEPs for tunable and effective mRNA delivery while more broadly highlighting the utility of considering oxygen levels when developing mRNA delivery platforms.
Collapse
Affiliation(s)
- Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
11
|
Shao Y, Xu C, Zhu S, Wu J, Sun C, Huang S, Li G, Yang W, Zhang T, Ma XL, Du J, Li P, Xu FJ, Li Y. One Endothelium-Targeted Combined Nucleic Acid Delivery System for Myocardial Infarction Therapy. ACS NANO 2024; 18:8107-8124. [PMID: 38442075 DOI: 10.1021/acsnano.3c11661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.
Collapse
Affiliation(s)
- Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jianing Wu
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Canghao Sun
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Weijie Yang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
12
|
Yan Y, Zhang G, Wu C, Ren Q, Liu X, Huang F, Cao Y, Ye W. Structural Exploration of Polycationic Nanoparticles for siRNA Delivery. ACS Biomater Sci Eng 2022; 8:1964-1974. [PMID: 35380797 DOI: 10.1021/acsbiomaterials.2c00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) is a promising approach to the treatment of genetic diseases by the specific knockdown of target genes. Functional polymers are potential vehicles for the effective delivery of vulnerable small interfering RNA (siRNA), which is required for the broad application of RNAi-based therapeutics. The development of methods for the facile modulation of chemical structures of polymeric carriers and an elucidation of detailed delivery mechanisms remain important areas of research. In this paper, we synthesized a series of methacrylate-based polymers with controllable structures and narrow distributions by atom transfer radical polymerization using various combinations of cationic monomers (2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate, and 2-dibutylaminoethyl methacrylate) and hydrophobic monomers (2-butyl methacrylate (BMA), cyclohexyl methacrylate, and 2-ethylhexyl methacrylate). These polymers exhibited varying hydrophobicities, charge densities, and pKa values, enabling the discovery of effective carriers for siRNA by in vitro delivery assays. For the polymers with BMA segments, 50% of cationic segments were beneficial to the formation of siRNA nanoparticles (NPs) and the in vitro delivery of siRNA. The optimal ratio varied for different combinations of cationic and hydrophobic segments. In particular, 20k PMB 0.5, PME 0.5, and PEB 1.0 showed >75% luciferase knockdown. Efficacious delivery was dependent on high siRNA binding, the small size of NPs, and balanced hydrophobicity and charge density. Cellular uptake and endosomal escape experiments indicated that carboxybetaine modification of 20k PMB 0.5 did not remarkably affect the internalization of corresponding NPs after incubation for 6 h but significantly reduced the endosomal escape of NPs, which leads to the notable decrease in delivery efficacy of polymers. These results provide insights into the mechanism of polymer-based siRNA delivery and may inspire the development of novel polymeric carriers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangliang Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
13
|
Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BIOTECH 2022; 11:biotech11010006. [PMID: 35822814 PMCID: PMC9245904 DOI: 10.3390/biotech11010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/12/2023] Open
Abstract
The research and development of non-viral gene therapy has been extensive over the past decade and has received a big push thanks to the recent successful approval of non-viral nucleic acid therapy products. Despite these developments, nucleic acid therapy applications in cancer have been limited. One of the main causes of this has been the imbalance in development of delivery vectors as compared with sophisticated nucleic acid payloads, such as siRNA, mRNA, etc. This paper reviews non-viral vectors that can be used to deliver nucleic acids for cancer treatment. It discusses various types of vectors and highlights their current applications. Additionally, it discusses a perspective on the current regulatory landscape to facilitate the commercial translation of gene therapy.
Collapse
Affiliation(s)
- Shrey Kanvinde
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
- Correspondence:
| | - Tanmay Kulkarni
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Deep Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (T.K.); (D.B.)
