1
|
Tang H, Xie Y, Zhou J. Simulation Study of Carbonic Anhydrase Adsorption on Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11737-11745. [PMID: 40304533 DOI: 10.1021/acs.langmuir.5c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Carbonic anhydrase (CA) is a zinc-containing metalloenzyme that can rapidly catalyze the interconversion of CO2 and bicarbonate under suitable conditions. In industrial applications such as carbon capture, the performance of immobilized CA is highly related to its adsorption orientation and conformational changes on different carrier surfaces. In this work, the combined simulations of Parallel Tempering Monte Carlo and all-atom molecular dynamics were employed to uncover the adsorption mechanisms, orientations, and conformational changes of CA on charged self-assembled monolayers with different surface charge densities. The simulation results demonstrate that the adsorption of CA on charged surfaces is dominated by electrostatic interactions and influenced by the distribution of charged areas on the surface. CA adsorbs on the NH2-SAM surfaces with a ″bottom-on″ orientation with its active pocket facing the solution, which is beneficial for the catalytic process of CA. Asp160 was identified as a common adsorption residue for CA on NH2-SAM surfaces with different SCDs. Furthermore, the native structure of CA is well preserved after adsorption on the NH2-SAM surface, which is advantageous for the recovery of the catalytic activity of immobilized CA. In summary, this work elucidates the role of surface charge in regulating the adsorption orientation of carbonic anhydrase and its conformational changes during the adsorption process at the molecular level and provides theoretical guidance for the design of CA-based biocatalysts.
Collapse
Affiliation(s)
- Hao Tang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yun Xie
- Guangdong Provincial Key Laboratory for Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Xu Z, Zhou J. Unraveling the orientation of an enzyme adsorbed onto a metal-organic framework. Phys Chem Chem Phys 2025; 27:4603-4613. [PMID: 39380469 DOI: 10.1039/d4cp01649a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Bio-conversion of lignocellulosic biomass to bioethanol fuel is a highly desirable yet challenging objective because of the low catalytic activity and high cost of β-glucosidase (BGL). Recently, ZIF-8, an emerging organic porous material, has been proposed as a promising candidate for enzyme immobilization to improve associated activity and stability. However, the underlying interaction mechanism of binding BGL on the ZIF-8 surface is yet to be clarified. Here, the adsorption of BGL onto ZIF-8 is explored for the first time by molecular dynamics simulations. The results show that BGL adsorbs on the ZIF-8 surface with a "back-on" orientation. The adsorption free energy analysis shows that the adsorption process is enthalpy driven. In addition, the electrostatic interaction between negatively charged residues and Zn2+ on the surface of ZIF-8 is found to play a decisive role in surface binding, which accounts for 98% of the total interaction energy. The secondary structure of BGL is not affected despite the strong adsorption, suggesting the good biocompatibility of ZIF-8. This study not only provides a reliable theoretical insight into understanding the interaction mechanism between BGL and ZIF-8, but also helps the rational design of ZIF-8-based materials for bio-related applications.
Collapse
Affiliation(s)
- Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
3
|
Yang S, Peng C, Liu J, Yu H, Xu Z, Xie Y, Zhou J. Adsorption of cytochrome c on different self-assembled monolayers: The role of surface chemistry and charge density. Biointerphases 2024; 19:051005. [PMID: 39392277 DOI: 10.1116/6.0003986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
In this work, the adsorption behavior of cytochrome c (Cyt-c) on five different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, NH2-SAM, COOH-SAM, and OSO3--SAM) was studied by combined parallel tempering Monte Carlo and molecular dynamics simulations. The results show that Cyt-c binds to the CH3-SAM through a hydrophobic patch (especially Ile81) and undergoes a slight reorientation, while the adsorption on the OH-SAM is relatively weak. Cyt-c cannot stably bind to the lower surface charge density (SCD, 7% protonation) NH2-SAM even under a relatively high ionic strength condition, while a higher SCD of 25% protonation promotes Cyt-c adsorption on the NH2-SAM. The preferred adsorption orientations of Cyt-c on the negatively-charged surfaces are very similar, regardless of the surface chemistry and the SCD. As the SCD increases, more counterions are attracted to the charged surfaces, forming distinct counterion layers. The secondary structure of Cyt-c is well kept when adsorbed on these SAMs except the OSO3--SAM surface. The deactivation of redox properties for Cyt-c adsorbed on the highly negatively-charged surface is due to the confinement of heme reorientation and the farther position of the central iron to the surfaces, as well as the relatively larger conformation change of Cyt-c adsorbed on the OSO3--SAM surface. This work may provide insightful guidance for the design of Cyt-c-based bioelectronic devices and controlled enzyme immobilization.
