1
|
Lecomte JTJ, Johnson EA. The globins of cyanobacteria and green algae: An update. Adv Microb Physiol 2024; 85:97-144. [PMID: 39059824 DOI: 10.1016/bs.ampbs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The globin superfamily of proteins is ancient and diverse. Regular assessments based on the increasing number of available genome sequences have elaborated on a complex evolutionary history. In this review, we present a summary of a decade of advances in characterising the globins of cyanobacteria and green algae. The focus is on haem-containing globins with an emphasis on recent experimental developments, which reinforce links to nitrogen metabolism and nitrosative stress response in addition to dioxygen management. Mention is made of globins that do not bind haem to provide an encompassing view of the superfamily and perspective on the field. It is reiterated that an effort toward phenotypical and in-vivo characterisation is needed to elucidate the many roles that these versatile proteins fulfil in oxygenic photosynthetic microbes. It is also proposed that globins from oxygenic organisms are promising proteins for applications in the biotechnology arena.
Collapse
Affiliation(s)
- Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
2
|
Borisov VB, Forte E. Bioenergetics and Reactive Nitrogen Species in Bacteria. Int J Mol Sci 2022; 23:7321. [PMID: 35806323 PMCID: PMC9266656 DOI: 10.3390/ijms23137321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex, and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not yet available. However, this research area is developing very rapidly, and the knowledge gained should help us develop new methods of treating infectious diseases.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
3
|
Julió Plana L, Martinez Grundman JE, Estrin DA, Lecomte JTJ, Capece L. Distal lysine (de)coordination in the algal hemoglobin THB1: A combined computer simulation and experimental study. J Inorg Biochem 2021; 220:111455. [PMID: 33882423 DOI: 10.1016/j.jinorgbio.2021.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/26/2022]
Abstract
THB1 is a monomeric truncated hemoglobin from the green alga Chlamydomonas reinhardtii. In the absence of exogenous ligands and at neutral pH, the heme group of THB1 is coordinated by two protein residues, Lys53 and His77. THB1 is thought to function as a nitric oxide dioxygenase, and the distal binding of O2 requires the cleavage of the Fe-Lys53 bond accompanied by protonation and expulsion of the lysine from the heme cavity into the solvent. Nuclear magnetic resonance spectroscopy and crystallographic data have provided dynamic and structural insights of the process, but the details of the mechanism have not been fully elucidated. We applied a combination of computer simulations and site-directed mutagenesis experiments to shed light on this issue. Molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics restrained optimizations were performed to explore the nature of the transition between the decoordinated and lysine-bound states of the ferrous heme in THB1. Lys49 and Arg52, which form ionic interactions with the heme propionates in the X-ray structure of lysine-bound THB1, were observed to assist in maintaining Lys53 inside the protein cavity and play a key role in the transition. Lys49Ala, Arg52Ala and Lys49Ala/Arg52Ala THB1 variants were prepared, and the consequences of the replacements on the Lys (de)coordination equilibrium were characterized experimentally for comparison with computational prediction. The results reinforced the dynamic role of protein-propionate interactions and strongly suggested that cleavage of the Fe-Lys53 bond and ensuing conformational rearrangement is facilitated by protonation of the amino group inside the distal cavity.
Collapse
Affiliation(s)
- Laia Julió Plana
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime E Martinez Grundman
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juliette T J Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Rankine-Wilson LI, Shapira T, Sao Emani C, Av-Gay Y. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001041. [PMID: 33826491 PMCID: PMC8289223 DOI: 10.1099/mic.0.001041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen killing millions of people annually. Treatment for tuberculosis is lengthy and complicated, involving multiple drugs and often resulting in serious side effects and non-compliance. Mtb has developed numerous complex mechanisms enabling it to not only survive but replicate inside professional phagocytes. These mechanisms include, among others, overcoming the phagosome maturation process, inhibiting the acidification of the phagosome and inhibiting apoptosis. Within the past decade, technologies have been developed that enable a more accurate understanding of Mtb physiology within its intracellular niche, paving the way for more clinically relevant drug-development programmes. Here we review the molecular biology of Mtb pathogenesis offering a unique perspective on the use and development of therapies that target Mtb during its intracellular life stage.
Collapse
Affiliation(s)
| | - Tirosh Shapira
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Carine Sao Emani
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Abstract
Flavohaemoglobins were first described in yeast as early as the 1970s but their functions were unclear. The surge in interest in nitric oxide biology and both serendipitous and hypothesis-driven discoveries in bacterial systems have transformed our understanding of this unusual two-domain globin into a comprehensive, yet undoubtedly incomplete, appreciation of its pre-eminent role in nitric oxide detoxification. Here, I focus on research on the flavohaemoglobins of microorganisms, especially of bacteria, and update several earlier and more comprehensive reviews, emphasising advances over the past 5 to 10 years and some controversies that have arisen. Inevitably, in light of space restrictions, details of nitric oxide metabolism and globins in higher organisms are brief.