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
14
|
Akhilesh, Uniyal A, Gadepalli A, Tiwari V, Allani M, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Unlocking the potential of TRPV1 based siRNA therapeutics for the treatment of chemotherapy-induced neuropathic pain. Life Sci 2022; 288:120187. [PMID: 34856209 DOI: 10.1016/j.lfs.2021.120187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/23/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is among the most common clinical complications associated with the use of anti-cancer drugs. CINP occurs in nearly 68.1% of the cancer patients receiving chemotherapeutic drugs. Most of the clinically available analgesics are ineffective in the case of CINP patients as the pathological mechanisms involved with different chemotherapeutic drugs are distinct from each other. CINP triggers the somatosensory nervous system, increases the neuronal firing and activation of nociceptive mediators including transient receptor protein vanilloid 1 (TRPV1). TRPV1 is widely present in the peripheral nociceptive nerve cells and it has been reported that the higher expression of TRPV1 in DRGs serves a critical role in the potentiation of CINP. The therapeutic glory of TRPV1 is well recognized in clinics which gives a promising insight into the treatment of pain. But the adverse effects associated with some of the antagonists directed the scientists towards RNA interference (RNAi), a tool to silence gene expression. Thus, ongoing research is focused on developing small interfering RNA (siRNA)-based therapeutics targeting TRPV1. In this review, we have discussed the involvement of TRPV1 in the nociceptive signaling associated with CINP and targeting this nociceptor, using siRNA will potentially arm us with effective therapeutic interventions for the clinical management of CINP.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nimisha Verma
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
15
|
San Anselmo M, Postigo A, Lancelot A, Serrano JL, Sierra T, Hernandez-Ainsa S. Dendron-functionalised hyperbranched bis-MPA polyesters as efficient non-viral vectors for gene therapy in different cell lines. Biomater Sci 2022; 10:2706-2719. [DOI: 10.1039/d2bm00365a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy has become a relevant tool in the biomedical field to treat or even prevent some diseases. The effective delivery of genetic material into the cell remains a crucial...
Collapse
|
16
|
Kang M, Lee SH, Kwon M, Byun J, Kim D, Kim C, Koo S, Kwon SP, Moon S, Jung M, Hong J, Go S, Song SY, Choi JH, Hyeon T, Oh YK, Park HH, Kim BS. Nanocomplex-Mediated In Vivo Programming to Chimeric Antigen Receptor-M1 Macrophages for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103258. [PMID: 34510559 DOI: 10.1002/adma.202103258] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) cell immunotherapy has shown impressive clinical outcomes for hematologic malignancies. However, its broader applications are challenged due to its complex ex vivo cell-manufacturing procedures and low therapeutic efficacy against solid tumors. The limited therapeutic effects are partially due to limited CAR-T cell infiltration to solid tumors and inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Here, a facile approach is presented to in vivo program macrophages, which can intrinsically penetrate solid tumors, into CAR-M1 macrophages displaying enhanced cancer-directed phagocytosis and anti-tumor activity. In vivo injected nanocomplexes of macrophage-targeting nanocarriers and CAR-interferon-γ-encoding plasmid DNA induce CAR-M1 macrophages that are capable of CAR-mediated cancer phagocytosis, anti-tumor immunomodulation, and inhibition of solid tumor growth. Together, this study describes an off-the-shelf CAR-macrophage therapy that is effective for solid tumors and avoids the complex and costly processes of ex vivo CAR-cell manufacturing.
Collapse
Affiliation(s)
- Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong Ho Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Miji Kwon
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
17
|
Vasiliu T, Craciun BF, Neamtu A, Clima L, Isac DL, Maier SS, Pinteala M, Mocci F, Laaksonen A. In silico study of PEI-PEG-squalene-dsDNA polyplex formation: the delicate role of the PEG length in the binding of PEI to DNA. Biomater Sci 2021; 9:6623-6640. [PMID: 34582532 DOI: 10.1039/d1bm00973g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as an antifouling component in biomedical devices. Experimental studies have shown that the size of PEG can weaken polycation-polyanion interactions, like those between branched polyethyleneimine (b-PEI) and DNA in gene carriers, but details of its cause and underlying interactions on the atomic scale are still not clear. To better understand the interaction mechanisms in the formation of polyplexes between b-PEI-PEG based carriers and DNA, we have used a combination of in silico tools and experiments on three multicomponent systems differing in PEG MW. Using the PEI-PEG-squalene-dsDNA systems of the same size, both in the all-atom MD simulations and in experimental in-gel electrophoresis measurements, we found that the binding between DNA and the vectors is highly influenced by the size of PEG, with the binding efficiency increasing with a shorter PEG length. The mechanism of how PEG interferes with the binding between PEI and DNA is explained using a two-step MD simulation protocol that showed that the DNA-vector interactions are influenced by the PEG length due to the hydrogen bond formation between PEI and PEG. Although computationally demanding we find it important to study molecular systems of the same size both in silico and in a laboratory and to simulate the behaviour of the carrier prior to the addition of bioactive molecules to understand the molecular mechanisms involved in the formation of the polyplex.