Collapse
Affiliation(s)
- Shengjiang Yang
- Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization, School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, People's Republic of China
| | - Chunwang Peng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yun Xie
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, People's Republic of China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
4
|
Yoon T, Park W, You J, Na S. Investigation of Direct Electron Transfer of Glucose Oxidase on a Graphene-CNT Composite Surface: A Molecular Dynamics Study Based on Electrochemical Experiments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1073. [PMID: 38998678 PMCID: PMC11243339 DOI: 10.3390/nano14131073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Graphene and its variants exhibit excellent electrical properties for the construction of enzymatic interfaces. In particular, the direct electron transfer of glucose oxidase on the electrode surface is a very important issue in the development of enzyme-based bioelectrodes. However, the number of studies conducted to assess how pristine graphene forms different interfaces with other carbon materials is insufficient. Enzyme-based electrodes (formed using carbon materials) have been extensively applied because of their low manufacturing costs and easy production techniques. In this study, the characteristics of a single-walled carbon nanotube/graphene-combined enzyme interface are analyzed at the atomic level using molecular dynamics simulations. The morphology of the enzyme was visualized using an elastic network model by performing normal-mode analysis based on electrochemical and microscopic experiments. Single-carbon electrodes exhibited poorer electrical characteristics than those prepared as composites with enzymes. Furthermore, the composite interface exhibited 4.61- and 2.45-fold higher direct electron efficiencies than GOx synthesized with single-carbon nanotubes and graphene, respectively. Based on this study, we propose that pristine graphene has the potential to develop glucose oxidase interfaces and carbon-nanotube-graphene composites for easy fabrication, low cost, and efficient electrode structures for enzyme-based biofuel cells.
Collapse
Affiliation(s)
- Taeyoung Yoon
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wooboum Park
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Juneseok You
- Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Ji L, Zhang W, Zhang Y, Nian B, Hu Y. Functionalized Ionic Liquids-Modified Metal-Organic Framework Material Boosted the Enzymatic Performance of Lipase. Molecules 2024; 29:2381. [PMID: 38792242 PMCID: PMC11124374 DOI: 10.3390/molecules29102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The development of immobilized enzymes with high activity and stability is critical. Metal-organic frameworks (MOFs) have attracted much academic and industrial interest in the field of enzyme immobilization due to their unique properties. In this study, the amino-functionalized ionic liquid (NIL)-modified metal-organic framework (UiO-66-NH2) was prepared to immobilize Candida rugosa lipase (CRL), using dialdehyde starch (DAS) as the cross-linker. The results of the Fourier transform infrared (FT-IR) spectra, X-ray powder diffraction (XRD), and scanning electronic microscopy (SEM) confirmed that the NIL was successfully grafted to UiO-66-NH2. The CRL immobilized on NIL-modified UiO-66-NH2 (UiO-66-NH2-NIL-DAS@CRL) exhibited satisfactory activity recovery (79.33%), stability, reusability, and excellent organic solvent tolerance. The research results indicated that ionic liquid-modified UiO-66-NH2 had practical potential for application in enzyme immobilization.
Collapse
Affiliation(s)
| | | | | | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China; (L.J.); (W.Z.); (Y.Z.)