Collapse
Affiliation(s)
- Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
6
|
Tejero J, Hunt AP, Santolini J, Lehnert N, Stuehr DJ. Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases. J Biol Chem 2019; 294:7904-7916. [PMID: 30926606 DOI: 10.1074/jbc.ra119.007810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) synthases (NOSs) catalyze the formation of NO from l-arginine. We have shown previously that the NOS enzyme catalytic cycle involves a large number of reactions but can be characterized by a global model with three main rate-limiting steps. These are the rate of heme reduction by the flavin domain (kr ), of dissociation of NO from the ferric heme-NO complex (kd ), and of oxidation of the ferrous heme-NO complex (k ox). The reaction of oxygen with the ferrous heme-NO species is part of a futile cycle that does not directly contribute to NO synthesis but allows a population of inactive enzyme molecules to return to the catalytic cycle, and thus, enables a steady-state NO synthesis rate. Previously, we have reported that this reaction does involve the reaction of oxygen with the NO-bound ferrous heme complex, but the mechanistic details of the reaction, that could proceed via either an inner-sphere or an outer-sphere mechanism, remained unclear. Here, we present additional experiments with neuronal NOS (nNOS) and inducible NOS (iNOS) variants (nNOS W409F and iNOS K82A and V346I) and computational methods to study how changes in heme access and electronics affect the reaction. Our results support an inner-sphere mechanism and indicate that the particular heme-thiolate environment of the NOS enzymes can stabilize an N-bound FeIII-N(O)OO- intermediate species and thereby catalyze this reaction, which otherwise is not observed or favorable in proteins like globins that contain a histidine-coordinated heme.
Collapse
Affiliation(s)
- Jesús Tejero
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Andrew P Hunt
- the Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Jérôme Santolini
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Nicolai Lehnert
- the Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| |
Collapse
|
7
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Dong X, Liu Y, Zhang G, Wang D, Zhou X, Shao J, Shen Q, Zhang R. Synthesis and detoxification of nitric oxide in the plant beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 and its effect on biofilm formation. Biochem Biophys Res Commun 2018; 503:784-790. [PMID: 29913149 DOI: 10.1016/j.bbrc.2018.06.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Nitric oxide (NO) is an important gas signal that regulates many biological processes, and due to the high nitrogen recycling activity in the rhizosphere, NO is an important signaling molecule in this region. Thus, an understanding of the effect of NO on the rhizomicrobiome, especially on plant beneficial rhizobacteria, is important for the use of these bacteria in agriculture. In this study, the effect of exogenous NO on the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 was investigated. The results showed that low concentrations of NO increased the ability of the strain SQR9 to form biofilms, while high concentrations of NO inhibited the growth of this bacterium. The SQR9 gene yflM encodes nitric oxide synthase (NOS), which is used to synthesize NO, while the gene ykvO encodes a sepiapterin reductase that is used to synthesize tetrahydrobiopterin, the coenzyme of NOS. Isothermal titration calorimetry and high-performance liquid chromatography analyses demonstrated an interaction between YkvO and NADPH. SQR9 has two hmp genes, although only one was observed to be responsible for NO detoxification through oxidization. This study revealed the effect of NO on plant beneficial rhizobacterium and assessed the ability of this strain to adapt to exogenous NO, which will help to improve the application of this strain in agricultural production.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dandan Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xuan Zhou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
9
|
Meuwly M. Reactive molecular dynamics: From small molecules to proteins. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Markus Meuwly
- Department of Chemistry University of Basel Basel Switzerland
- Department of Chemistry Brown University Providence Rhode Island
| |
Collapse
|
10
|
|
11
|
Das AK, Meuwly M. Kinetic Analysis and Structural Interpretation of Competitive Ligand Binding for NO Dioxygenation in Truncated Hemoglobin N. Angew Chem Int Ed Engl 2018; 57:3509-3513. [PMID: 29356324 DOI: 10.1002/anie.201711445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 11/06/2022]
Abstract
The conversion of nitric oxide (NO) into nitrate (NO3- ) by dioxygenation protects cells from lethal NO. Starting from NO-bound heme, the first step in converting NO into benign NO3- is the ligand exchange reaction FeNO+O2 →FeO2 +NO, which is still poorly understood at a molecular level. For wild-type (WT) truncated hemoglobin N (trHbN) and its Y33A mutant, the calculated barriers for the exchange reaction differ by 1.5 kcal mol-1 , compared with 1.7 kcal mol-1 from experiment. It is directly confirmed that the ligand exchange reaction is rate-limiting in trHbN and that entropic contributions account for 75 % of the difference between the WT and the mutant. Residues Tyr 33, Phe 46, Val 80, His 81, and Gln 82 surrounding the active site are expected to control the reaction path. By comparison with electronic structure calculations, the transition state separating the two ligand-bound states was assigned to a 2 A state.
Collapse
Affiliation(s)
- Akshaya Kumar Das
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, Basel, Switzerland
| |
Collapse
|
12
|
Kinetische Analyse und strukturelle Interpretation der kompetitiven Ligandenbindung für Denitrifikation in gekürztem Hämoglobin N. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|