Collapse
Affiliation(s)
- Tudor Vasiliu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Bogdan Florin Craciun
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Andrei Neamtu
- Bioinformatics Laboratory, TRANSCEND IRO, Iaşi 700843, Romania
| | - Lilia Clima
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Dragos Lucian Isac
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Stelian S Maier
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Polymers Research Center, "Gheorghe Asachi" Technical University of Iasi, Iasi, 700487, Romania
| | - Mariana Pinteala
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania.
| | - Francesca Mocci
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Aatto Laaksonen
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700487, Romania. .,Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, PR China.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
18
|
Uddin N, Warriner LW, Pack DW, DeRouchey JE. Enhanced Gene Delivery and CRISPR/Cas9 Homology-Directed Repair in Serum by Minimally Succinylated Polyethylenimine. Mol Pharm 2021; 18:3452-3463. [PMID: 34387498 DOI: 10.1021/acs.molpharmaceut.1c00368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gene therapy aims to treat patients by altering or controlling gene expression. The field of gene therapy has had increasing success in recent years primarily using viral-based approaches; however, there is still significant interest toward the use of polymeric materials due to their potential as flexible, low-cost scaffolds for gene delivery that do not suffer the mutagenesis and immunogenicity concerns of viral vectors. To address the challenges of efficiency and biocompatibility, a series of zwitterion-like polyethylenimine derivatives (zPEIs) were produced via the succinylation of 2-11.5% of polyethylenimine (PEI) amines. With increasing modification, zPEI polyplexes exhibited decreased serum-protein aggregation and dissociated more easily in the presence of a competitor polyanion when compared to unmodified PEI. Surprisingly, the gene delivery mediated in the presence of serum showed that succinylation of as few as 2% of PEI amines resulted in transgene expression 260- to 480-fold higher than that of unmodified PEI and 50- to 65-fold higher than that of commercial PEI-PEG2k in HEK293 and HeLa cells, respectively. Remarkably, the same zPEIs also produced 16-fold greater efficiency of CRISPR/Cas9 gene knock-in compared to unmodified PEI in the presence of serum. In addition, we show that 2% succinylation does not significantly decrease polymer/DNA binding ability or serum protein interaction to a significant extent, yet this small modification is still sufficient to provide a remarkable increase in transgene expression and gene knock-in in the presence of serum.
Collapse
Affiliation(s)
- Nasir Uddin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Logan W Warriner
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Daniel W Pack
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
19
|
Bono N, Coloma Smith B, Moreschi F, Redaelli A, Gautieri A, Candiani G. In silico prediction of the in vitro behavior of polymeric gene delivery vectors. NANOSCALE 2021; 13:8333-8342. [PMID: 33900339 DOI: 10.1039/d0nr09052b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-viral gene delivery vectors have increasingly come under the spotlight, but their performaces are still far from being satisfactory. Therefore, there is an urgent need for forecasting tools and screening methods to enable the development of ever more effective transfectants. Here, coarse-grained (CG) models of gold standard transfectant poly(ethylene imine)s (PEIs) have been profitably used to investigate and highlight the effect of experimentally-relevant parameters, namely molecular weight (2 vs. 10 kDa) and topologies (linear vs. branched), protonation state, and ammine-to-phosphate ratios (N/Ps), on the complexation and the gene silencing efficiency of siRNA molecules. The results from the in vitro screening of cationic polymers and conditions were used to validate the in silico platform that we developed, such that the hits which came out of the CG models were of high practical relevance. We show that our in silico platform enables to foresee the most suitable conditions for the complexation of relevant siRNA-polycation assemblies, thereby providing a reliable predictive tool to test bench transfectants in silico, and foster the design and development of gene delivery vectors.