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China; (L.J.); (W.Z.); (Y.Z.)
| |
Collapse
|
6
|
He H, Li L, Wu Y, Zhao D, Liu J, Zhou J. Simulation insights into the lipase adsorption on zeolitic imidazolate framework-8. Colloids Surf B Biointerfaces 2023; 231:113540. [PMID: 37708590 DOI: 10.1016/j.colsurfb.2023.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have recently emerged as immobilization matrices for biomolecules, most notably enzymes. Understanding the key factors that dominate the enzyme's catalytic activity on/in ZIFs is crucial for the development of new immobilization matrices. In this work, a combination of the parallel tempering Monte Carlo simulation and all-atom molecular dynamics simulation is performed to study the orientation and conformation of the Candida rugose lipase (CRL) adsorbed on oppositely charged and neutral ZIF-8 (i.e., ZIF-8-COOH, ZIF-8-NH2, and ZIF-8-neutral) surfaces. The results show that CRL could adsorb on all ZIF-8 surfaces, with an ordered orientation obtained on charged ZIF-8 surfaces. ZIF-8-NH2 is a good candidate for CRL immobilization since it can maximize the catalytic activity of CRL. The native conformation of CRL is well preserved on all three surfaces due to the partially water-containing surface of ZIF-8. The results could provide theoretical support for the application of porous materials in enzyme immobilization.
Collapse
Affiliation(s)
- Haokang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yongsheng Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Daohui Zhao
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430205, PR China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
7
|
Bhattacharjee N, Alonso-Cotchico L, Lucas MF. Enzyme immobilization studied through molecular dynamic simulations. Front Bioeng Biotechnol 2023; 11:1200293. [PMID: 37362217 PMCID: PMC10285225 DOI: 10.3389/fbioe.2023.1200293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, simulations have been used to great advantage to understand the structural and dynamic aspects of distinct enzyme immobilization strategies, as experimental techniques have limitations in establishing their impact at the molecular level. In this review, we discuss how molecular dynamic simulations have been employed to characterize the surface phenomenon in the enzyme immobilization procedure, in an attempt to decipher its impact on the enzyme features, such as activity and stability. In particular, computational studies on the immobilization of enzymes using i) nanoparticles, ii) self-assembled monolayers, iii) graphene and carbon nanotubes, and iv) other surfaces are covered. Importantly, this thorough literature survey reveals that, while simulations have been primarily performed to rationalize the molecular aspects of the immobilization event, their use to predict adequate protocols that can control its impact on the enzyme properties is, up to date, mostly missing.
Collapse
|
8
|
Xu Z, Yang S, Xie Y, Yu H, Zhou J. Modulating the adsorption orientation of methionine-rich laccase by tailoring the surface chemistry of single-walled carbon nanotubes. Colloids Surf B Biointerfaces 2022; 217:112660. [PMID: 35777167 DOI: 10.1016/j.colsurfb.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022]
Abstract
Achieving fast electron transfer process between oxidoreductase and electrodes is pivotal for the biocathode of enzymatic biofuel cells (EBFCs). However, in-depth understanding of the interplay mechanism between enzymes and electrode materials remains challenging when designing and constructing EBFCs. Herein, atomic-scale insight into the direct electron transfer (DET) behavior of Thermus thermophilus laccase (TtLac) with a special methionine-rich β-hairpin motif adsorbed on the carboxyl-functionalized carbon nanotube (COOH-CNT) and amino-functionalized carbon nanotube (NH2-CNT) surfaces were disclosed by multi-scale molecular simulations. Simulation results reveal that electrostatic modification is an effective way to tune the DET behavior for TtLac on the modified-CNTs electrode surface. Surprisingly, the positively charged TtLac can be attracted by both negatively charged COOH-CNT and positively charged NH2-CNT surfaces, yet only the latter is capable to trigger the DET process due to the 'lying-on' adsorption orientation. Specifically, the T1 copper site is near the methionine-rich β-hairpin motif, which is the key binding site for TtLac binding onto the NH2-CNT surface via electrostatic interaction, π-π stacking and cation-π interaction. Moreover, TtLac on the NH2-CNT surface undergoes less conformational changes than those on the COOH-CNT surface, which allows the laccase stability and catalytic efficiency to be well preserved. These findings provide a fundamental guidance for future design and fabrication of methionine-rich laccase-based EBFCs with high power output and long lifespan.
