1
|
Huang Z, Oh SM, Winey KI, Hickner MA. Water Dynamics of Superacid Aromatic Proton Exchange Membranes for Fuel Cell Applications. Macromolecules 2025; 58:2630-2639. [PMID: 40104268 PMCID: PMC11912528 DOI: 10.1021/acs.macromol.4c02925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025]
Abstract
Proton exchange membranes (PEMs) with high conductivity are of critical importance for the development of fuel cells, electrolyzers, and other electrochemical technologies. In this research, poly(1,1,2,2-tetrafluoro-2-phenoxyethane-1-sulfonic acid) (PTPS) with an aromatic polymer main chain and a perfluorinated superacidic polymer side chain was synthesized. The water dynamics of PTPS were characterized across various length scales using a combination of Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) and compared with Nafion, a standard perfluorinated PEM, and sulfonated poly(ether sulfone) (SPES 40), an aromatic PEM without perfluorinated superacid side chains. The T 1 and T 2 relaxation times of water in the samples probed by NMR increase from SPES 40 to PTPS to Nafion, indicating that the local motion of the water molecules becomes faster. This trend corresponds well with the relative fraction of bulk-like water determined using FTIR. At larger length scales, the diffusion coefficient of water was characterized using pulsed-field gradient NMR (PFG-NMR). At a longer diffusion time (Δ = 100 ms), PTPS has a smaller diffusion coefficient compared with both Nafion and SPES 40, due to restricted diffusion, and this effect is also evident in the proton conductivity of the hydrated membranes. From this comparison, it is apparent that the aromatic backbone and side chain type greatly influence the water dynamics in PEMs at various length scales and the water dynamics significantly impact the bulk proton conductivity. These insights will lead to new designs for aromatic PEMs and help to identify bottlenecks in current materials.
Collapse
Affiliation(s)
- Zitan Huang
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sol Mi Oh
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael A. Hickner
- Department
of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Dischinger S, Miller DJ, Vermaas DA, Kingsbury RS. Unifying the Conversation: Membrane Separation Performance in Energy, Water, and Industrial Applications. ACS ES&T ENGINEERING 2024; 4:277-289. [PMID: 38357245 PMCID: PMC10862477 DOI: 10.1021/acsestengg.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
Dense polymer membranes enable a diverse range of separations and clean energy technologies, including gas separation, water treatment, and renewable fuel production or conversion. The transport of small molecular and ionic solutes in the majority of these membranes is described by the same solution-diffusion mechanism, yet a comparison of membrane separation performance across applications is rare. A better understanding of how structure-property relationships and driving forces compare among applications would drive innovation in membrane development by identifying opportunities for cross-disciplinary knowledge transfer. Here, we aim to inspire such cross-pollination by evaluating the selectivity and electrochemical driving forces for 29 separations across nine different applications using a common framework grounded in the physicochemical characteristics of the permeating and rejected solutes. Our analysis shows that highly selective membranes usually exhibit high solute rejection, rather than fast solute permeation, and often exploit contrasts in the size and charge of solutes rather than a nonelectrostatic chemical property, polarizability. We also highlight the power of selective driving forces (e.g., the fact that applied electric potential acts on charged solutes but not on neutral ones) to enable effective separation processes, even when the membrane itself has poor selectivity. We conclude by proposing several research opportunities that are likely to impact multiple areas of membrane science. The high-level perspective of membrane separation across fields presented herein aims to promote cross-pollination and innovation by enabling comparisons of solute transport and driving forces among membrane separation applications.
Collapse
Affiliation(s)
- Sarah
M. Dischinger
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Daniel J. Miller
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - David A. Vermaas
- Department
of Chemical Engineering, Delft University
of Technology, 2629HZ Delft, The
Netherlands
| | - Ryan S. Kingsbury
- Energy
Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering and the Andlinger Center for
Energy and the Environment, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
3
|
Wakolo SW, Tryk DA, Nishiyama H, Miyatake K, Iiyama A, Inukai J. Various states of water species in an anion exchange membrane characterized by Raman spectroscopy under controlled temperature and humidity. Phys Chem Chem Phys 2024; 26:1658-1670. [PMID: 38009441 DOI: 10.1039/d3cp03660j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs) hold the key to future mass commercialisation of fuel cell technology, even though currently, AEMFCs perform less optimally than proton exchange membrane fuel cells (PEMFCs). Unlike PEMFCs, AEMFCs have demonstrated the capability to operate independently of Pt group metal-based catalysts. Water characterization inside the membrane is one factor that significantly influences the performance of AEMFCs. In this paper, different water species inside an anion exchange membrane (AEM), QPAF-4, developed at the University of Yamanashi, were studied for the first time using micro-Raman spectroscopy. Spectra of pure water, alkaline solutions, and calculations based on density functional theory were used to identify the water species in the AEM. The OH stretching band was deconvoluted into nine unique Gaussian bands. All the hydrogen-bonded OH species increased steadily with increasing humidity, while the CH and non-H-bonded OH remained relatively constant. These results confirm the viability of micro-Raman spectroscopy in studying the various water-related species in AEMs. The availability of this technique is an essential prerequisite in improving the ionic conductivity and effectively solving the persisting durability challenge facing AEMFCs, thus hastening the possibility of mass commercialisation of fuel cells.
Collapse
Affiliation(s)
- Solomon Wekesa Wakolo
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-3-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Donald A Tryk
- Hydrogen and Fuel Cell Nanomaterials Research Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021, Japan.
| | - Hiromichi Nishiyama
- Hydrogen and Fuel Cell Nanomaterials Research Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021, Japan.
| | - Kenji Miyatake
- Hydrogen and Fuel Cell Nanomaterials Research Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021, Japan.
- Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8510, Japan
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Akihiro Iiyama
- Hydrogen and Fuel Cell Nanomaterials Research Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021, Japan.
| | - Junji Inukai
- Hydrogen and Fuel Cell Nanomaterials Research Center, University of Yamanashi, 6-43 Miyamae, Kofu, Yamanashi 400-0021, Japan.
- Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8510, Japan
| |
Collapse
|
4
|
Yu W, Ge Z, Zhang K, Liang X, Ge X, Wang H, Li M, Shen X, Xu Y, Wu L, Xu T. Development of a High-Performance Proton Exchange Membrane: From Structural Optimization to Quantity Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Ming Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianhe Shen
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Eneh CI, Bolen MJ, Suarez-Martinez PC, Bachmann AL, Zimudzi TJ, Hickner MA, Batys P, Sammalkorpi M, Lutkenhaus JL. Fourier transform infrared spectroscopy investigation of water microenvironments in polyelectrolyte multilayers at varying temperatures. SOFT MATTER 2020; 16:2291-2300. [PMID: 32043105 DOI: 10.1039/c9sm02478f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are thin films formed by the alternating deposition of oppositely charged polyelectrolytes. Water plays an important role in influencing the physical properties of PEMs, as it can act both as a plasticizer and swelling agent. However, the way in which water molecules distribute around and hydrate ion pairs has not been fully quantified with respect to both temperature and ionic strength. Here, we examine the effects of temperature and ionic strength on the hydration microenvironments of fully immersed poly(diallyldimethylammonium)/polystyrene sulfonate (PDADMA/PSS) PEMs. This is accomplished by tracking the OD stretch peak using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy at 0.25-1.5 M NaCl and 35-70 °C. The OD stretch peak is deconvoluted into three peaks: (1) high frequency water, which represents a tightly bound microenvironment, (2) low frequency water, which represents a loosely bound microenvironment, and (3) bulk water. In general, the majority of water absorbed into the PEM exists in a bound state, with little-to-no bulk water observed. Increasing temperature slightly reduces the amount of absorbed water, while addition of salt increases the amount of absorbed water. Finally, a van't Hoff analysis is applied to estimate the enthalpy (11-22 kJ mol-1) and entropy (48-79 kJ mol-1 K-1) of water exchanging from low to high frequency states.
Collapse
Affiliation(s)
- Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Matthew J Bolen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Pilar C Suarez-Martinez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Adam L Bachmann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Tawanda J Zimudzi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael A Hickner
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, PO Box 16100, 00076 Aalto, Finland and Department of Bioproducts and Biosystems, Aalto University, PO Box 16100, 00076 Aalto, Finland
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
6
|
Kundu K, Chandra GK, Umapathy S, Kiefer J. Spectroscopic and computational insights into the ion-solvent interactions in hydrated aprotic and protic ionic liquids. Phys Chem Chem Phys 2019; 21:20791-20804. [PMID: 31513201 DOI: 10.1039/c9cp03670a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) and their aqueous solutions are emerging media for solving and manipulating biochemical molecules such as proteins. Unleashing the full potential however requires a detailed mechanistic understanding of how suitable protic and aprotic ILs behave in the presence of water in the first place. The present work aims at making an important step by performing a combined experimental and computational study of two selected ILs and their mixtures with water: the aprotic cholinium propionate ([Chl][Pro]) and the protic N-methyl-2-pyrrolidonium propionate ([NMP][Pro]). IR and Raman spectroscopy reveal stronger ion-solvent interactions in [Chl][Pro]-H2O systems compared to [NMP][Pro]-H2O mixtures. This can be explained by the tightly packed ion-pair associations in [NMP][Pro] comprising the protic -N+-H counterpart, which allows the establishment of highly directional and strong interionic hydrogen bonds. The spectral decomposition of the O-D stretching band into three sub-peaks showed that the protic [NMP][Pro] favors the self-association of water molecules. On the other hand, the predominant fraction of water-anion/cation aggregates exists in aprotic [Chl][Pro]. These hydrated systems can be envisaged using quantum-chemical calculations in the following way: H2O[Chl]+H2O[Pro]-H2O and H2O[NMP]+[Pro]-H2O, which implied preferable solvent-shared ion-pair (SIP) configurations for [Chl][Pro]-H2O systems, whereas the contact ion-pair (CIP) state prevails for the [NMP][Pro]-H2O systems. The latter holds even in the water-rich regime. In future work, these findings will be the basis for an understanding of the underlying principles that govern the interactions of ions with bio-molecules in aqueous solutions.
Collapse
Affiliation(s)
- Kaushik Kundu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560 012, Karnataka, India
| | - Goutam K Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560 012, Karnataka, India and Department of Physics, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), Bangalore 560 012, Karnataka, India and Indian Institute of Science Education and Research, Bhopal Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Johannes Kiefer
- Technische Thermodynamik and MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany.
| |
Collapse
|
7
|
Chen Y, Yu D, Chen W, Fu L, Mu T. Water absorption by deep eutectic solvents. Phys Chem Chem Phys 2019; 21:2601-2610. [DOI: 10.1039/c8cp07383j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents are found to be highly hygroscopic when exposed to the atmosphere.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Material Science
- Langfang Normal University
- Langfang 065000
- P. R. China
| | - Dongkun Yu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| | - Wenjun Chen
- Department of Chemistry and Material Science
- Langfang Normal University
- Langfang 065000
- P. R. China
| | - Li Fu
- Department of Chemistry and Material Science
- Langfang Normal University
- Langfang 065000
- P. R. China
| | - Tiancheng Mu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- P. R. China
| |
Collapse
|