Collapse
Affiliation(s)
- Nina Bono
- GenT LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Beha MJ, Ryu JS, Kim YS, Chung HJ. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112167. [PMID: 34082968 DOI: 10.1016/j.msec.2021.112167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
The spread of multidrug-resistant (MDR) bacterial infections has become a serious global threat. We introduce multi-layer coated gold nanoparticles (MLGNPs) delivering antisense oligonucleotides (ASOs) targeting the resistance gene of methicillin-resistant Staphylococcus aureus (MRSA), as a selective antimicrobial by restoring susceptibility. MLGNPs were prepared by multi-step surface immobilization of gold nanoparticles (GNPs) with polyethylenimine (PEI) and loaded with ASO targeting the mecA gene. The MLGNPs were shown to be efficiently internalized into various types of Gram-positive bacteria, including MRSA, Staphylococcus epidermidis, and Bacillus subtilis, which was superior to single-layer coated GNPs and free PEI polymer. The delivery of MLGNPs into MRSA resulted in up to 74% silencing of the mecA gene with high selectivity, in a dose-dependent manner. The treatment of MLGNPs to MRSA in the presence of oxacillin, a beta-lactam antibiotic, showed major suppression (~71%) of bacterial growth, due to the recovery of antibacterial sensitivity. Furthermore, the treatment of MLGNPs in a complex system showed preferential uptake into bacteria over mammalian cells, demonstrating the suitable characteristics of MLGNPs for selective delivery into bacteria. The current approach can be potentially applied for targeting various types of MDR bacterial infections by specific silencing of a resistance gene, as a combinatorial therapeutic used with conventional antibiotics.
Collapse
Affiliation(s)
- Marcel Janis Beha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Moore JA, Chow JCL. Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abddd3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Liu C, Guo Z, Feng H, Lin L, Cui Y, Li Y, Tian H. Synthesis of Copolymers Polyethyleneimine-co-Polyphenylalanine as Gene and Drug Codelivery Carrier. Macromol Biosci 2021; 21:e2100033. [PMID: 33689218 DOI: 10.1002/mabi.202100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Indexed: 12/26/2022]
Abstract
In this study, a series of hyperbranched copolymers polyethyleneimine-co-polyphenylalanine (PEI-co-PPhe) are synthesized by ring-opening polymerization with phenylalanine-N-carboxyanhydride as monomer and PEI-25k as initiator, using as a gene and drug codelivery carrier. Among them, PEI-co-PPhe (1:170) is selected out from transfection efficiency and cytotoxicity tests. Then, doxorubicin-cis-aconitic anhydride (CAD) and BCl2-shRNA (as a therapeutic gene) are coloaded into the PEI-co-PPhe carrier to form PEI-co-PPhe/Bcl2-shRNA/CAD complexes as a codeliver system. When the mass ratio of PEI-co-PPhe:Bcl2-shRNA:CAD is 5:1:1, the codeliver system has the most obvious synergistic therapeutic effect against B16F10 cells. Confirmed by confocal laser scanning microscope and flow cytometry, compared with drug and gene alone, the codeliver complexes can be endocytosed into B16F10 cells efficiently. As a result, the appropriate length of PPhe grafted on PEI will improve the gene transfer efficiency and decrease cytotoxicity, as well as effective codelivery of gene and drug into cancer cells to be a promising codelivery carrier for cancer therapy.