Collapse
Affiliation(s)
- Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Yun Xie
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, PR China
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
9
|
Zhang H, Zheng J, Lin C, Yuan S. Molecular dynamics study on adsorption and desorption of lysozyme above polymer antifouling membranes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Dey B, Dutta T. Laccases: thriving the domain of Bio-electrocatalysis. Bioelectrochemistry 2022; 146:108144. [DOI: 10.1016/j.bioelechem.2022.108144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022]
|
11
|
Yang S, Zhao D, Xu Z, Yu H, Zhou J. Molecular understanding of acetylcholinesterase adsorption on functionalized carbon nanotubes for enzymatic biosensors. Phys Chem Chem Phys 2022; 24:2866-2878. [PMID: 35060980 DOI: 10.1039/d1cp04997f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immobilization of acetylcholinesterase on different nanomaterials has been widely used in the field of amperometric organophosphorus pesticide (OP) biosensors. However, the molecular adsorption mechanism of acetylcholinesterase on a nanomaterial's surface is still unclear. In this work, multiscale simulations were utilized to study the adsorption behavior of acetylcholinesterase from Torpedo californica (TcAChE) on amino-functionalized carbon nanotube (CNT) (NH2-CNT), carboxyl-functionalized CNT (COOH-CNT) and pristine CNT surfaces. The simulation results show that the active center and enzyme substrate tunnel of TcAChE are both close to and oriented toward the surface when adsorbed on the positively charged NH2-CNT, which is beneficial to the direct electron transfer (DET) and accessibility of the substrate molecule. Meanwhile, the NH2-CNT can also reduce the tunnel cost of the enzyme substrate of TcAChE, thereby further accelerating the transfer rate of the substrate from the surface or solution to the active center. However, for the cases of TcAChE adsorbed on COOH-CNT and pristine CNT, the active center and substrate tunnel are far away from the surface and face toward the solution, which is disadvantageous for the DET and transportation of enzyme substrate. These results indicate that NH2-CNT is more suitable for the immobilization of TcAChE. This work provides a better molecular understanding of the adsorption mechanism of TcAChE on functionalized CNT, and also provides theoretical guidance for the ordered immobilization of TcAChE and the design, development and improvement of TcAChE-OPs biosensors based on functionalized carbon nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
12
|
Wang S, Ou X, Yi M, Li J. Spontaneous desorption of protein from self-assembled monolayer (SAM)-coated gold nanoparticles induced by high temperature. Phys Chem Chem Phys 2022; 24:2363-2370. [PMID: 35018922 DOI: 10.1039/d1cp04000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nonspecific binding of proteins with nanomaterials (NMs) is a dynamic reversible process including both protein adsorption and desorption parts, which is crucial for controlled release of protein drug loaded by nanocarriers. The nonspecific binding of proteins is susceptible to high temperature, whereas its underlying mechanism still remains elusive. Here, the binding behavior of human serum albumin (HSA) with an amino-terminated self-assembled monolayer (SAM)-coated gold (111) surface was investigated by using molecular dynamics (MD) simulations. HSA binds to the SAM surface through salt bridges at 300 K. As the temperature increases to 350 K, HSA maintains its native structure, while the salt bridges largely diminish owing to the considerable lateral diffusion of HSA on the SAM. Moreover, the interfacial water located between HSA and the SAM gets increased and prevents the reformation of the salt bridges of HSA with the SAM, which reduces the binding affinity of HSA. And HSA eventually desorbs from the SAM. The depiction of thermally induced spontaneous protein desorption enriches our understanding of reversible binding behavior of protein with NMs, and may provide new insights into the controlled release of protein drugs delivered by using nanocarriers under the regulation of high temperature.