Collapse
Affiliation(s)
- Chong Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Huimin Feng
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuan Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Yanhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
23
|
Shen Y, Ma J, Jiang J, Chen Z, Yan W, Wang Y, Wang F, Liu L. Treatment of adhesions after Achilles tendon injury using focused ultrasound with targeted bFGF plasmid-loaded cationic microbubbles. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractNonviral targeting technology has become promising as a form of gene therapy for diseases and injuries, such as Achilles tendon injuries. In this study, we used avidin–biotin bridge and positive–negative charge attractions to load the intercellular adhesion molecule-1 (ICAM-1) antibody and the basic fibroblast growth factor (bFGF) plasmid onto the surface of the microbubbles. The saturated loading capacity for 1.1 × 108 microbubble was 6.55 ± 0.53 µg. We established the ICAM-1 antigen microenvironment using tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells and found the targeting ability of the prepared microbubbles in vitro. In vivo, we also found that the injected targeted bFGF gene microbubbles expressed the bFGF gene better when compared with that of the control group. Furthermore, we evaluated adhesions after Achilles tendon injuries in rabbits using hematoxylin and eosin and immunohistochemical (IHC) staining methods. The collagen fibers were properly arranged in the tendon, and there was greater cellularity inside the tendon sheath and a clearer boundary between the internal and external tendon sheath than that of the control group. IHC staining showed greater ICAM-1 expression inside the tendon sheath when compared with outside the tendon sheath. In conclusion, targeted microbubbles can be a useful carrier of genes to provide gene therapy for the prevention of adhesions after tendon injury.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Jiancheng Ma
- Department of Ultrasound, Huizhou Municipal Central Hospital, Huizhou 516002, China
| | - Junsheng Jiang
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Zhilin Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Wenzhu Yan
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Yue Wang
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Henan, Xinxiang 453002, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lian-Hua Road, Guangdong, Shenzhen 518036, China
| |
Collapse
|
24
|
Kushwaha AC, Mohanbhai SJ, Sardoiwala MN, Sood A, Karmakar S, Roy Choudhury S. Epigenetic Regulation of Bmi1 by Ubiquitination and Proteasomal Degradation Inhibit Bcl-2 in Acute Myeloid Leukemia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25633-25644. [PMID: 32453568 DOI: 10.1021/acsami.0c06186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bmi1 is associated with advanced prognosis of acute myeloid leukemia (AML), and polyethylenimine (PEI)-stabilized Bmi1 siRNA-entrapped human serum albumin (HSA) nanocarriers (PEI@HSANCs) were used to protect siRNA from degradation and also to control epigenetic regulation-based AML therapy. The nanoform increased the transfection efficiency of Bmi1 siRNA through caveolae-mediated endocytosis and enhanced Bax translocation into the mitochondria. It enhanced the caspase 3-mediated apoptosis through the Bax activation and Bcl-2 inhibition. The molecular analysis reveals the downregulation of polycomb proteins, Bmi1 and EzH2, along with inhibition of H3K27me3 and H2AK119ub1. The signaling cascade revealed downregulation of Bmi1 through ubiquitin-mediated degradation and is reversed by a proteasome inhibitor. Further mechanistic studies established a crucial role of transcription factor, C-Myb and Bmi1, as its direct targets for maintenance and progression of AML. Chromatin immunoprecipitation (ChIP) assay confirmed Bmi1 as a direct target of C-Myb as it binds to promoter sequence of Bmi1 between -235 to +43 and -111 to +43. The in vivo studies performed in the AML xenograft model evidence a decrease in the population of leukemic stem cells marker (CD45+) and an increase in the myeloid differentiating marker expression (CD11b+) in the bone marrow after the Bmi1 siRNA nanoconjugated therapy. Activation of apoptotic pathways and withdrawal of epigenetic repression through a ubiquitin proteasomal pathway potentiating a novel antileukemic therapy were established.
Collapse
Affiliation(s)
- Avinash Chandra Kushwaha
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Mohammed Nadim Sardoiwala
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ankur Sood
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
25
|
Pantatosaki E, Papadopoulos GK. Binding Dynamics of siRNA with Selected Lipopeptides: A Computer-Aided Study of the Effect of Lipopeptides' Functional Groups and Stereoisomerism. J Chem Theory Comput 2020; 16:3842-3855. [PMID: 32324997 DOI: 10.1021/acs.jctc.9b01261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The engineering issues pertaining to nanoparticle systems toward targeted gene therapies have not been fully probed. Recent experiments have identified specific structural characteristics of a novel class of lipopeptides (LP) that may lead to potent nanocarriers intended as RNAi therapeutics, albeit the molecular mechanism that underlies their performance remains unexplored. We conducted molecular dynamics simulations in atomistic detail coupled with free energy computations to study the dynamics and thermodynamics of an acrylate- and an epoxide-derived LP, members of the aforesaid class, upon their binding to siRNA in aqueous solution aiming at examining structure-potency relations. We found that the entropic part of the free energy of binding predominates; moreover, the first LP class tends to disrupt the Watson-Crick base pairing of siRNA, whereas the latter leaves the double helix intact. Moreover, the identified tug-of-war effect between LP-water and LP-siRNA hydrogen bonding in the supramolecular complex can underpin synthesis routes toward tuning the association dynamics. Our simulations on two diastereomers of the epoxide-derived LP showed significant structural and energetics differences upon binding, as a result of steric effects imposed by the different absolute configurations at their chiral centers. These findings may serve as crucial design parameters toward modulating the interplay between complex stability and ease of releasing the nucleic acid drug into the cell.