Collapse
Affiliation(s)
- Shuai Wang
- College of informatics, Huazhong Agricultural University, Wuhan 430070, China.,Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Xinwen Ou
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.
| | - Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
Komorek P, Jachimska B, Brand I. Adsorption of lysozyme on gold surfaces in the presence of an external electric potential. Bioelectrochemistry 2021; 142:107946. [PMID: 34507162 DOI: 10.1016/j.bioelechem.2021.107946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Adsorbed protein films consist of essential building blocks of many biotechnological and biomedical devices. The electrostatic potential may significantly modulate the protein behaviour on surfaces, affecting their structure and biological activity. In this study, lysozyme was used to investigate the effects of applied electric potentials on adsorption and the protein structure. The pH and the surface charge determine the amount and secondary structure of adsorbed lysozyme on a gold surface. In-situ measurements using polarization modulation infrared reflection absorption spectroscopy indicated that the concentration of both the adsorbed anions and the lysozyme led to conformational changes in the protein film, which was demonstrated by a greater amount of aggregated β-sheets in films fabricated at net positive charges of the Au electrode (Eads > Epzc). The changes in secondary structure involved two parallel processes. One comprised changes in the hydration/hydrogen-bond network at helices, leading to diverse helical structures: α-, 310- and/or π-helices. In the second process β-turns, β-sheets, and random coils displayed an ability to form aggregated β-sheet structures. The study illuminates the understanding of electrical potential-dependent changes involved in the protein misfolding process.
Collapse
Affiliation(s)
- Paulina Komorek
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland.
| | - Izabella Brand
- Department of Chemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
14
|
Kato M, Masuda Y, Yoshida N, Tosha T, Shiro Y, Yagi I. Impact of membrane protein-lipid interactions on formation of bilayer lipid membranes on SAM-modified gold electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Xu Z, He Z, Quan X, Sun D, Miao Z, Yu H, Yang S, Chen Z, Zeng J, Zhou J. Molecular simulations of charged complex fluids: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Spectroelectrochemical studies of structural changes during reduction of oxygen catalyzed by laccase adsorbed on modified carbon nanotubes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zheng H, Yang SJ, Zheng YC, Cui Y, Zhang Z, Zhong JY, Zhou J. Electrostatic Effect of Functional Surfaces on the Activity of Adsorbed Enzymes: Simulations and Experiments. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35676-35687. [PMID: 32649833 DOI: 10.1021/acsami.0c08080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficient immobilization of haloalkane dehalogenase (DhaA) on carriers with retaining of its catalytic activity is essential for its application in environmental remediation. In this work, adsorption orientation and conformation of DhaA on different functional surfaces were investigated by computer simulations; meanwhile, the mechanism of varying the catalytic activity was also probed. The corresponding experiments were then carried out to verify the simulation results. (The simulations of DhaA on SAMs provided parallel insights into DhaA adsorption in carriers. Then, the theory-guided experiments were carried out to screen the best surface functional groups for DhaA immobilization.) The electrostatic interaction was considered as the main impact factor for the regulation of enzyme orientation, conformation, and enzyme bioactivity during DhaA adsorption. The synergy of overall conformation, enzyme substrate tunnel structural parameters, and distance between catalytic active sites and surfaces codetermined the catalytic activity of DhaA. Specifically, it was found that the positively charged surface with suitable surface charge density was helpful for the adsorption of DhaA and retaining its conformation and catalytic activity and was favorable for higher enzymatic catalysis efficiency in haloalkane decomposition and environmental remediation. The neutral, negatively charged surfaces and positively charged surfaces with high surface charge density always caused relatively larger DhaA conformation change and decreased catalytic activity. This study develops a strategy using a combination of simulation and experiment, which can be essential for guiding the rational design of the functionalization of carriers for enzyme adsorption, and provides a practical tool to rationally screen functional groups for the optimization of adsorbed enzyme functions on carriers. More importantly, the strategy is general and can be applied to control behaviors of different enzymes on functional carrier materials.