Collapse
Affiliation(s)
- Evangelia Pantatosaki
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - George K Papadopoulos
- School of Chemical Engineering, National Technical University of Athens, 15780 Athens, Greece.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Sousa Â, Faria R, Albuquerque T, Bhatt H, Biswas S, Queiroz JA, Costa D. Design of experiments to select triphenylphosphonium-polyplexes with suitable physicochemical properties for mitochondrial gene therapy. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Yu J, Li J, Zhai S, Lin L, Wang K, Tang B, Meng H, Tian L. Enzymatically Synthesized DNA Polymer as Co-carrier for Enhanced RNA Interference. ACS APPLIED BIO MATERIALS 2019; 2:5204-5215. [DOI: 10.1021/acsabm.9b00862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Kui Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
28
|
Physical-chemical measurement method development for self-assembled, core-shell nanoparticles. Sci Rep 2019; 9:1655. [PMID: 30733537 PMCID: PMC6367485 DOI: 10.1038/s41598-018-38194-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022] Open
Abstract
Improvements in dimensional metrology and innovations in physical-chemical characterization of functionalized nanoparticles are critically important for the realization of enhanced performance and benefits of nanomaterials. Toward this goal, we propose a multi-technique measurement approach, in which correlated atomic force microscopy, dynamic light scattering, high performance liquid chromatography and mass spectroscopy measurements are used to assess molecular and structural properties of self-assembled polyplex nanoparticles with a core-shell structure. In this approach, measurement methods are first validated with a model system consisting of gold nanoparticles functionalized with synthetic polycationic branched polyethylenimine macromolecules. Shell thickness is measured by atomic force microscopy and dynamic light scattering, and the polyelectrolyte uptake determined by chromatographic separation and mass spectrometric analysis. Statistical correlation between size, structure and stability provide a basis for extending the methods to more complex self-assembly of nucleic acids and macromolecules via a condensation reaction. From these size and analytical chemical measurements, we obtain a comprehensive spatial description of these assemblies, obtain a detailed interpretation of the core-shell evolution, and identify regions of the parameter space where stable, discrete particle formation occurs.
Collapse
|
29
|
Tian T, Zhang T, Zhou T, Lin S, Shi S, Lin Y. Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. NANOSCALE 2018; 9:18402-18412. [PMID: 29147695 DOI: 10.1039/c7nr07130b] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nowadays, DNA nanostructures are extensively researched for their biocompatibility, editable functionality, and structural stability. Tetrahedral DNA nanostructures (TDNs), widely known for their membrane permeability, are regarded as potential candidates for drug delivery. However, the stability and membrane permeability of TDNs call for further enhancement if in vivo usage is ascribed. To overcome the drawbacks of TDNs, ethylene imine (PEI, 25 kDa, branched)-a classic cationic polymer in the field of gene delivery-was applied. Via a facile one-pot synthesis method, a PEI/TDNs complex was formed. Subsequently, a DNase protection assay, a cytotoxicity assay, endocytosis-related experiments, and lysosome staining were performed to examine the potential of PEI/TDNs as a delivery vehicle. The combination of PEI and TDNs not only overcame the drawbacks of each substance but also retained their individual merits. Traditionally, drug-delivery vehicles that enable enhanced cell entry and lysosome escape are often compromised by their toxicity and poor multifunctionality. We believe this novel PEI/TDNs complex with enhanced systemic stability, biocompatibility, cell-entry ability, and lysosome-escape ability and unsurpassed editable functionality could be a powerful tool as a multi-functional delivery vehicle in targeted drug delivery, in vivo imaging, and other related fields.