Collapse
Affiliation(s)
- He Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Sheng-Jiang Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong-Chao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Yan Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zhe Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Jin-Yi Zhong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
18
|
Yan H, Ma J, Zhu F, Quan J, Dhinakaran MK, Li H. Phenethylamine@Pillar[5]arene Biointerface for Highly Enantioselective Adsorption of Protein. Chem Asian J 2020; 15:1025-1029. [DOI: 10.1002/asia.201901821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/16/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hewei Yan
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research Department of Chemistry School of PharmacyHubei University of Medicine Shiyan 442000, Hubei Province P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Jiaxin Quan
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU) Ministry of Education College of ChemistryCentral China Normal University Wuhan 430079 P.R. China
| |
Collapse
|
19
|
Yang S, Liu J, Zheng H, Zhong J, Zhou J. Simulated revelation of the adsorption behaviours of acetylcholinesterase on charged self-assembled monolayers. NANOSCALE 2020; 12:3701-3714. [PMID: 32022070 DOI: 10.1039/c9nr10123c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An acetylcholinesterase (AChE)-based electrochemical biosensor, as a promising alternative to detect organophosphates (OPs) and carbamate pesticides, has gained considerable attention in recent years, due to the advantages of simplicity, rapidity, reliability and low cost. The bio-activity of AChE immobilized on the surface and the direct electron transfer (DET) rate between an enzyme and an electrode directly determined the analytical performances of the AChE-based biosensor, and experimental studies have shown that the charged surfaces have a strong impact on the detectability of the AChE-based biosensor. Therefore, it is very important to reveal the behaviour of AChE in bulk solution and on charged surfaces at the molecular level. In this work, the adsorption orientation and conformation of AChE from Torpedo californica (TcAChE) on oppositely charged self-assembled monolayers (SAMs), COOH-SAM and NH2-SAM with different surface charge densities, were investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics simulations (AAMD). Simulation results show that TcAChE could spontaneously and stably adsorb on two oppositely charged surfaces by the synergy of an electric dipole and charged residue patch, and opposite orientations were observed. The active-site gorge of TcAChE is oriented toward the surface with the "end-on" orientation and the active sites are close to the surface when it is adsorbed on the positively charged surface and the tunnel cost for the substrate is lower than that on the negatively charged surface and in bulk solution, while for TcAChE adsorbed on the negatively charged surface, the active site of TcAChE is far away from the surface and the active-site gorge is oriented toward the solution with a "back-on" orientation. It suggests that the positively charged surface could provide a better microenvironment for the efficient bio-catalytic reaction and quick DET between TcAChE and the electrode surface. Moreover, the RMSD, RMSF, dipole moment, gyration radius, eccentricity and superimposed structures show that only a slight conformational change occurred on the relatively flexible structure of TcAChE during simulations, and the native conformation is well preserved after adsorption. This work helps us better comprehend the adsorption mechanism of TcAChE on charged surfaces and might provide some guidelines for the development of new TcAChE-based amperometric biosensors for the detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - He Zheng
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, P. R. China
| | - Jinyi Zhong
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
20
|
Removal of Diclofenac, Paracetamol, and Carbamazepine from Model Aqueous Solutions by Magnetic Sol-Gel Encapsulated Horseradish Peroxidase and Lignin Peroxidase Composites. NANOMATERIALS 2020; 10:nano10020282. [PMID: 32046049 PMCID: PMC7075194 DOI: 10.3390/nano10020282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 01/20/2023]
Abstract
Sustainable and green synthesis of nanocomposites for degradation of pharmaceuticals was developed via immobilization and stabilization of the biological strong oxidizing agents, peroxidase enzymes, on a solid support. Sol–gel encapsulated enzyme composites were characterized using electron microscopy (TEM, SEM), atomic force microscopy, FTIR spectroscopy, and thermogravimetric analysis. Horseradish peroxidase (HRP) and lignin peroxidase (LiP) were adsorbed onto magnetite nanoparticles and sol–gel encapsulated in a surface silica layer. Encapsulation enhanced the stability of the biocatalysts over time and thermal stability. The biocatalysts showed appreciable selectivity in oxidation of the organic drinking water pollutants diclofenac, carbamazepine, and paracetamol with improved activity being pharmaceutical specific for each enzyme. In particular, sol–gel encapsulated LiP- and HRP-based nanocomposites were active over 20 consecutive cycles for 20 days at 55 °C (24 h/cycle). The stability of the sol–gel encapsulated catalysts in acidic medium was also improved compared to native enzymes. Carbamazepine and diclofenac were degraded to 68% and 64% by sol–gel LiP composites respectively at pH 5 under elevated temperature. Total destruction of carbamazepine and diclofenac was achieved at pH 3 (55 °C) within 3 days, in the case of both immobilized HRP and LiP. Using NMR spectroscopy, characterization of the drug decomposition products, and decomposition pathways by the peroxidase enzymes suggested.
Collapse
|
21
|
Quan X, Liu J, Zhou J. Multiscale modeling and simulations of protein adsorption: progresses and perspectives. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Feng J, Xu L, Wang H, Liu S. Interaction between Gemini Dodecyl O-Glucosides-Based Multilayer Vesicles and β-Lactoglobulin: The Dominant Role of Surface Charge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:844-855. [PMID: 30607932 DOI: 10.1021/acs.jafc.8b03180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Novel Gemini dodecyl O-glucoside-based primary, secondary, and tertiary vesicles were developed in this work utilizing layer-by-layer deposition of polysaccharides (e.g., sodium carboxymethyl cellulose and chitosan), and their interaction with β-lactoglobulin (BLG) was carefully investigated. The increase of polysaccharide layers on primary vesicles led to a monotonic increase in size and consecutive reversal of surface charge. Polysaccharide deposition significantly retarded the vesicle aggregation and degradation of entrapped catechin laurate during storage. Steady-state fluorescence, isothermal titration calorimetry, and protein precipitation analyses revealed the surface charge dependence of the interactions between vesicles and a model milk protein BLG, which were much stronger when they were charged oppositely than when they presented the same type of surface charge. It was highlighted that the surface charge of vesicles could be tuned by differently charged coatings to accommodate to that of the milk proteins in the food matrix. This work will contribute to the practical application of niosomal vesicles loaded with bioactive compounds to fortify dairy products.
Collapse
Affiliation(s)
- Jin Feng
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
- Department of Functional Food and Bio-active Compounds, Institute of Agro-food Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , Jiangsu , China
| | - Lujing Xu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Hua Wang
- Center of Analysis and Measurement , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| |
Collapse
|
23
|
Marquetti I, Desai S. Orientation effects on the nanoscale adsorption behavior of bone morphogenetic protein-2 on hydrophilic silicon dioxide. RSC Adv 2019; 9:906-916. [PMID: 35517634 PMCID: PMC9059500 DOI: 10.1039/c8ra09165j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022] Open
Abstract
Bone Morphogenetic Protein-2 (BMP-2) is a growth factor associated with different developmental functions in regenerative medicine and tissue engineering. Because of its favorable properties for the development of bone and cartilage tissue, BMP-2 promotes the biocompatibility of medical implants. In this research, molecular dynamics simulations were implemented to simulate the interaction of BMP-2 with a flat hydrophilic silicon dioxide substrate, an important biomaterial for medical applications. We considered the influence of four orthogonal protein orientations on the adsorption behavior. Results showed that arginine and lysine were the main residues to interact with the silicon dioxide substrate, directly adsorbing onto the surface and overcoming water layers. However, between these charged residues, we observed a preference for arginine to adsorb. Orientations with the α-helix loop closer to the surface at the beginning of the simulations had greater loss of secondary structure as compared to the other configurations. Among all the orientations, the end-on B configuration had favorable adsorption characteristics with a binding energy of 14 000 kJ mol-1 and retention of 21.7% β-sheets as confirmed by the Ramachandran plots. This research provides new insights into the nanoscale interaction of BMP-2 and silicon dioxide substrate with applications in orthopedic implants and regenerative medicine.
Collapse
Affiliation(s)
- Izabele Marquetti
- Department of Industrial & Systems Engineering, North Carolina A&T State University Greensboro NC 27411 USA
| | - Salil Desai
- Department of Industrial & Systems Engineering, North Carolina A&T State University Greensboro NC 27411 USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine Winston-Salem NC 27157 USA
| |
Collapse
|
24
|
Luo M, Gao Y, Yang S, Quan X, Sun D, Liang K, Li J, Zhou J. Computer simulations of the adsorption of an N-terminal peptide of statherin, SN15, and its mutants on hydroxyapatite surfaces. Phys Chem Chem Phys 2019; 21:9342-9351. [PMID: 30994664 DOI: 10.1039/c9cp01638d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salt-bridge adsorption of the SN15 peptide and its mutants on the HAP(001) surface.