Collapse
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China.
| | | | | | | | | | | |
Collapse
|
30
|
Beu TA, Ailenei AE, Farcaş A. CHARMM force field for protonated polyethyleneimine. J Comput Chem 2018; 39:2564-2575. [PMID: 30365171 DOI: 10.1002/jcc.25637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/25/2023]
Abstract
We present a revised version of our previously published atomistic Chemistry at Harvard Macromolecular Mechanics (CHARMM) force field for polyethyleneimine (PEI). It is based on new residue types (with symmetric CNC backbone), whose integer charges and bonded parameters are derived from ab initio calculations on an enlarged set of model polymers. The force field is validated by extensive molecular dynamics simulations on solvated PEI chains of various lengths and protonation patterns. The profiles of the gyration radius, end-to-end distance, and diffusion coefficient fine-tune our previous results, while the simulated diffusion coefficients excellently reproduce experimental findings. The developed CHARMM force field is suitable for realistic atomistic simulations of size/protonation-dependent behavior of PEI chains, either individually or composing polyplexes, but also provides reliable all-atom distributions for deriving coarse-grained force fields for PEI. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Titus Adrian Beu
- University Babeş-Bolyai, Faculty of Physics, Department of Biomolecular Physics, 1 Mihail Kogălniceanu Street, Cluj-Napoca 400084, Romania
| | - Andrada-Elena Ailenei
- University Babeş-Bolyai, Faculty of Physics, Department of Biomolecular Physics, 1 Mihail Kogălniceanu Street, Cluj-Napoca 400084, Romania
| | - Alexandra Farcaş
- University Babeş-Bolyai, Faculty of Physics, Department of Biomolecular Physics, 1 Mihail Kogălniceanu Street, Cluj-Napoca 400084, Romania
| |
Collapse
|
31
|
Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, Karimi Zade A, Amani AM, Savardashtaki A, Mirzaei E, Jahandideh S, Movahedpour A. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. NANO REVIEWS & EXPERIMENTS 2018; 9:1488497. [PMID: 30410712 PMCID: PMC6171788 DOI: 10.1080/20022727.2018.1488497] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
Abstract
The meaning of gene therapy is the delivery of DNA or RNA to cells for the treatment or prevention of genetic disorders. The success rate of gene therapy depends on the progression and safe gene delivery system. The vectors available for gene therapy are divided into viral and non-viral systems. Viral vectors cause higher transmission efficiency and long gene expression, but they have major problems, such as immunogenicity, carcinogenicity, the inability to transfer large size genes and high costs. Non-viral gene transfer vectors have attracted more attention because they exhibit less toxicity and the ability to transfer large size genes. However, the clinical application of non-viral methods still faces some limitations, including low transmission efficiency and poor gene expression. In recent years, numerous methods and gene-carriers have been developed to improve gene transfer efficiency. The use of Polyethylenimine (PEI) based transfer of collaboration may create a new way of treating diseases and the combination of chemotherapy and gene therapy. The purpose of this paper is to introduce the PEI as an appropriate vector for the effective gene delivery.
Collapse
Affiliation(s)
- Abbas Zakeri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Beigi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Ali Reza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ayoob Karimi Zade
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmail Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jahandideh
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
|
33
|
Grasso G, Deriu MA, Patrulea V, Borchard G, Möller M, Danani A. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization. PLoS One 2017; 12:e0186816. [PMID: 29088239 PMCID: PMC5663398 DOI: 10.1371/journal.pone.0186816] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Marco Agostino Deriu
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| | - Viorica Patrulea
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Michael Möller
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Andrea Danani
- Istituto Dalle Molle di Studi Sull'Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno, Switzerland
| |
Collapse
|
34
|
Abstract
Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Polymers forming stable complexes with nucleic acids (NAs) are non-viral gene carriers. The self-assembly of polymers and nucleic acids is typically a complex process that involves many types of interaction at different scales. Electrostatic interaction, hydrophobic interaction, and hydrogen bonds are three important and prevalent interactions in the polymer/nucleic acid system. Electrostatic interactions and hydrogen bonds are the main driving forces for the condensation of nucleic acids, while hydrophobic interactions play a significant role in the cellular uptake and endosomal escape of polymer-nucleic acid complexes. To design high-efficiency polymer candidates for the DNA and siRNA delivery, it is necessary to have a detailed understanding of the interactions between them in solution. In this chapter, we survey the roles of the three important interactions between polymers and nucleic acids during the formation of polyplexes and summarize recent understandings of the linear polyelectrolyte-NA interactions and dendrimer-NA interactions. We also review recent progress optimizing the gene delivery system by tuning these interactions.
Collapse
|