Collapse
Affiliation(s)
- Muzhong Luo
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangdong 510640
- People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Shengjiang Yang
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangdong 510640
- People's Republic of China
| | - Xuebo Quan
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangdong 510640
- People's Republic of China
| | - Delin Sun
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangdong 510640
- People's Republic of China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jian Zhou
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangdong 510640
- People's Republic of China
| |
Collapse
|
25
|
Yang S, Liu J, Quan X, Zhou J. Bilirubin Oxidase Adsorption onto Charged Self-Assembled Monolayers: Insights from Multiscale Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9818-9828. [PMID: 30044918 DOI: 10.1021/acs.langmuir.8b01974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficient immobilization and orientation of bilirubin oxidase (BOx) on different solid substrates are essential for its application in biotechnology. The T1 copper site within BOx is responsible for the electron transfer. In order to obtain quick direct electron transfer (DET), it is important to keep the distance between the T1 copper site and electrode surface small and to maintain the natural structure of BOx at the same time. In this work, the combined parallel tempering Monte Carlo simulation with the all-atom molecular dynamics simulation approach was adopted to reveal the adsorption mechanism, orientation, and conformational changes of BOx from Myrothecium verrucaria (MvBOx) adsorbed on charged self-assembled monolayers (SAMs), including COOH-SAM and NH2-SAM with different surface charge densities (±0.05 and ±0.19 C·m-2). The results show that MvBOx adsorbs on negatively charged surfaces with a "back-on" orientation, whereas on positively charged surfaces, MvBOx binds with a "lying-on" orientation. The locations of the T1 copper site are closer to negatively charged surfaces. Furthermore, for negatively charged surfaces, the T1 copper site prefers to orient closer to the surface with lower surface charge density. Therefore, the negatively charged surface with low surface charge density is more suitable for the DET of MvBOx on electrodes. Besides, the structural changes primarily take place on the relatively flexible turns, coils, and α-helix. The native structure of MvBOx is well preserved when it adsorbs on both charged surfaces. This work sheds light on the controlling orientation and conformational information on MvBOx on charged surfaces at the atomistic level. This understanding would certainly promote our understanding of the mechanism of MvBOx immobilization and provide theoretical support for BOx-based bioelectrode design.
Collapse
Affiliation(s)
- Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology , Wuhan 430073 , P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
26
|
Abstract
Redox enzymes, which catalyze reactions involving electron transfers in living organisms, are very promising components of biotechnological devices, and can be envisioned for sensing applications as well as for energy conversion. In this context, one of the most significant challenges is to achieve efficient direct electron transfer by tunneling between enzymes and conductive surfaces. Based on various examples of bioelectrochemical studies described in the recent literature, this review discusses the issue of enzyme immobilization at planar electrode interfaces. The fundamental importance of controlling enzyme orientation, how to obtain such orientation, and how it can be verified experimentally or by modeling are the three main directions explored. Since redox enzymes are sizable proteins with anisotropic properties, achieving their functional immobilization requires a specific and controlled orientation on the electrode surface. All the factors influenced by this orientation are described, ranging from electronic conductivity to efficiency of substrate supply. The specificities of the enzymatic molecule, surface properties, and dipole moment, which in turn influence the orientation, are introduced. Various ways of ensuring functional immobilization through tuning of both the enzyme and the electrode surface are then described. Finally, the review deals with analytical techniques that have enabled characterization and quantification of successful achievement of the desired orientation. The rich contributions of electrochemistry, spectroscopy (especially infrared spectroscopy), modeling, and microscopy are featured, along with their limitations.
Collapse
|
27
|
Xie Y, Li Z, Zhou J. Hamiltonian replica exchange simulations of glucose oxidase adsorption on charged surfaces. Phys Chem Chem Phys 2018; 20:14587-14596. [PMID: 29766166 DOI: 10.1039/c8cp00530c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hamiltonian replica exchange Monte Carlo simulations efficiently identify the lowest-energy orientations of proteins on charged surfaces at variable ionic strengths.
Collapse
Affiliation(s)
- Yun Xie
- Huizhou University
- Huizhou
- P. R. China
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering
- Guangdong Provincial Key Lab for Green Chemical Product Technology
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|